
Secure Product Tracking In Supply Chain

Mehdi Khalfaoui1, Refik Molva2, and Laurent Gomez1

1 SAP Labs France, Mougins 06254 France,
mehdi.khalfaoui@sap.com, laurent.gomez@sap.com

2 Eurecom Institut, Biot 06410 France,
refik.molva@eurecom.fr

Abstract. In this paper, we propose a secure and efficient product
tracking mechanism implemented using wireless sensor nodes. This mech-
anism aims at tracking goods, and actions performed by each actor of the
supply chain, while preserving the actors’ privacy. Our solution is based
on generating identifiers of the actors and their activities using AND
Anti collusion codes. The identifiers are encrypted using homomorphic
encryption to ensure security against adversaries, and to be able to com-
press the collected identifiers. In this work, wireless sensor nodes are
not required to perform complex computation, which makes our solution
feasible.

Keywords: Supply chain; Sensor networks; Tracking; Privacy; AND-
ACC; Homomorphic Encryption

1 Introduction

This paper aims at introducing a secure and privacy preserving product tracking
solution using wireless sensor networks into supply chains. To this effect, we use
sensors as secure storage tokens to store the steps of the path. More precisely,
the memory capacity of the sensor nodes that are attached to the product store
the identities of the involved steps. At each step, the sensor updates its memory
to add the current step identity. The set of steps collected by a sensor is the path
trace that the product went through. Each step has a secure identity, in order
to be identified and to prevent impersonation attacks. At the end of the supply
chain, a verifier extracts the steps and verifies their validity. The verifier is often
a supply chain manager. He wants to have a global overview of its supply chain
in order to mitigate any potential threat.

In order to preserve the actors privacy, the steps’ identities should be kept
secret. Encryption appears to be a straightforward solution preventing eaves-
droppers from stealing identities and impersonating any legitimate supply chain
actor. However, any technical solution that addresses secure and privacy preserv-
ing product tracking should take into account the limitations of sensor nodes.
These are constrained devices in terms of computation power, memory, and en-
ergy. Due to the limited memory featured by sensors, straightforward storage
of the collected steps cannot be afforded. Thus, a compression mechanism to



2 Mehdi Khalfaoui et al.

reduce the size of the path traces is a mandatory requirement in order to over-
come the memory limitation of sensors. Also, the limited power computing and
the energy of the sensor nodes, make the implementation of complex functions
such as public key encryption algorithms difficult. Therefore, any operations that
have to be performed by the sensors should be compatible with such constraint
environment.

This paper introduces a mechanism to track products in supply chain while
protecting sensitive information of supply chain actors and products. The main
idea is to store on the sensor node an encrypted and compressed path trace
for tracing the product. For that purpose, we propose to generate identities for
the different steps using AND-Anti Collusion Code (AND-ACC) [19]. This code
can be easily compressed by construction. Furthermore, to assure privacy, steps’
IDs should be protected using an encryption mechanism that is compatible with
the compression technique. Therefore, homomorphic encryption seems to be a
natural choice. In addition, to ensure the legitimacy of the involved actors, sen-
sors use Rabin scheme to authenticate them. The main features of the suggested
product tracking scheme are as follows:

– It allows the supply chain manager to verify the legitimacy of the path taken
by a product. More precisely, it allows the supply chain manager to verify
which set of steps, a product has visited.

– It guarantees the privacy of products and therewith partners in the supply
chain. Only the supply chain manager is able to verify the path taken by a
product.

– It allows the restriction of information available to each supply chain actor,
such as the origin of the product and the final destination.

Moreover the scheme is suitable for low capacity sensors. It only requires a
few Kbytes storage. The protocol execution for each supply chain step requires
only two modular multiplication.

2 Related work

The idea of our use case that WSN can be used for tracking the goods in the
supply chain was first suggested in [1]. However, research focuses mainly on Tag
RFIDs to achieve a secure supply chain. Ouafi and Vaudenay [11] address coun-
terfeiting of products using strong cryptography on RFID tags. Elkhiyaoui et
al. [1] presented a tracker, a new mechanism to protect against malicious state
update of tags in each step of the supply chain. Secure tracking of specific target
using WSAN was also addressed in [5]. It describes a mechanism of tracking a
moving target based on relaxation algorithms [13]. However, passive RFID tags
have limited resources, which make security hard to achieve. As a matter of fact,
any public key cryptosystem cannot be used with this type of RFID tag. Only
hash functions can be implemented and used in passive RFID tag environment.
Chawla et al. [2] check whether covert channels exist in a supply chain that leak



Secure Product Tracking In Supply Chain 3

information about a supply chains internal details to an adversary using secu-
rity mechanism implemented in RFID tag. Therefore, a tag’s state is frequently
synchronized with a backend database. If a tag’s state contains data that is not
in the database, the tag is rejected. Our mechanism’s focus, however, is on the
secure, privacy-preserving detection of which path a tag has taken. Shuihua and
Chu [15] detect malicious tampering of a tags state in a supply chain using wa-
termarks. However, there is neither a way to identify a tag’s path, nor to protect
its privacy in the supply chain. Kerschbaum and Oertel [9] detect counterfeits
in the supply chain using pattern matching for anomaly detection. When a tag
is read, this information is stored in a central database along with the ID of the
tag. Unlike our mechanism, the focus of this paper is on the privacy-preservation
of readers participating in the supply chain. There is no privacy for the tags in
the supply chain. Regarding simple product genuineness verification, solutions
exist that rely on physical properties of a ”tag”. For example, TAGSYS produces
holographic ”tags” that are expensive to clone [18]. Verayo produces tags with
Physically no clonable Functions (PUF) [20]. While these approaches solve prod-
uct genuineness verification, they neither support identification of tags paths nor
any kind of privacy properties. Our construction based on anti collusion code
can be similar to collusion detection in multimedia files using fingerprints [19].
It allows a privacy preserving and the anonymity of the supply chain actors.
Furthermore, a sensor node has more resources , which enables the use of more
advanced cryptographic tools.

3 Background

Supply Chain is the movement of materials as they flow from their source to the
end customer. Supply Chain includes purchasing, manufacturing, warehousing,
transportation, customer service, demand planning , supply planning and supply
chain management. It is made up of people, activities, information and resources
involved in moving a product from its supplier to customer.
Formally, a supply chain is represented by a digraph G = (V,E) whereby each
vertex v represents one step in the supply chain. A step v in the supply chain is
uniquely associated with an entity.
Each directed edge e, which links vertex vi to vertex vj , express that vj is
a possible next step to step vi in the supply chain. This simply means that
according to the organization of the supply chain, a product might proceed to
step vj after the completion of step vi. Note that a supply chain can include
loops and reflexive edges, but for the sake of simplicity, we assume that in our
system there are no loops or reflexive edges. Whenever a product in the supply
chain proceeds to step vi , the entity interacts first with the sensor. A path P is
defined as finite sequence of steps P = v0, ..., vl, where l is the length of the path
P . A Path P is deemed valid if it is part of a legitimate supply chain networks.



4 Mehdi Khalfaoui et al.

3.1 Entities

A Secure Product Tracking (SPT) system consists of the following components:

– Sensor S: each product in the supply chain is equipped with a sensor. A
sensor S is a re-writeable memory that stores the sensor state s(S,vj), where
vj represents the current step that is being visited by S.

– Supply chain manager M : M is in charge of the the initial setup of sensors
and of the verification of the path taken by each sensor. In order to verify the
path of sensor S, M reads the current state s(S,vj) of S, and decides whether
the sequence visited by S is legitimate in the supply chain. We assume that
M can enumerate all the valid paths in the supply chain.

– actor a: each actor is a legitimate single entity of the supply chain. When a
product visits a step, the actor associated with that step interacts with the
sensor S attached to the product.

– trace T : T is a digest of the path taken by a product and stored in the
sensor attached to it.

Thus, a SPT system is:

– a Supply Chain G = (V,A)
– a Sensor S
– a set of possible traces T
– a set of different actors a
– a supply chain manager M
– a set of valid paths P

4 Adversary Model

In our protocol, we assume that actors are semi-honest. That is, actors gen-
erate well formed protocol messages but they potentially can forge paths, im-
personate other actors, or try to retrieve the identity of the steps encoded in a
path trace. Any adversary can read the sensor’s memory, since sensors are not
tamper-resistant. However, a sensor can only update its trace after a successful
authentication. Therefore, only the legitimate supply actors can make sensor
updates to its path trace. The security and the privacy of the protocol will be
evaluated based on a formal adversary model inspired by Valbuany et al. [11].
The adversary A that aims at violating the security and privacy properties, relies
on the following oracles:

– OChoose: picks a sensor from the supply chain.
– ORead: takes a sensor S as input, and reads its trace.
– OSend: takes a sensor S as input, and sends a trace to it.
– OCheck: returns TRUE if the sensor S went through a valid path, otherwise

it returns FALSE.
– OInject: injects a sensor S in the supply chain.

We describe the security and privacy properties of our protocol as follows:



Secure Product Tracking In Supply Chain 5

4.1 Security

Our protocol aims at preventing path forgery by an adversary by assuming the
following property: if the verification of a sensor’s trace T by the supply chain
manager M returns a valid path Pv, then S must have visited all the steps of
the path Pv.
In the rest of this section, we introduce two phases, Learning phase when A
can query the oracle OChoose, that randomly selects a sensor within the supply
chain and gives it to A. During this phase, A is allowed to read traces stated in
S and sends traces to S using the oracles ORead and OSend respectively. Then,
A checks the validity of the trace in the sensor S, by querying the oracle OCheck.

In the challenge phase, A randomly chooses a sensor S that has been already
deployed in the supply chain, and authenticates itself to it. Then, A sends some
value to S using OSend. Therefore, A has to successfully bypass the authentica-
tion process, to make S update its path trace. Finally, A injects the sensor in
the supply chain using OInject. If M accepts the sensor as a valid one, A wins.

For Cloning attacks, We use the same mitigation technique presented by
Elkhiyaoui et al. [1]. M has a database DBc of the sensors that went through
valid path of supply chain, and were verified correctly by M . Therefore, A cannot
clone a sensor more than once, thus, the cloning cannot be performed in large
scale.

4.2 Privacy

An adversary A in our protocol, beside his ability to eavesdrop the sensor’s
communications with the actors’ systems, she is able to tamper with the sen-
sor’s memory as well. Thus, we identify privacy requirement as step unlinkability.
Step unlinkability prevents A from telling that two different sensors interacted
with a common step.

To have a formal definition, we introduce the following oracles into our ad-
versary model:

– Odistinguish: takes as input two states s(Si,vk) and s(Sj ,vk), and returns TRUE
if the Si, and Sj refer to the same sensor.

– Ostep: takes as input a sensor S and step v, and returns TRUE if the S went
through step v, and false otherwise.

the privacy game has two phases, learning phase and challenge phase. In the
learning phase, Ochoose provides to A a list of sensors. A can then observe the
numerous protocol exchanges and collect sequences of valid paths. In the chal-
lenge phase, after several additional interactions, a random sensor Sc, that is
already provided to A in the learning phase, is chosen. If A is able to distin-
guish with high probability which sensor from its list corresponds to the sensor
challenger, A wins.



6 Mehdi Khalfaoui et al.

5 Protocol Description

5.1 Approach

In this section, we introduce our approach, and the different requirements that
our solution has to fulfill.
The main idea of this work is to use the sensors as secure storage tokens for the
path traces. More precisely, sensor node S is attached to the goods along the
supply chain. At each step, S collects the current step’s identity. S keeps track
of which step interacted with the goods and which activity has been performed.
The activity can be any process that the actor is supposed to perform, such as
transportation or delivery.

There are three phases in our solution: Initialization, Collection, and Verifi-
cation.

– Initialization: M generates the steps’ IDs. Then, M distributes each step’s
ID to the corresponding supply chain actor.

– Collection: IDs are kept secret by the actors. During the course of regular
supply chain operations, when a product is handled by a supply chain actor,
the sensor S that is attached to the product and the actor interact through
this phase of the protocol. As part of this phase, S verifies the legitimacy
of the supply chain actor. If the actor is legitimate, S includes the current
step’s ID in the path trace.

– Verification: At the end of the supply chain, M retrieves the path trace from
S and extracts the steps’ IDs from the trace and verifies their legitimacy.

In addition to the security and privacy properties introduced in section 4,
this approach requires the actors’ IDs to be kept secret. Furthermore, the solu-
tion has to take into account the limitations of sensors in terms of computational
power and memory. Therefore, straightforward storage of actors IDs and com-
plex cryptographic operations such as asymmetric encryption cannot be afforded
by sensors.

The first objective of the solution thus is to come up with a data compression
technique that allows to store a digest of the path in the sensors. This technique
should also allow the retrieval of actors IDs form the trace by M . The second
requirement is for the confidentiality of the content of the path namely, the actor
ID’s included therein. Encryption that appears to be the most suitable solution
to meet that requirement has to comply with the compression technique. More-
over, to allow the integration of encrypted actor ID’s into the path digest without
decrypting the former, homomorphic encryption seems to be an appropriate so-
lution to this question.

To build a scheme that satisfies the aforementioned requirements, we leverage
on a number of well established primitives. As for the compression technique, our
solution relies on Anti-Collusion Code (ACC). We leverage on Paillier encryption



Secure Product Tracking In Supply Chain 7

to enable S to aggregate the encrypted IDs without decrypting them. Finally, we
use polynomial conversion in order to convert a ACC code vector to a polynomial
evaluation of a specific value. This conversion allow to encrypt a value instead
of a vector without information loss.

5.2 Preliminaries

Anti Collusion Code

Definition A binary code C = {c1, c2, . . . , cn} such that the logical AND of any
subset of k or fewer code vectors is non-zero and distinct from the logical AND
of any other subset of k or fewer code vectors is a k-resilient AND anti-collusion
code, or an AND-ACC code. [19]

Such code is often used in digital fingerprinting to prevent collusion attacks
against traditional watermarking techniques [10]. It allows the identification of
groups of K or less colluders. This is similar to our case, since the supply chain
actors could be considered as colluders that collaborate to perform specific ac-
tions on the product. Therefore, each supply chain actor can be associated to a
code vector. The result of the bitwise AND operation between the code vectors
marks the path of the product. The bitwise AND operation does not increase the
size of the path, therefore, the path size can stay manageable by the sensor all
along the supply chain. Also, encoding and decoding operations does not require
a lot of resources.

Encoding To encode up k code vectors in a single code vector cenc, we perform
bitwise AND operations on the input code vectors.

cenc = c1 AND c2 . . . AND cl (1)

Decoding To decode cenc, we extract the positions of cenc coefficients that equal
to 1. All the code vectors ci that have their coefficients at the extracted positions
equal to 1 are the ones encoded in the cenc.

Example The columns of the following matrix form a 2-resilient AND-ACC code
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1
0 1 1 1 1 0 0
1 1 0 0 1 1 0
1 1 0 1 0 0 1


This code requires 7 bits for 7 users and provides 2-resiliency since any two
column vectors share a unique pair of 1 bits. The encoding result of c1 and c7 is
cenc = c1 AND c7 = {0,0,1,0,0,1}.

Based on the decoding technique cenc has 1’s at positions 3 and 7. Thus, the
decoding of cenc yields c1 and c7 since these are the only two code vectors with
1’s at these positions.



8 Mehdi Khalfaoui et al.

Paillier Cryptosystem Paillier cryptosystem [12] that we use in order to en-
crypt the steps’ IDs, has an interesting property:

Additive Homomorphic property This property allows us to compute the en-
crypted sum of two or several encrypted values as follows:

E(m1, r1) ∗ E(m2, r2) = E(m1 +m2, r1r2) (2)

Rabin Scheme Rabin cryptosystem [14] is used to achieve authentication of
the supply chain actors. Rabin encryption is single square modular encryption,
which makes it feasible for low capacity devices such as sensor nodes. Rabin’s
public key nR = pRqR is stored in the sensor to perform the authentication with
the visited supply chain actors. The public key is necessary for later encoding
and can be published, while the private key must be possessed only by the re-
cipient of the message.
The key-generation process can be summarized as follows:

– Choose two large distinct primes p and q.
– Let nR = p · q. Then n is the public key. The pair (p, q) is the private key.

Encryption using the public key nR, the plaintext is encrypted as follows:

R(m) = m2 mod nR (3)

Decryption Using the private key (p,q), the decryption operation requires the
solution of

x2 = R(m)mod N (4)

which is ”easy” if the factors of nR are known. This equation has four roots in
Z∗NR

. The solution is the one that fulfills the following additional requirement:

x mod 2 = 0 and ((xmodp) + (xmodq)) mod 2 = 0 [14] (5)

Put it all together AND-ACC allows to encode the path, which is done by
assigning to each supply chain actor a code vector as identifier. The collected
identifiers are encoded into a single value using bitwise AND operation. However,
as the actors’ identities have to be kept secret, thus to be encrypted before getting
collected. Therefore, an encryption mechanism that is homomorphic with bitwise
AND is required to ensure the confidentiality of the actors’ IDs.

Definition E is homomorphic with respect to bitwise AND operation, if and only
if there is an operation op, which verifies the following: for any pair of messages
m1 and m2, we have:

E(m1ANDm2) = E(m1) op E(m2) (6)



Secure Product Tracking In Supply Chain 9

Unfortunately, there is no such encryption mechanism that is homomorphic
with respect to bitwise AND operation. The only homomorphic encryption that
we know, are homomorphic with respect to the multiplication such as the RSA
cryptosystem

m1
e ·m2

e = (m1 ·m2)e

or homomorphic with respect to the addition such as Paillier cryptosystem

gm1 · gm2 = g(m1+m2)

So ideally, we need a way to associate bitwise AND operation with arithmetic
addition or multiplication, in order to be able to use one of the existing homo-
morphic encryption algorithms.

AND-SUM conversion We decided to apt for a conversion between bitwise
AND operation and arithmetic addition is based on the following property:

Property 1 Let’s x1, . . . , xn be n binary values, we have the following equivalences
of Table 1:

x1 + . . .+ x1 = n⇐⇒ x1 = . . . = xn = 1⇐⇒ x1 ∧ . . . ∧ xn = 1 (7)

Table 1. AND-SUM conversion

addition + AND ∧

∑n
i=0 xi = n ∧n

i=0xi = 1

∑n
i=0 xi < n ∧n

i=0xi = 0

By interpreting binary code vectors as arithmetic ones, we can sum them as
follows:

csum[j] =

n∑
i=0

ci[j] (8)

Thanks to Property 1, the expected result of the AND bitwise operation

cenc = ∧ni=0ci, can be retrieved on simple reasoning. Indeed, the max
length(csum)
i=0 csum[i]

corresponds to the number of the input code vectors. Thus,



10 Mehdi Khalfaoui et al.

ifcsum[j] =
length(csum)

max
j=0

csum[j] then cand[j] = 1 (9)

ifcsum[j] <
length(csum)

max
j=0

csum[j] then cand[j] = 0 (10)

AND-ACC operations on encrypted code vectors Now that the basic
encoding of actors’ IDs can be represented based on the sum of code vectors in
AND-ACC code, the additively homomorphic Paillier encryption seems to be a
suitable solution to assure the privacy of steps’ IDs as part of the scheme. Thus,
each code vector ci is encrypted using Paillier cryptosystem E

E(ci) =


E(ci[0])
E(ci[1])
. . .

E(ci[len])

 (11)

The encrypted path can then be computed using the additively homomorphic
property of Paillier, as follows:

E(Pathsum) =

len∏
i=0


E(ci[0])
E(ci[1])
. . .

E(ci[len])

 (12)

E(Pathsum) =


E(

∑len
i=0 ci[0])

E(
∑len

i=0 ci[1])
. . .

E(
∑len

i=0 ci[len])

 (13)

An encrypted path is decrypted as follows:

Pathsum = D(E(Pathsum)) =


∑len

i=0 ci[0]∑len
i=0 ci[1]

. . .
∑len

i=0 ci[len]

 (14)

Finally, the actual cleartext value of the path encoding is derived from
Pathsum using the reverse conversion as described in 5.2.

Due to separate encryption of each coefficient in the code vectors, the path
encoding scheme still would require large memory space to store a single path
trace. The path encoding scheme, thus, involves an additional technique that
allows us to represent code vectors as simple integers.

Vector-integer conversion In order to convert a vector v = (v0,. . ., vl) to
an integer, we consider the coordinates of v as coefficient of polynomial P . We
choose a value x bigger than k + 1 (k is the parameter such as AND-ACC is



Secure Product Tracking In Supply Chain 11

K-resilient), and we compute Poly(v)(x)=
∑len

i=0 vix
i. where len is the length of

v.
The inverse conversion is easily achieved by means of subsequent divisions to

extract the coefficients of the polynomial, which are the coefficients of the vector
by construction.

It should be noted that the sum of polynomial evaluation representing two
code vectors is identical to the polynomial representation of the sum of the two
code vectors.

5.3 SPT Protocol

Based on the aforementioned building blocks, the operations of the SPT are
depicted in three phases.

Initialization SPT’s setup is as follows:

– Supply chain manager M shares with the supply chain actors a Rabin’s
private key (pR, qR). Then, M stores the public key nR in the sensor.

– M generates a Paillier cryptosystem public and private keys. M publishes
the Paillier’s public key to all the supply chain actors.

– M generates randomly a list of ACC codes v using Generate algorithm. Then,
M converts each code vector v to a value Poly(v)(x), which corresponds to
an identity of the supply chain step.

– M encrypts each value Poly(vi) to get E(ai), using Paillier’s public key.
Then, M sends the encrypted value to the corresponding ai through a secure
channel.

– M generates an sid for each sensor S, and key k for keyed-HMAC compu-
tation. Then, M computes the encrypted hash E(HMACk(sid)). M keeps a
database DBsensor of sensor identities sid, and their hashes HMACk(sid)).

– M stores in the sensor S, Rabin’s public key nR, the keyed-HMACHMACk(sid)),
and the initial value E(HMACk(sid)). E(HMACk(sid)) corresponds to the
initial trace stored on the sensor.
Now, for each sensor entering the supply chain, M has already stored on it
the initial value s(T0) = E(HMACk(sid)).

Collection This phase starts when S arrives to the supply chain actor. Here, we
assume that the sensor S has visited the steps step0, . . ., stepl. When, S visits the
step stepl+1, it has already stored the trace of the path Pl =

−−−−−−−−−−−−→
step0step1...stepl.

Therefore, the current path trace that is stored in the sensor is E(Tl), which
corresponds to the state of the sensor after visiting l steps.

There are two sub-phases, authentication sub-phase to check the legitimacy
of the actor, and the trace collection sub-phase to update the path trace.

In the authentication sub-phase, S chooses a random value r ∈ FnR
and

sends Rabin(r) = r2mod nR to the current actor. This latter decrypts Rabin(r)
using its private key, and returns hash(r). S considers the authentication as



12 Mehdi Khalfaoui et al.

successful, if the received value matched the hash value of the generated one.
Then, S can proceed to trace collection phase.

In the collection sub-phase, S sends its HMACk(sid)⊕r to the current actor.
This latter computes E(Poly(vl+1(x)))HMACk(sid)= E(Poly(vl+1(x))∗HMACk(sid)),
and he sends to S, the value E(Poly(vl+1(x)) ∗ HMACk(sid)) ⊕ r. S retrieves
E(Poly(vl+1(x))∗HMACk(sid)), and updates the path trace E(Tl+1) as follows:

E(Tl+1) = E(Tl) ∗ E(Poly(vl+1(x)) ∗HMACk(sid))mod N2 (15)

E(Tl+1) = E(Tl + Poly(vl+1(x)) ∗HMACk(sid))mod N2 (16)

E(Tl+1) = E((

len−1∑
j=0

(

l+1∑
i=0

vi[j])x
j) ∗HMACk(sid))mod N2 (17)

Table 2 illustrates the exchanged messages between S and the current actor
acurrent.

Table 2. Authentication phase

S picks randomly a number r
S −→ acurrent : r2modNR

acurrent −→ S : hash(r)
acurrent −→ S : E(Poly(vl+1(x)))⊕ r

Verification Using the authentication protocol presented in the collection phase,
M authenticates the sensor S. Then, M verifies if HMACk(sid) is in DBsensor

to check the legitimacy of the sensor and to prevent massive cloning attacks.
If HMACk(sid) exists in DBsensor, M accepts the path trace Tm from S, oth-
erwise it rejects it. M decrypts the path trace using the secret key of Paillier
cryptosystem. the decryption result is Tm = HMACk(sid)∗

∑
1≤i≤n Poly(vi)(x).

M checks if Tm is well formed by verifying TmmodHMACk(sid) = 0. If it is
the case, M extracts the coefficients of the polynomial, using simple euclidean
division operations to have the vector cvec which is the sum of the coordinates
of the different actors’ identifiers.

Table 3 shows the algorithm to extract the value of the vector cvec.

Using the mechanism explained in section 5.2, we convert cvec to its corre-
sponding binary vector cenc.

cenc represents AND bitwise operation result for the different vectors vi. M
decodes cenc , and extracts the involved steps. Then, M checks if the path is a
valid one or not.



Secure Product Tracking In Supply Chain 13

Table 3. cvec extraction algorithm

Let qot(a, b) the quotient of the division of a by b

qot(Tm, HMACk(sid)) =
∑

0≤i≤l Poly(vi)(x)

qot(Tm, HMACk(sid) =
∑

0≤i≤l
∑

0≤j≤len−1 vi[j]x
j

cvec[i] =
∑

0≤j≤len−1 vi[j]

In this section, we presented our solution in detail. We demonstrated that
only a two modular multiplication operations are executed in the sensor node per
step. Furthermore, our solution can be used for path enforcement by a supply
chain manager, or by a high authority to trace back the actors that interacted
with the product. In Section 6, we present a provable security to our approach.
We describe our simulator to show that any adversary who is able to break our
system, she can solve the hard problem of the quadratic residue problem [12].

6 Security Analysis

In this section we prove the security of SPT system. The proof was inspired
from [1] [11].

6.1 A is not a legitimate actor

if A authenticates successfully itself to S, she breaks the Rabin scheme security
by definition. Therefore, only the legitimate supply actors can try to update the
path trace maliciously.

6.2 A is a legitimate actor

If A is legitimate actor, the authentication process will succeed, and S accepts
the received value from A. In this case, we use the security of keyed-HMAC and
the decisional composite residuosity assumption to prove the security of SPT
protocol against forgery by a legitimate actor.

Security of keyed-HMAC For our proof sketch, we are using the property indis-
tinguishability of keyed hash function.

Indistinguishability property Let Odistinguish be an oracle that when A provides
it with a message m, Odistinguish returns with the same probability a random
number, or HMACk(m). A cannot guess with no-negligible probability if the
returned value is a random number, or HMACk(m).



14 Mehdi Khalfaoui et al.

Lemma Producing a new valid trace contradicts the indistinguishiability property
of HMACk.
Proof (Sketch). From A, we can build an adversary A′ that uses A to break the
indistinguishability property of keyed-HMAC. we provide A, with a sensor S
and its sid. A produces a new valid trace E(Tm) that corresponds to the sensor
sid. A provides sid to Odistinguish. Odistinguish returns value H to be tested. A
decrypts E(Tm). She gets Tm, and computes Tm mod H. If Tm mod H = 0, H is
the HMACk(sid), otherwise H is a random number.

The decisional composite residuosity assumption (DCRA) The DCRA states
that given a composite n and an integer z, it is hard to decide whether z is
a n-residue mod n2 or not. In other words, whether there exists y such that
z = ynmodn2. This assumption is mainly used to proof the semantic security of
Paillier cryptosystem [12].

Definition 1. A cryptographic protocol is semantically secure if its indistin-
guishability against chosen plaintext attacks (IND-CPA) holds.

Theorem 1. SPT is semantically secure if and only if DCRA and the indistin-
guishibilty of keyed-HMAC hold.

Proof. The main idea of this proof is to build an attacker A ′ from A whose
advantage ε to forge a valid path, that is able to break DCRA. As shown in the
previous Lemma, A cannot provide a new valid path trace from scratch. Now,
Let’s assume that A can update a valid path trace that she got from the learning
phase to a new valid path trace. For the sake of simplicity, we consider that the
SPT system has only one valid path.

Let ODCRA be an oracle that, when it is queried with a parameter n, it flips
a coin b ∈ 0, 1. If b = 1 it takes a y ∈ Z and returns ynmod n2 otherwise, it
returns a random number C.
A ′ creates SPT system with a valid path, (step0, . . ., stepm). Then, she

generates the AND-ACC identifier corresponds to each step.
Let E(Tm−1) be the encrypted path trace until the stepm−1. First, A′ sends a
query to ODCRA with N (Paillier modular) as parameter, and gets a challenge
C. A′ computes E(Tm−1)*C mod N2, and writes the result in a sensor S.
If in the challenge phase, A is able to update the trace to a valid path trace
E(Tm), then E(Tm−1). C mod N2 is a valid ciphertext of Tm−1 (i.e E(Tm−1). C
mod N2 is re-encryption to E(Tm−1) ). Therefore, C is N-residue mod N2, and
A′ breaks the DCRA assumption, with advantage of 1/2*ε, since she is wrong
half of the time because of oracle’s coin flip.
Table 4 illustrates the messages exchanged between the involved entities during
the challenge game.

7 Privacy analysis

In this section we prove the privacy requirement of step unlinkability of SPT
system.



Secure Product Tracking In Supply Chain 15

Table 4. Forgery challenge game

ODCRA A′ A

receive N ←− send N

pick C −→ receive C

compute E(Tm−1).Cmod N2 −→ receive E(Tm−1).Cmod N2

receive E(Tm) ←− update trace E(Tm)

receive 1 or 0 ←− if E(Tm) is valid, send 1 else send 0

Theorem 2. SPT provides step unlinkability under DCRA.

Proof. Assume there is an adversary A whose advantage ε to break the step
unlinkability experiment is non-negligible. We now construct a new adversary
A′ that executes A and breaks the semantic security of Paillier.

Let ODCRA be an oracle that, when it is queried with a parameter n, it flips
a coin b ∈ 0, 1. If b = 1 it takes a y ∈ Z and returns ynmod n2 otherwise, it
returns a random number C.
A ′ creates SPT system with multiple valid paths. Then, She generates the

AND-ACC identifiers correspond to each step. First, A′ sends a query to ODCRA

with N (Paillier modular) as parameter, and gets a challenge C. Then, A′ builds
two traces for two different path, with one step in common. Let E(Tm) the path
trace for the path (step0, . . ., stepm), and E(T ′m) the path trace for the path
(step′0, . . ., step′m) with stepi and step′i are the common step. However, the
identifier is E(vi) for stepi and E(vi)*C mod N2 for step′i. A′ provides the two
traces to A′ in the challenge phase.

If in the challenge phase, A is able to decide if both traces has a common
step with an advantage ε, then E(vi). C mod N2 is a valid ciphertext of vi ).
Therefore, C is N-residue mod N2, and A′ breaks DCRA, with advantage of
1/2*ε, since She is wrong the half of the time because of oracle’s coin flip.
Table 5 illustrates the messages exchanged during the challenge game.

8 Performance analysis

This section is allotted to present the analytical performance evaluation of the
proposed scheme. First, we evaluate the AND-ACC code reduction performance,
then the performances related to the sensor itself. The performance evaluation



16 Mehdi Khalfaoui et al.

Table 5. step unlinkability challenge game

ODCRA A′ A

receive N ←− send N

pick C −→ receive C

compute E(Tm) and E(T ′m) −→ receive E(Tm) and E(T ′m)

receive 1 or 0 ←− check if E(Tm) and E(T ′m) have a common step

receive 1 or 0 ←− if 1 is received, send 1 otherwise send 0

criteria of the sensor, are the storage cost, the computation cost and the com-
munication cost.

In this paper, a Rabin’s public key has a size of 1024 bits. The hash function
used is SHA1, which has an output’s size of 160 bits. Paillier encryption has an
output’s size of 2048 bits. For sensor identity, a size of 160 bits is chosen. Rabin’s
encryption is a single modular square which is considered equivalent to a single
modular multiplication in this paper. It requires roughly 100µJ using ATmel128
microprocessor [7] based on the result of Gaubatz et al. [4]. In our scheme,
we use TinyRNG [3] to generate random numbers. TinyRNG consumes around
58µJ at each random number generation. Hash function consumes roughly 1µJ
[6]. The communication cost are set to es =0.209µJ and er =0.226µJ from the
characteristics of the CC2420 transceiver used in the Xbows MICA-Z and Telos
B sensor nodes [8].

8.1 AND-ACC reduction cost

For the sake of simplicity, we consider that our supply chain has only one valid
path. Let l be the number of steps in our supply chain. Let (C) consist of all
l-bit binary vectors that have only a single 0 bit. For example, when l = 4,
(C) = {1110; 1101; 1011; 0111}. It is easy to see when k ≤ l − 1 of these vectors
are combined under AND, that this combination is unique. This code has car-
dinality d, and can produce at most d vectors.

The encrypted path trace E(T ) is valid only if the size of T is less than 1024

bits. Therefore, the trace T =
∑l

i=0 vix
i of the path {step0, ..., stepl−1} has to

have a size less than 1024 bits. As mentioned in section 5.2, x ≥ l, thus:



Secure Product Tracking In Supply Chain 17

T ≤
l∑

i=0

vil
i ≤

l∑
i=0

)l ∗ (l + 1)i ≤ (l + 1)l+1 ≤ 21024 (18)

The biggest value of l that satisfies (18) is 193. This technique can trace the
product in supply chain contains up to 193 steps.

8.2 Storage cost

The storage cost is computed as the number of bytes that the sensor node has
to store. Generally, this storage cost is introduced by the storage of different pa-
rameters and keys necessary to the function of our scheme. The proposed privacy
preserving product tracking scheme does not require much memory overhead.

– Initialization phase: in this phase, the sensor stores Rabin’s public key of
size sizeof(NR), the path trace initialization of size sizeof(E(T )), paillier
modular N2 of size 2 ∗ sizeof(N)=sizeof(E(T )) and a sensor ID of size
sizeof(Sid). Therefore, the total storage needed by S at this phase is 2 ∗
sizeof(E(T )), + sizeof(Sid) + sizeof(NR).

– Collection phase: in this phase, S has to generate random number to start
the authentication with the actor’s system. The generated nonce has a size
of sizeof(NR). Hash value of the generated nonce of size sizeof(hash) has
to be stored as well. Therefore, the total storage needed by S at this phase
is sizeof(NR) + sizeof(hash). The update path process does not increase
the size of the path trace, thus, no more memory capacity is required.

– Verification phase: in this phase, no storage by the sensor is required.

The total storage cost needed by S in our scheme is:

storageCost =2 ∗ sizeof(E(T )) + sizeof(Sid)

+2 ∗ sizeof(NR) + sizeof(hash)
(19)

Table 6 illustrates the storage cost for our scheme.

Table 6. storage cost of SPT scheme

Parameter value

sizeof(Sid) 160 bits

sizeof(NR) 1024 bits
sizeof(hash) 160 bits
sizeof(E(T )) 2048 bits

The storage cost 6378 bits



18 Mehdi Khalfaoui et al.

8.3 Computation cost

The computation cost can be measured in terms of time, use of CPU or energy
dissipation. In fact, these parameters are related and each one can be deduced
from the other. For instance, the energy dissipation can be deduced from the
time as follows: Energy=Power*Time, where Power represents the CPU power
when it is in its active state and Time represents the computing time. In the
present analysis, the term cost is used in its general form without specifying the
unit. The computation cost of our scheme during each phase can be computed
as the sum of the computation cost of the main operations executed during this
phase.

– Initialization phase: in this phase, the main operations are performed by M
himself. Therefore, no computation required by the sensor S.

– Collection phase: in this phase, S generates a random number rand at each
step, which gets encrypted using Rabin scheme. Then, S computes a hash
function of rand in order to check the validity of the actor’s response. If the
validation is succeeded, S updates the path trace by modular multiplying the
received step’s ID with the current trace. In total, S consumes cost(rabin)
+ cost(rand) + c(hash) +cost(modularmultiplication) for each step.

– Verification phase: in this phase, S has to authenticate the supply chain
manager M , which is similar to authenticate a supply chain actor. Therefore,
S consumes in this phase, cost(rabin) + cost(rand) + cost(hash).

The total computation cost needed by S in our scheme is:

compCost =(cost(rabin) + costrand+ costhash) ∗ (l + 1)

+cost(modularmultiplication) ∗ l
(20)

where l is the number of the supply chain steps that the product has visited.
Table 7 illustrates the computation cost for our scheme.

Table 7. computation cost of SPT scheme

Parameter value

cost(rabin) 100µJ
cost(rand) 58µJ
cost(hash) 1µJ

cost(modularmultiplication) 100µJ
The computation cost 160, 59mJ for supply chain with 100 steps



Secure Product Tracking In Supply Chain 19

8.4 Communication cost

The main factor of the communication cost is the energy dissipation. The com-
munication cost is computed using the same approach as TKH [16]. Actually,
the communication cost in terms of energy dissipation is computed as the size of
sent/received messages multiplied by the energy dissipated for the sent/receive
of one bit. We denote er the energy consumed by S, when it receives one bit,
and es when S sends one bit.

– Initialization phase: in this phase, S does not send any messages, however, it
receives the initialization parameters. Therefore, S consumes (sizeof(NR)+
sizeof(Sid)+2*sizeof(E(T )))*er.

– Collection phase: in this phase, S sends encrypted rabin value, which has the
same size as the Rabin’s public key, and it receives a hashed value. Then, S
receives the current encrypted step’s ID from the actor’s site. Therefore, S
consumes (sizeof(NR)*es+ (sizeof(hash) +sizeof(E(T )))* er for each step.

– Verification phase: in this phase, S authenticates M , then, sends the path
trace to him. Therefore, S consumes (sizeof(NR)+ sizeof(Sid+ sizeof(E(T )))*es+
(sizeof(hash))* er

The total communication cost needed by S in our scheme is:

commCost =(sizeof(NR) + sizeof(hash) ∗ (l + 1)

+sizeof(Sid) + sizeof(E(T )) ∗ (l + 2)) ∗ er
+(sizeof(NR) ∗ (l + 1) + sizeof(E(T ))) ∗ es

(21)

where l is the number of the supply chain actors that interact with the product.
Table 8 illustrates the communication cost for our scheme.

Table 8. communication cost of SPT scheme

Parameter value

sizeof(Sid 160 bits
sizeof(NR) 1024 bits

sizeof(hash) 160 bits
sizeof(E(T )) 2048 bits

er 0, 209µJ
es 0.226µJ

The communication cost 12, 34mJ for supply chain with 100 steps

It is worth to mention that the storage cost, computation cost, and the
communication cost can have a different result depending on the size of the
security keys, and the algorithms that M may choose.



20 Mehdi Khalfaoui et al.

9 Conclusion

In this paper, we presented a cryptographic protocol to address security and
privacy challenges in tracking the goods within supply chain management. Our
main idea is to use AND-ACC code as identifiers of the different actors in the
supply chain. Then, use a mathematical transformation to convert their AND
property to additive property. Finally, an additive homomorphic encryption is
used to ensure both the confidentiality of the identities, and the compression in
the sensors.
Sensors collect the identities of the visited steps , and update their path traces.
This allows supply chain manager to trace back all the steps that a product went
through. The security of our protocol against adversaries relies on the semantic
security of Paillier and the indistiguishibility property of keyed HMAC. Rabin’s
scheme used to check the legitimacy of the supply chain actors, however, other
techniques can be used such as the one presented by Sorniotti et al. [17].
In our supply chain scenario, we assume that we have a global supply chain
manager. There is no notion of multiple managers. However in real world that
might not be true. Supply chain can have a quality, security, and recall mangers.
Delivering the right information to the right manager is an issue, especially in
big scale supply chains. However, this is left to future work. 3

References

1. E. Blass, K. Elkhiyaoui, and R. Molva. Tracker : security and privacy for rfid-based
supply chains. In NDSS’11, 18th Annual Network and Distributed System Security
Symposium, 6-9 February 2011, San Diego, California, USA, ISBN 1-891562-32-0,
02 2011.

2. K. Chawla, G. Robins, and W. Weimer. On Mitigating Covert Channels in RFID-
Enabled Supply Chains. RFIDSec Asia, Singapore, 2010.

3. A. Francillon and C. Castelluccia. Tinyrng: A cryptographic random number gen-
erator for wireless sensors network nodes. In Modeling and Optimization in Mobile,
Ad Hoc and Wireless Networks and Workshops, 2007. WiOpt 2007. 5th Interna-
tional Symposium on, pages 1–7. IEEE, 2007.

4. G. Gaubatz, J.P. Kaps, and B. Sunar. Public key cryptography in sensor network-
srevisited. Security in Ad-hoc and Sensor Networks, pages 2–18, 2005.

5. R. Gupta and S.R. Das. Tracking moving targets in a smart sensor network. In
Vehicular Technology Conference, 2003. VTC 2003-Fall. 2003 IEEE 58th, pages
3035–3039. IEEE, 2003.

6. M. Hempstead, M.J. Lyons, D. Brooks, and G.Y. Wei. Survey of hardware systems
for wireless sensor networks. Journal of Low Power Electronics, pages 11–20, 2008.

7. http://www.atmel.com/Images/doc2467.pdf. Last access: 01/06/2012.
8. http://www.xbow.com/. Last access: 01/06/2012.

3 research was partially funded by the German Federal Ministry of Education and
Research under the promotional reference 01ISO7009 and by the French Ministry
of Research within the RESCUE-IT project. The authors take the responsibility for
the content



Secure Product Tracking In Supply Chain 21

9. F. Kerschbaum and R.J. Deitos. Security against the business partner. In Pro-
ceedings of the 2008 ACM workshop on Secure web services, pages 1–10. ACM,
2008.

10. S.J. Lee and S.H. Jung. A survey of watermarking techniques applied to multime-
dia. In Industrial Electronics, 2001. Proceedings. ISIE 2001. IEEE International
Symposium on, volume 1, pages 272–277. IEEE, 2001.

11. K. Ouafi and S. Vaudenay. Pathchecker: An RFID Application for Tracing Prod-
ucts in Supply-Chains. In International Conference on RFID Security. Citeseer,
2009.

12. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Advances in Cryptology, EUROCRYPT99, pages 223–238. Springer, 1999.

13. K.R. Pattipati, S. Deb, Y. Bar-Shalom, and R.B. Washburn Jr. A new relaxation
algorithm and passive sensor data association. Automatic Control, IEEE Transac-
tions on, pages 198–213, 1992.

14. M.O. Rabin. Digitalized signatures and public-key functions as intractable as
factorization. 1979.

15. H. ShuiHua and C.H. Chu. Tamper Detection in RFID-Enabled Supply Chains
Using Fragile Watermarking. In RFID, 2008 IEEE International Conference on,
pages 111–117. IEEE.

16. Ju-Hyung Son, Jun-Sik Lee, and Seung-Woo Seo. Topological key hierarchy for
energy-efficient group key management in wireless sensor networks. Wirel. Pers.
Commun., 52(2):359–382, January 2010.

17. A. Sorniotti, R. Molva, and L. Gomez. Efficient access control for wireless sensor
data. Ad Hoc & Sensor Wireless Networks, pages 325–336, 2009.

18. TAGSYS. Rfid luxury goods solutions. 2012.
19. W. Trappe, M. Wu, Z.J. Wang, and K.J.R. Liu. Anti-collusion fingerprinting for

multimedia. Signal Processing, IEEE Transactions on, 51(4):1069–1087, 2003.
20. VERAYO. unclonable-rfids. 2012.


