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Abstract

We consider both discrete-time irreducible Markov chains with circulant tran-

sition probability matrix P and continuous-time irreducible Markov processes

with circulant transition rate matrix Q. In both cases we provide an expres-

sion of all the moments of the mixing time. In the discrete case, we prove

that all the moments of the mixing time associated with the transition prob-

ability matrix αP + [1− α]P∗ are maximum in the interval 0 ≤ α ≤ 1 when

α = 1/2, where P∗ is the transition probability matrix of the time-reversed

chain. Similarly, in the continuous case, we show that all the moments of

the mixing time associated with the transition rate matrix αQ + [1 − α]Q∗

are also maximum in the interval 0 ≤ α ≤ 1 when α = 1/2, where Q∗ is the

time-reversed transition rate matrix.
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1. Introduction

In this paper we consider both discrete irreducible Markov chains with

circulant transition probability matrix P and continuous-time irreducible

Markov processes with circulant transition rate matrix Q. Therefore, the

adjacency matrix1 of their associated graph is circulant as well. Hence, our

model can be viewed either as a general case of random walk2 on unweighted

circulant graphs or as a particular case of random walk on weighted circu-

lant graphs, in which the matrix of weights is circulant as well. Examples

of circulant graphs are complete graph, crown graph 2n− 1, Paley graph of

prime order, Möbius ladder, cocktail party graph, Andrásfai graph, antiprism

graph, complete bipartite graph, cycle graph, octahedral graph, pentatope

graph, prism graphs, square graph, tetrahedral graph, triangle graph, and

utility graph (Weisstein). Moreover, connected circulant graphs are Cayley

graphs (Pegg et al.).

Circulant graphs have been extensively studied in literature over the years

from both a combinatorics and an algebraic point of view (Morris, 2007;

Elspas and Turner, 1970; Codenotti et al., 1998; So, 2006). They play a fun-

damental role in telecommunication networks, VLSI design, and distributed

computation (Bermond et al., 1995; Leighton, 1992; Cai et al., 1999; Mans,

1The adjacency matrix of a continuous Markov process is associated with its subordi-

nated chain (Brémaud, 1999) with transition probability matrix K = Q/λ + I, for some

λ > 0.
2In the continuous case, the number of steps of the random walk over time is distributed

as a Poisson variable with parameter λ.
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1997), since they are a natural extension of rings, with increased connectivity.

Let us give an overview of the content of this paper. In Section 2 we reca-

pitulate some useful definitions and results on Markov processes. We provide

an expression for all the moments of the mixing time of both discrete and

continuous circulant Markov processes in Sections 3.1 and 3.2, respectively.

In Section 4 we prove a conjecture by Aldous and Fill (2002), restricted to

the case of circulant discrete Markov chains, claiming that the mixing time of

the matrix αP+ [1−α]P∗, where P∗ is the time-reversed of P, is maximum

in the interval 0 ≤ α ≤ 1 at α = 1/2. We refer to such mixing time as

maximum entropy mixing time. We extend the validity of Aldous and Fill’s

conjecture to all the moments of the maximum entropy mixing time, and we

provide analogous results in the continuous case. We dub these results as

maximum entropy theorems of mixing time.

Let us provide some remarks about notation. The imaginary unit is

referred to as j. Let c ∈ C. Its complex conjugate is c; <(c) and =(c) indicate

its real and its imaginary part, respectively. The convolution between two

functions a and b is denoted by a ? b. N0 is equivalent to N ∪ {0}. R+
0 is the

set of nonnegative real numbers. We use bold fonts for matrices and vectors.

Bn,m is the (n,m) component of matrix B. The acronym ROC stands for

Region Of Convergence.
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2. Background on Markov processes

2.1. Discrete-time Markov chains

Let P be the stochastic transition probability matrix of a discrete-time

homogeneous Markov chain (DT-HMC) on the finite state space S, having

cardinality N . The matrix P is irreducible when each state is reachable from

any state with positive probability. The stationary distribution of P is the

column vector π ∈ RN : πTP = πT ,
∑N

i=1 πi = 1. If P is irreducible, then

π is unique and πi > 0 for all i (Brémaud, 1999). Hence, in such a case we

can define the transition probability matrix P∗ of the time-reversed chain,

such that P∗n,m = Pm,nπm/πn, for all n,m.

Theorem 2.1 (Brémaud (1999)). Let P be an irreducible transition probabil-

ity matrix matrix. Let {λi}i be its eigenvalues. Then, 1 is a simple eigenvalue

of P (i.e., it has multiplicity 1) and |λi| ≤ 1, for all i’s.

The k-th moment of the hitting time from state sn to state sm, where k ∈ N,

is defined as

En

(
T km
)
≡ E

(
inf
{
ik ≥ 0, i ∈ N0 : Si = sm

} ∣∣S0 = sn
)
,

where Si is the state of the Markov chain at time step i. We denote by

Ψ(k)(P) the k-th moment of the mixing time associated with P, i.e.

Ψ(k)(P) =
N∑
n=1

N∑
m=1

πnπm En

(
T km
)
. (1)

Let the matrix P be circulant, i.e. there exist c0, c1, . . . , cN−1 such that

Pn,m = cm−n mod(N). Hence, its eigenvalues {λi}0≤i≤N−1 of P can be com-
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puted as (Gray, 2006)

λi =
N−1∑
n=0

cn exp(−j2πni/N), 0 ≤ i ≤ N−1. (2)

If P is also irreducible, then the column vector π = 1N/N is its unique

stationary distribution.

2.2. Continuous-time Markov processes

In the continuous case, we still consider the state space S to have cardi-

nality N . Let {S(t)}t∈R be a continuous-time homogeneous Markov process

(CT-HMP) on S. Let P̃(t) be, for any t ∈ R+
0 , the transition probabil-

ity matrix such that prob
(
S(t2) = si2

∣∣S(t1) = si1
)

= P̃i1,i2(t2 − t1), for all

t2 ≥ t1. The transition rate matrix Q is defined as the component-wise limit

of [P̃(h)− P̃(0)]/h when h ↓ 0. The following result is well known.

Theorem 2.2. Let Q be the transition rate matrix of an irreducible CT-

HMP. Then, the null eigenvalue has multiplicity 1.

Note that, if we suppose Q to be circulant, then P̃(t) = exp(Qt) =∑∞
i=0[Qt]

i/i! is circulant as well, for all t ≥ 0. The k-th moment of the

hitting time from state sn to sm is here defined as

En

(
T̃ km

)
≡ E

(
inf
{
tk, t ∈ R+

0 : S(t) = sm
} ∣∣∣S0 = sn

)
.

The expression of the k-th moment of the mixing time is analogous to the

one in the discrete case (1), and we call it Ψ̃(k)(Q). The time-reversed CT-

HMP is characterized by the transition rate matrix Q∗, such that Q∗n,m =

Qm,n π̃m/π̃n, where π̃ is the stationary distribution of Q.
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We assume that the reader is familiar with the fundamentals of zeta and

Laplace transform. A suitable reference is (Brown and Churchill, 1996).

3. Moments of mixing time

3.1. Discrete-time Markov chains

In this section we consider an irreducible DT-HMC with circulant tran-

sition probability matrix and we will provide a formula for all the moments

of its mixing time.

Theorem 3.1. Let P be the circulant transition probability matrix of an

irreducible DT-HMC. Let λ1, . . . , λN−1 be the eigenvalues of P which are

different from 1. Then,

Ψ(k)(P) = (−1)k
dk

dzk

[
1 + [z − 1]

N−1∑
i=1

[z − λi]−1
]−1∣∣∣∣∣∣

z=1

, z ∈ C. (3)

Proof. Let the discrete-argument function f (n,m) be the probability mass

function associated with the hitting time Tm when the initial state is sn,

i.e.

f (n,m)(i) ≡ prob
(
Tm = i

∣∣S0 = sn

)
, ∀ i ∈ N0,

and f (n,m)(i) ≡ 0 for i < 0. Since P is circulant, then for all i ∈ Z, k ∈ N,

1 ≤ n,m ≤ N , En
[
T km
]

= En+i−1mod(N)+1

[
T km+i−1mod(N)+1

]
. Thus, the

expression
∑N

m=1 En(T km), for all k ∈ N, does not depend on the initial state

n. Hence, it is straightforward to see that the k-th moment of the mixing

time Ψ(k)(P) can be expressed, for any 1 ≤ n ≤ N , as

Ψ(k)(P) =
1

N

N∑
m=1

∑
i∈N0

ik f (n,m)(i), ∀ k ∈ N.
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Thanks to a well known property of zeta transform (see e.g. Brown and

Churchill (1996)) we can write

Ψ(k)(P) =
[−1]k

N

dk

dzk

N∑
m=1

F (n,m)(z)

∣∣∣∣∣
z=1

(4)

where F (n,m) is the zeta transforms of f (n,m). Let us define p(n,m) as the

discrete-time function associated with the probability of transition from state

sn to state sm, i.e. p(n,m)(i) ≡ (Pi)n,m, for all i ∈ N0, and p(n,m)(i) ≡ 0, for

all i < 0. The following recursive property holds for all 1 ≤ n,m ≤ N , i ∈ Z

(see Chung (1967), Theorem 2, p. 21)

f (n,m)(i) = p(n,m)(i)−
i−1∑
τ=0

p(m,m)(i− τ) f (n,m)(τ),

which can be rewritten as p(n,m) = f (n,m) ? p(m,m). Let P (n,m) be the zeta

transforms of p(n,m). Then, thanks to the convolution theorem of zeta trans-

form (see e.g. Brown and Churchill (1996)),

F (n,m)(z) =
P (n,m)(z)

P (m,m)(z)
, ∀n,m, z ∈ ROC(F (n,m)) ∩ ROC(P (m,m)). (5)

Let u be the discrete step function, i.e. u(i) = 1 for i ∈ N0 and u(i) = 0 for

i < 0. Let U(z) = [1 − z−1]−1 be its zeta transform. Then, thanks to the

linearity of zeta transform, we can write

N∑
m=1

P (n,m)(z) = U(z), |z| > 1.

Since any power of a circulant matrix is still circulant, then we can define

the discrete-time function ω ≡ p(m,m), for all m ∈ [1;N ]. Let Ω be the zeta

transform of ω. Let λ
(i)
0 , . . . , λ

(i)
N−1 be the eigenvalues of Pi, for i ≥ 2. Then,
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by elementary properties of eigenvalues,

ω(i) =
1

N
trace(Pi) =

1

N

N−1∑
n=0

λ(i)n =
1

N

N−1∑
n=0

λin, ∀ i ∈ N0

and ω(i) = 0 for all i < 0. By Theorem 2.1, P has only one eigenvalue equal

to 1, i.e. λ0 = 1 > |λi|, for all i. Then,

Ω(z) =
1

N
U(z) +

1

N

N−1∑
i=1

1

1− λi z−1
, |z| > 1.

Hence, we can say that, for any n ∈ [1;N ],

N∑
m=1

F (n,m)(z) =
U(z)

Ω(z)
, |z| > 1. (6)

Since F (n,m) is the zeta transform of a probability distribution, then the point

z = 1 belongs to the interior of its region of convergence, hence we are allowed

to cancel out the discontinuity of (6) in z = 1. Therefore,
∑N

m=1 F
(n,m)(z) is

analytic in z = 1, and we can rewrite (4) as

Ψ(k)(P) = lim
z→1

[−1]k

N

dk

dzk
U(z)

Ω(z)
. (7)

It is straightforward to see that (7) coincides with (3), q.e.d..

For k = 1, equation (3) reduces to the classic expression for mixing time (see

e.g. Aldous and Fill (2002); Hunter (2006)), i.e. Ψ(1)(P) =
∑N−1

i=1 [1− λi]−1.

For k = 2, we obtain the second moment of the mixing time:

Ψ(2)(P) = 2
[
Ψ(1)(P)

]2
+ Ψ(1)(P) + 2

N−1∑
i=1

λi [1− λi]−2 . (8)
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3.2. Continuous-time Markov processes

In this section we will provide an expression for the moments of the mixing

time of an irreducible CT-HMP with circulant transition rate matrix. We

will omit the proof, which is similar to the one of Theorem 3.1.

Theorem 3.2. Let Q be the circulant transition rate matrix of an irreducible

CT-HMP. Let λ̃1, . . . , λ̃N−1 be the nonnull eigenvalues of Q. Then,

Ψ̃(k)(Q) = [−1]k
dk

dsk

[
1 + s

N−1∑
i=1

[s− λ̃i]−1
]−1∣∣∣∣∣∣

s=0

, s ∈ C. (9)

Substituting k = 1 into (9), we obtain the classic mixing time expression for

continuous-time HMC, i.e. Ψ̃(1)(Q) = −
∑N−1

i=1 λ̃−1i . For k = 2, we obtain

the second moment of the mixing time:

Ψ̃(2)(Q) = 2
[
Ψ̃(1)(Q)

]2
+ 2

N−1∑
i=1

λ̃−2i .

4. Maximum entropy mixing time theorems

In this section we prove Conjecture 24 in Chapter 9 of (Aldous and Fill,

2002), in the case of a DT-HMC with circulant transition probability matrix.

We also extend its validity to all the moments of the mixing time. More-

over, we provide analogous results for CT-HMP with circulant transition rate

matrix.

Theorem 4.1. Let P be the circulant transition probability matrix of an

irreducible DT-HMC. Let P∗ be the transition probability matrix of the time-

reversed chain. Then, all the moments of the mixing time Ψ(k)(P(α)), k ∈ N,

associated with the transition probability matrix P(α) = αP+[1−α]P∗ attain

their maximum in the interval 0 ≤ α ≤ 1 at α=1/2.
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Proof. Let {λi}i be the eigenvalues of P. Let us define P(α) = αP+[1−α]P∗.

Hence P(α) is circulant, too. Let {φ(α)
i }i be the eigenvalues of P(α). Firstly

we observe that

dk

dzk
z − 1

z − φ(α)
i

=
[−1]k−1 k!

[
1− φ(α)

i

]
[
z − φ(α)

i

]k+1
. (10)

Next we claim that Ψ(k)(P(α)) can be written as a finite sum of terms of this

form:

C1

[
1 +

N−1∑
i=1

z − 1

z − φ(α)
i

]−n0 L∏
l=1

[
dkl

dzkl

N−1∑
i=1

z − 1

z − φ(α)
i

]nl
∣∣∣∣∣
z=1

(11)

= C2

L∏
l=1

[
N−1∑
i=1

[
1− φ(α)

i

]−kl]nl

, (12)

where L, nl ∈ N, such that

C2 = C1

L∏
l=1

kl![−1][kl−1]nl ≥ 0. (13)

This can be proved inductively. For k = 1 this is true, since

− d

dz

[
1 +

N−1∑
i=1

z − 1

z − φ(α)
i

]−1 ∣∣∣∣∣
z=1

=

[
1 +

N−1∑
i=1

z − 1

z − φ(α)
i

]−2
d

dz

N−1∑
i=1

z − 1

z − φ(α)
i

∣∣∣∣∣
z=1

.

Now suppose the claim is true for k ≥ 1. Then, if we compute the derivative

with respect to z of the expression in z in (11) and we multiply it by −1,

then we obtain

C1n0

[
1 +

N−1∑
i=1

z − 1

z − φ(α)
i

]−n0−1 [
d

dz

N−1∑
i=1

z − 1

z − φ(α)
i

]
L∏
l=1

[
dkl

dzkl

N−1∑
i=1

z − 1

z − φ(α)
i

]nl

+

− C1

[
1 +

N−1∑
i=1

z − 1

z − φ(α)
i

]−n0 L∑
h=1

nh

[
dkh+1

dzkh+1

N−1∑
i=1

z − 1

z − φ(α)
i

][
dkh

dzkh

N−1∑
i=1

z − 1

z − φ(α)
i

]nh−1

×

×
L∏

l=1,l 6=h

[
dkl

dzkl

N−1∑
i=1

z − 1

z − φ(α)
i

]nl

(14)
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It is easy to check that the coefficients of each addend in (14) still satisfy the

rule in (13). Now we prove that the expression in (12) attains its maximum

at α = 1/2. First, we note that the eigenvalues of P make conjugate pairs

and they are equal to the eigenvalues of P∗. Then, exploiting formula (2) we

derive φ
(α)
i = <(λi) + j[2α−1]=(λi), for all i’s. Next we claim that, since

{φ(α)
i }i make conjugate pairs too, then we can write (12) as

C2

L∏
l=1

[
N−1∑
i=1

[
1− φ(α)

i

]−kl]nl

= C2

L∏
l=1

[
N−1∑
i=1

<
([

1− φ(α)
i

]−kl)]nl

. (15)

For all 1 ≤ i ≤ N − 1, 1 ≤ l ≤ L,

<
([

1− φ(1/2)
i

]−kl)
=

∣∣∣∣[1− φ(1/2)
i

]−kl∣∣∣∣
≥
[
[1−<(φ

(α)
i )]2 + [1− 2α]2[=(φ

(α)
i )]2

]−kl/2
, ∀α ∈ [0; 1]

≥
∣∣∣∣<([1− φ(α)

i

]−kl)∣∣∣∣ , ∀α ∈ [0; 1].

Therefore, for all l = 1, . . . , L,[
N−1∑
i=1

<
([

1− φ(1/2)
i

]−kl)]nl

≥

∣∣∣∣∣
[
N−1∑
i=1

<
([

1− φ(α)
i

]−kl)]nl
∣∣∣∣∣ , ∀α ∈ [0; 1].

Then, we can conclude that the expression in (15) attains its maximum at

α = 1/2 and the thesis is proved.

The following Corollary follows straightforward from the proof of Theo-

rem 4.1.

Corollary 4.2. If P has at least one pair of non-real eigenvalues then α=1/2

is the unique point of maximum of Ψ(k)(P(α)), for all k ∈ N.
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The name of Theorem 4.1 follows from the fact that the mixing time

Ψ(k)(P(α)) is maximum when the entropy of the distribution (α, 1−α) is

maximum. Next we prove the analogue of Theorem 4.1 for continuous-time

HMCs.

Theorem 4.3. Let Q be the circulant transition rate matrix of an irreducible

CT-HMP. Let Q∗ be the transition rate matrix of the time-reversed process.

Then, all the moments of the mixing time Ψ̃(k)(Q(α)), k ∈ N, associated with

the transition rate matrix Q(α) = αQ + [1 − α]Q∗ attain their maximum in

the interval 0 ≤ α ≤ 1 at α=1/2.

Proof. The proof follows the same lines as the one of Theorem 4.1. Let

{λ̃i}i be the eigenvalues of Q. Let us define Q(α) = αQ + [1 − α]Q∗. Let

φ̃
(α)
i = <(λ̃i) + j[2α − 1]=(λ̃i) be the i-th eigenvalue of Q(α). Firstly we

observe that
dk

dsk
s

s− φ̃(α)
i

= − φ̃
(α)
i k!

[φ̃
(α)
i − s]k+1

(16)

By induction on k, similarly as in Theorem 4.1, we can show that Ψ̃(k)(Q(α))

can be written as a finite sum of terms of the form:

C

[
1 +

N−1∑
i=1

s

s− φ̃(α)
i

]−n0 L∏
l=1

[
[−1]kl−1

dkl

dzkl

N−1∑
i=1

s

s− φ̃(α)
i

]nl
∣∣∣∣∣
s=0

= C
L∏
l=1

kl!
L∏
l=1

[
N−1∑
i=1

[
−φ̃(α)

i

]−kl]nl

(17)

with L, nl ∈ N, for l = 0, . . . , L, and C ≥ 0. Next we claim that, since {φ(α)
i }i

make conjugate pairs, then
∑N−1

i=1 [−φ̃(α)
i ]−kl =

∑N−1
i=1 <

(
[−φ̃(α)

i ]−kl
)
. Recall

12



that <(λ̃i) < 0 for all i = 1, . . . , N − 1. Then,

<
([
−φ̃(1/2)

i

]−kl)
≥
[[
<(λ̃i)

]2
+ [2α− 1]2

[
=(λ̃i)

]2]−kl/2
≥
∣∣∣∣<([−φ̃(α)

i

]−kl)∣∣∣∣ , 1 ≤ i ≤ N − 1.

Thus, for all 1 ≤ l ≤ L,[
N−1∑
i=1

[
−φ̃(1/2)

i

]−kl]nl

≥

∣∣∣∣∣
[
N−1∑
i=1

[
−φ̃(α)

i

]−kl]nl
∣∣∣∣∣ , ∀α ∈ [0; 1].

Therefore, the expression (17) attains its maximum at α = 1/2 and the thesis

is proved.

Corollary 4.4. If Q has at least one pair of non-real eigenvalues then α=1/2

is the unique point of maximum of Ψ̃(k)(Q(α)), for all k ∈ N.
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