
A General Scalable and Accurate Decentralized Level
Monitoring Method for Large-scale Dynamic Service

Provision in Hybrid Clouds1

Yongquan Fua,∗, Yijie Wanga, Ernst Biersackb

aNational Key Laboratory for Parallel and Distributed Processing, College of Computer Science,
National University of Defense Technology, Hunan province, China, 410073.

bNetworking and Security Department, EURECOM, France.

Abstract

Hybrid cloud computing combines private clouds with geographically-distributed
resources from public clouds, desktop grids or in-house gateways to provide the
most flexibility of each kind of cloud platforms. Service provisioning for wide-
area applications such as cloud backup or cloud network games is sensitive to
wide-area network metric such as round trip time, bandwidth, loss rates. In or-
der to optimize the quality of the service provision in hybrid clouds, it is highly
valuable for the hybrid clouds to collect detailed network metric between par-
ticipating nodes of the hybrid clouds. However, since nodescan be large-scale
and dynamic, the network metric may be diverse for differentcloud services, it
is challenging to increase the generality, scalability, accuracy and the robustness
of the measurement process. We propose a novel distributed level monitoring
method HPM (Hierarchical Performance Measurement) satisfying these require-
ments. For each kind of network metric, HPM represents the degree of pairwise
closeness with discrete level values inspired by the hierarchical clustering tree.
HPM maps probed metric to discrete levels based on an existing distributed K-
means clustering method that helps maximize the similarityof the network metric
in the same level, which therefore optimizes the matching between pairwise levels
and the real-world pairwise proximity. Furthermore, HPM computes the pairwise
levels with decentralized coordinates for scalability. Each node independently
maintains its low-dimensional coordinate based on a novel decentralized imple-
mentation of the Maximum Margin Matrix Factorization method that optimizes

1To appear in Future Generation Computer Systems

1

the mapping between the network metric and the level values.Simulation results
for the RTT, bandwidth, loss and hop metric confirm that HPM converges fast,
is robust to parameter settings, scales well with increasing levels or system size,
and adapts well to diverse metric. A prototyping deploymenton the PlanetLab
platform shows that HPM not only converges fast, but also incurs modest mainte-
nance bandwidth costs. Finally, applying HPM to optimize the service provision
of hybrid clouds shows how HPM can achieve close to optimal solutions.

Keywords:
decentralized algorithm, application health monitoring,hierarchical
decomposition, K-means clustering, decentralized matrixfactorization

1. Introduction

Service provisioning in hybrid clouds that combines geographical-distributed
and heterogeneous platforms such as private and public clouds, clusters, grids,
desktop grids, or in-house gateways, can maximize the benefits each kind of plat-
forms. For example, high performance computing (HPC) applications can be bet-
ter completed by combining the internal capacity of the private clusters and elastic
resources of the public clouds; cloud backup (e.g. Wuala [1]) services can store
users’ data on nearby in-house gateways for fast response and remote distributed
desktop grids for redundancy; network gaming (e.g Halo [2])services can scale to
millions of clients by combining processing capacity of theprivate clouds, elastic
resources of public clouds and low-latency desktop grids. Several hybrid clouds
such as Aneka [3, 4], MOON [5], NaDa [6], Elastic Cluster [7] have already at-
tracted tremendous attention from both academic and industry fields.

Unfortunately, service provisioning with wide-area distributed nodes comes
with costs, since the quality of many cloud services such as high performance
computing (HPC), cloud backup (e.g. Wuala [1]), network gaming (e.g Halo [2])
is sensitive to end to end network metric. For instance, the HPC scientific applica-
tions need minimum pairwise delays when synchronizing states of different nodes
[4]; the file backup service is affected by low bandwidth or high packet losses;
game players’ experiences may be impaired by high RTTs or packet losses.

∗Corresponding author. Phone: +8613875828390.
Email addresses:yongquanf@nudt.edu.cn (Yongquan Fu),

wangyijie@nudt.edu.cn (Yijie Wang),erbi@eurecom.fr (Ernst Biersack)

Preprint submitted to Future Generation Computer Systems November 29, 2012

As a result, in order to improve the quality of the service provision in hy-
brid clouds, the hybrid cloud platforms need to monitor the network conditions
between participating nodes. However, the number of participating nodes could
grow to thousands or millions, which implies that directly measuring pairwise
network conditions does not scale well; worse still, the participating nodes may
also join or leave the hybrid cloud dynamically because of failures, maintenance
or decentralization. Therefore, a scalable and decentralized measurement method
is valuable for performance optimization in hybrid clouds.

1.1. Related Work

Existing work on measuring network conditions for large-scale and dynamic
nodes can be categorized into theabsolute-value measurementsand therelative-
value measurements:

• The absolute-value measurement provides detailed end to end network met-
ric, such as the RTT, bandwidth that can satisfy diverse performance-optimization
requirements. However, measuring the precise absolute values is costly,
since covering all-pair routing paths forO(N) sized systems requiresO(N2)
measurements. As a result, most absolute-value measurements use mathe-
matical models to predict pairwise network metric.

• The relative-value measurement only provides degrees of proximity be-
tween nodes, which is less powerful than the absolute-valuemeasurements,
but can also fulfil many performance-optimization needs. For example, they
allow to select proximity nodes for matchmaking in network games in terms
of RTTs, or losses, or select the backup servers based on the proximity of
the bandwidth values or the loss rates. Moreover, since the measurements
only need to infer the relative proximity relations, the measurement band-
width cost can be reduced.

1.1.1. Absolute-Value Measurement
Many absolute-value measurements predict end to end network metric in order

to improve the scalability of the measurements. Existing prediction methods can
be categorized into network coordinate based methods, topology based methods
and network tomography based methods.

First, the network coordinate based methods embed nodes into low-dimensional
coordinate space and predict end-to-end absolute-value metric based on point-to-
point coordinate distances. Each node maintains its own coordinate using a fixed
number of neighbors, the overall bandwidth cost of the method isO(N). However,

3

most network coordinate methods are specifically suitable for the RTT metric,
such as GNP [8], Vivaldi [9], Htrae [10], NetICE9 [11], DMF [12], Phoenix [13],
which limits the generality of the measurement process. Recently, researchers
have extended network coordinates to predict the bandwidthor hop metric. The
Non-Metric [14] method can predict both delays and bandwidth with the min-
plus metric. Beaumont et al. [15] and Douceur et al. [16] predict end-to-end
bandwidth based on the constraints of the upload and download capacity of de-
centralized nodes. Xing et al. [17] have proposed an Ultra metric based bandwidth
estimation scheme. However, these extended network coordinates for bandwidth
or loss rates are less accurate than those that predict the RTT metric.

Second, the topology based methods predict a virtual topology for participat-
ing nodes and estimate end-to-end metric using topology distances. The topol-
ogy expresses flexible proximity information between nodes. iPlane [18] and
iPlane Nano [19] create an approximated Internet topology based on extensive
Traceroute measurements from distributed vantage points.The Sequoia methods
[20, 21] construct multiple trees to predict the delays and bandwidth between de-
centralized nodes. Unfortunately, due to the dynamics of the network metric and
the participating nodes, maintaining the topology incurs high bandwidth cost.

Third, some of the network tomography based methods predictend-to-end
absolute-value metric using algebra based models. The algebra models assume a
linear relationship between path links and path metric suchas the delay and loss
metric. As a result, the models are no longer useful when suchlinear assumption
is violated, e.g., the bandwidth metric. Chen et al. [22] propose to select a basis
set of routing paths to monitor and estimate pairwise delay and loss of overlay
nodes with linear systems. But it is not clear whether such anapproach applies
to other performance metric. Coates et al. [23] estimate end-to-end path metric
based on the diffusion wavelets and nonlinear estimation that tolerate incomplete
path measurements. Qazi and Moors [24] further show that theoverlay moni-
toring quality can significantly degrade when some parts of the routing topology
are missing or incorrect. Besides, the routing topology is usually assumed to be
known for establishing the algebra models, which may be challenging for hybrid
clouds involving distributed and dynamic nodes.

1.1.2. Relative-value Measurement
The relative-value measurement methods directly compute pairwise proxim-

ity based on mathematical models for scalability. Existingmethods can be cate-
gorized into divisive clustering methods, hierarchical clustering methods and the
coordinate based methods.

4

100 ms

7 ms4 ms 10 ms

20 ms

Layer 1

Layer 2

Layer 3

Figure 1: A simple hierarchical clustering example. There are three levels in the logical tree. The
level number decreases one per layer from the top layer to thebottom layer.

First, the divisive clustering based methods group nearby nodes into the same
cluster. The intra-cluster nodes are closer than inter-cluster ones. Unfortunately,
nodes in the same cluster are assumed to be equally close to each other and no
proximity information is available for inter-cluster nodes. Beaumont et al. [25]
aggregate distributed resources into proximity clusters of nodes based on approx-
imately solving the problem of bin covering under distance constraints. SOLARE
[26] constructs utility-optimized proximity clusters of nodes in the P2P structured
overlay. Malik et al. [27] iteratively divide nodes into proximity clusters based on
static proximity threshold values.

Second, the hierarchical clustering based methods constructs a logical tree to
represent multilevel proximity. The hierarchical clustering method [28] recur-
sively groups nearby nodes into multiplelevelsto produce a logical tree structure.
Tiers [29] organizes distributed nodes as a logical tree where cluster-head nodes
recursively re-cluster themselves in a bottom-up manner. Sequoia [20] creates
logical trees where distributed physical nodes are added into the tree as the leaf
vertices and virtual nodes are added to connect all leaves asa tree. Wieser and
Böszöényi [30] recursively aggregate P2P nodes based onthe pairwise hops on
the overlays, and nodes with the highest identifiers are recursively selected as the
cluster heads at each level.

Figure 1 plots an example of the hierarchical clustering tree for six nodes based
on the RTT metric. The level value of two nodes at the bottom level of the tree is
the layer number of theirclosest common ancestorin the tree that is depicted by
the horizonal dashed lines in the figure. Higher levels correspond to larger RTTs.

5

Although the hierarchical clustering tree provides intuitive and powerful prox-
imity information, it also has two drawbacks:

• It is unsuitable for dynamic nodes, since we have to frequently update the
logical topology when some nodes leave or join the tree or thepairwise
network metric changes, which increases the maintenance costs.

• It cannot guarantee the matching between the topology structure and the
ground-truth metric, since most trees are created based on local heuristics.
Several network metric such as the available bandwidth [31,32, 33], routing
hops are asymmetric, i.e., the bandwidth or hop count from one direction
differs from that in the reverse direction. For example, theasymmetry of
the network metric is missing on the topology structure.

Third, the coordinate based methods embed nodes into proximity space and
represent the pairwise proximity based on the coordinate distances. Unfortu-
nately, most existing coordinate based approaches typically focus on one kind
of network metric. Netvigator [34] creates relative coordinates using the vectors
of RTTs from edge nodes to landmarks and some ’milestone’ routers found based
on traceroute measurements. Netvigator’s similarity is computed as clusters of
coordinates. CRP [35] constructs coordinates of end hosts as the frequency of
being forwarded to different CDN edge servers. The pairwisesimilarity of CRP
is based on the cosine similarity of two coordinates. Shen and Hwang [36] com-
putes the vectors of RTTs from edge nodes to landmarks as coordinates and uses
the space-filling curves to represent the pairwise proximity of nodes. Liao et al.
[37] propose a general and distributed method to map absolute-value measure-
ments to binary performance classes, i.e., good or bad, which is perhaps the most
related work with us. However, there are three differences between [37] and our
study:

• The level mapping process is different. Liao et al. [37] only performs binary
classification, while we explicitly map network metric to a tunable number
of levels. Since the network metric values are usually skewed, we propose a
distributed K-means clustering based level mapping process that maximizes
the similarity of network metric values in each level.

• The coordinate structure is different. Liao et al. [37] represent the coordi-
nate structure with matrix factorization and take the sign of the coordinate
distances as the binary performance classes. We represent the coordinates

6

with matrix factorization and thresholds that optimally map the coordinate
distances to discrete levels.

• The coordinate movement is different. Liao et al. [37] use the stochastic gra-
dient descent method to update coordinates with fixed movement step. We
propose a distributed conjugate gradient method to adjust the coordinates
with optimal movement steps.

1.2. Our Approach

Our objective is to provide fine-grained relative-value measurements for opti-
mizing the service provision of hybrid clouds. To that end, inspired by the layered
proximity of the hierarchical clustering tree, we propose anovel network metering
metric, i.e., thelevel number, to quantify the pairwise proximity. The level num-
ber is represented by integer numbers, where higher level numbers mean worse
network metric. The level number is computed for each direction of a pair of
nodes. Therefore, the asymmetry of network metric can be preserved by defining
suitable level mapping procedures, which improves the granularity of proximity
by the hierarchical clustering tree.

We propose a novel distributed level measurement method called Hierarchi-
cal Performance Measurement(HPM) that can measure the levels for any kind
of network metric for large-scale and dynamic nodes of hybrid clouds. For each
kind of network metric, HPM first maps measured network metric to level values
that preserve the proximity of network metric values and then estimates pairwise
levels based on decentralized coordinates for scalability.

First, in order to provide accurate proximity information,we propose a dis-
tributed K-means clustering based level mapping method to group the most similar
network metric to the same level. Therefore, the level values are able to match the
pairwise proximity between nodes. The number of levels can be tuned to show
detailed proximity of nodes. Besides, we also recommend howto set the num-
ber of levels based on the distributions of network metric. Since we separately
compute level values for unidirectional measurements, theasymmetry of network
metric values can be preserved.

Second, since directly measuring all-pair level values does not scale well, we
propose a novel distributed implementation of a well-knowncollaborative filtering
method called Maximum Margin Matrix Factorization (MMMF) [38, 39]. The
key idea of MMMF is to learn adaptive thresholds to optimallymap coordinate
distances to level values. For level completion, each node independently maps
the coordinate distances from itself to other nodes to discrete levels using its own

7

thresholds that are part of the coordinate structure. We propose a decentralized
implementation of MMMF method to adapt the large-scale and dynamic nodes.
Each node maintains its coordinate based on the distributedimplementation of
the conjugate gradient method. At each step, the coordinateis adjusted with an
optimal step size towards the conjugate gradient direction.

In summary, we make the following contributions:

• We propose a novel level based network metering method that represents
the hierarchical proximity for any kind of network metric. The method is
general for different network metric such as RTTs, bandwidth, hop counts
or loss rates.

• We propose a scalable and accurate decentralized level measurement proce-
dure HPM that estimates pairwise levels in a fully decentralized manner.

• We extensively evaluate the efficiency and efficacy of HPM with simula-
tions and the PlanetLab-deployment experiments.

• We apply the level metric to optimize the service provision of hybrid clouds
and show its superiority against state-of-art methods for estimating pairwise
network metric.

The rest of the paper is organized as follows. Section 2 defines the level con-
cept and presents the level-estimation problem. Section 3 introduces the data sets
used in this paper. Section 4 presents key ideas of HPM. Section 5 shows how
to map network metric to optimal levels. Section 6 presents the level estimation
method. Section 7 presents the simulation results on the real-world data sets. Sec-
tion 8 presents the implementation of HPM and the performance on the PlanetLab.
Section 9 shows several application examples of HPM. Section 10 concludes the
paper.

2. Problem Definition

2.1. Level

As discussed in Section 1, the concept of the level is inspired by the hierar-
chical clustering tree. Each level value is an integer for ease of representation.
Higher level values imply worse network performance.

8

D E C A B
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
is

s
im

ila
ri
ty

Layer 1

Layer 2

Figure 2: A hierarchical clustering example for the bandwidth matrix. Since the hierarchical
clustering requires the dissimilarity metric, but the bandwidth is a similarity metric, i.e., higher
bandwidth corresponds to higher proximity, we transform the bandwidth to dissimilarity value as
D̂ij = 1 − (Dij/MaxBW), whereMaxBW denotes the maximal pairwise bandwidth, i.e., 8
Mbps.

We illustrate the level values with the hierarchical clustering. Consider five
geo-distributed machines indexed byA, B, C, D andE that are located in differ-
ent networks. The pairwise bandwidth matrixD (Mbps) is given as:

D =

[
0 0.125 0.125 0.125 0.125

0.125 0 0.125 0.125 0.125
1 1 0 1 1
1 1 1 0 1
1 1 8 8 0

]
(1)

where thei-th row vector corresponds to the bandwidth from thei-th node to other
nodes.

We use the standard hierarchical clustering method to create the logical tree
for these five nodes. Figure 2 plots the result. We set the level number between
two nodes as the layer number of their closest common ancestor in the tree. For
example, nodeC, D andE are grouped in a cluster, and their pairwise level
value is 1; since nodeA andB have low bandwidth to all other nodes, their level
values to other nodes are 2. In fact, the pairwise levels by the hierarchy clustering
are symmetric, since there is only one closest common ancestor for any two leaf
nodes.

However, the symmetry of the hierarchical clustering tree distorts the structure
of the bandwidth matrix, since the bandwidth matrixD is extremely asymmetric.
On the other hand, the pairwise level numbers can preserve the asymmetry, since
we can separately compute the level number for each unidirectional network met-
ric value. As a result, the level value is more general than the hierarchical cluster-
ing tree.

9

2.2. Measurement Goal and Challenges

Given a set of large-scale and distributed nodes provisioned by hybrid clouds.
These nodes may dynamically join or leave cloud services. Assume that these
nodes are able to probe any kind of network metric to each other using active
measurement tools. However, due to the limited capacity andfixed access band-
width constraints, each node can concurrently probe a smallnumber of nodes.

Our goal is to compute pairwise levels for these large-scaleand dynamic
nodes. There are two main challenges for the level measurement process:

• How to map metric values into optimal levels. An ideal level mapping
process should maximize the similarity of network metric values that are
mapped into the same level, and separate those dissimilar ones into differ-
ent levels.

• How to scale the level measurements. The measurement procedure should
incur modest computation overhead and bandwidth overhead with increas-
ing number of nodes or levels.

3. Data Sets

We use four representative network metric for our evaluation: the RTT metric,
the available bandwidth metric, the end-to-end routing hopmetric and the end-
to-end loss rate metric. We then choose four publicly available data sets for the
experiments:

• RTT , the pairwise RTT metric between 169 PlanetLab machines from the
pairwise Ping project [40];

• Bandwidth, the pairwise available bandwidth matric between 360 Planet-
Lab machines from the S3 project [41];

• Hop, the pairwise routing hop metric between 188 PlanetLab machines by
the iPlane project [18];

• Loss, the loss rate metric between 146 DNS servers by the Queen project
[42].

Some of the data sets are asymmetric, which are illustrated by the asymmetry
ratio :

rasy =
min (Dij , Dji)

max (Dij, Dji)
(2)

10

0 0.2 0.4 0.6 0.8 1
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Asymmetric Ratio

C
D

F

RTT

Loss

Bandwidth

Hop

Loss

Figure 3: The asymmetry ratio of all data sets.

for Dij ≥ 0, Dji ≥ 0 butDij 6= Dji. The asymmetry ratiorasy is always≤ 1.
A data set is symmetric if and only ifrasy = 1 for every pair of nodes. We set
rasy = 0 whenDij or Dji is zero. Figure 3 plots the results. We can see that all
data sets contain a fraction of asymmetric metric values. The loss rate data set has
nearly 100% asymmetry for all node pairs.

4. Our Design

We design and implement a scalable decentralized level estimation method
calledHierarchical Performance Measurements(HPM). Assume that a set of
decentralized nodes run the HPM method. For each kind of network metric, each
node estimates level values to other nodes based on decentralized coordinates that
is computed in a fully decentralized manner: Each node periodically probes the
network metric to a small number of sampled nodes (called neighbors), then com-
putes the optimal levels for these probed metric, and finallyincrementally updates
its coordinate based on these sampled level values and the coordinates of its neigh-
bors.

In order to accurately preserve the proximity of nodes into the pairwise levels,
HPM proposes two complement techniques:

• Distributed K-means clustering based level mapping. Given a network met-
ric, each node maps the absolute-value measurements into discrete levels
based on an existing distributed K-means clustering method[43] that max-
imizes the similarity of the network metric values in the same level.

11

• Distributed maximum margin matrix factorization based level estimation.
We complete unobserved level values based on a novel distributed imple-
mentation of the Maximum Margin Matrix Factorization method, in order
to optimize the mapping of coordinate distances to discretelevels. The co-
ordinate includes low-dimensional vectors and thresholds. The products of
vectors are treated as the coordinate distances; the thresholds are used to
map coordinate distances to discrete levels. Each node incrementally ad-
justs its coordinate based on a distributed conjugate gradient method that
has low computational costs and fast convergence speed.

HPM has the following advantages:

• Applies to diverse metric. The level estimation process assumes that the
pairwise level matrix has low effective ranks. Such an assumption holds for
a wide range of network metric. Since many end hosts share partial routing
paths to some target nodes [20], the network metric values from end hosts to
the targets are correlated with each other. The pairwise level values between
these end hosts to the targets are also correlated with each other. Therefore,
the pairwise level matrix can be well approximated by a low-rank matrix.

• Scales with increasing number of hosts. The measurement process is fully
distributed.

• Adapts to system churn. The estimation accuracy does not change signif-
icantly when hosts join or leave the system.

• Adapts to the temporal variations of network metric. The estimation
keeps up-to-date levels using periodical coordinate updates.

5. Mapping Network metric Into Discrete Levels

In this section, we introduce how to optimally map a network metric into a
discrete level in a distributed manner.

5.1. Problem Formulation

As discussed in the introduction section, the level mappingprocess should
maximize the similarity of network metric values in the samelevel, so that the
level results stably represent latent proximity between nodes. To that end, since
the network metric values can be arranged into points in a line according to their
magnitudes, we should perform clustering on the network metric values.

12

Clustering network metric values means we need to cluster points in a one-
dimensional space. Let theL1 distance between two network metric valuesdx, dy
be the absolute difference ofdx anddy, i.e.,

|dx − dy| (3)

The clustering objective is to optimally separate points into dense regions in the
line. We choose the well-known K-means clustering method [28] to cluster net-
work metric values toL groups:

argmin
I={Il,l∈[1,L]}

L∑

l=1

∑

Dij∈Il

(Dij − µl)
2 (4)

whereL denotes the number of levels,Dij denotes the network metric value from
nodei to nodej, Il represents the set of network metric values in thel-th cluster,
I denotes the whole set of network metric values, andµl represents the cluster
centroid of thel-th cluster:

µl =

∑
Dij∈Il

Dij

|Il|
(5)

As a result, the objective of the level mapping is transformed to solve Eq (4) for
large-scale and dynamic nodes.

5.2. Outlier Detection

When the network metric values that do not belong to typical clusters, i.e.,
outliers, are adopted for the K-means clustering process, the cluster quality can be
severely impaired. For robust clustering, we need to removethe effects of these
outliers.

Intuitively, in a one-dimensional space, the outlier points are far away from
other points. Therefore, if a network metric value is not in dense clusters, this
value can be regarded as an outlier. We propose a hierarchical clustering based
outlier detection method. For each nodeA, it performs the following steps:

1. In order to construct accurate clusters, nodeA collects network metric val-
ues measured by its neighbors. For each neighbor, nodeA randomly sam-
ples at mostnoutlier network metric values without replacement.

2. NodeA constructs a hierarchical clustering tree for the network metric val-
ues. The distance between two network metrics is calculatedby Eq (3). Let
the maximum layer number in the hierarchical clustering tree beLmax

cluster.

13

3. In the hierarchical clustering tree, each network metricvalue that has layer
numberLmax

clusterwith every other network metric values is regarded as an out-
lier. In other words, network metric values in singleton clusters are treated
as outliers.

After detecting outliers from the samples, the remained network metric values that
are not outliers are used for obtaining cluster centroids inSection 5.3.

Removing these network metric values may be inappropriate,since the cluster
centroids may evolve due to the dynamics of network metric ornodes, therefore
the set of outliers may also change dynamically. As a result,after a network
metric value is regarded as an outlier, this value is only skipped for one round of
the K-means clustering process.

For a nodeA with |SA| neighbors, constructing the hierarchical cluster tree
needsO((noutlier× |SA|+ nA)

2) computing complexity in the worst case, where
noutlier denotes the maximum number of samples from each neighbor,nA denotes
the number of network metric values measured by nodeA.

5.3. Obtaining Cluster Centroids

For K-means clustering, each network metric value is mappedto the nearest
clustering centroid. Therefore, the key problem is to obtain the optimal clustering
centroids~µ = {µ1, . . . , µL}.

We use an existing distributed K-means clustering method [43] to optimize Eq
(4). The basic idea is to let each node learn the optimal cluster centroids via gossip
communications. When a nodeA joins the system, it randomly samples a number
of online nodes as neighbors. NodeA then initializes its global cluster centroids
~µA as a random vector. Then each node updates its global clustercentroids with
its neighbors via rounds of gossip communications. The global cluster centroids
of different nodes gradually converge to identical positions.

In order to adapt the dynamics of network metric values, eachnodeA period-
ically performs the following operations:

1. Measurement based local-centroid update. NodeA periodically performs
measurements to its neighbors and then computes its local cluster centroids
~wA based on the current global cluster centroids~µA: For each network met-
ric valuedx, nodeA selects the centroidµA (j) in ~µA that is nearest todx,
i.e.,

j = argmin
i∈[1,L]

|µA (i)− dx| (6)

14

Then, for each clusteri ∈ [1, L], nodeA computes the local centroidwi
A as

the average value of all network metric values assigned to each cluster, i.e.,

wi
A =

1

|Di|

∑

dl∈Di

dl (7)

whereDi denotes the set of network metric values in thei-th cluster. Let
the size of thei-th cluster beni

A = |Di|.
2. Gossip based global-centroid update. Let the vector of the local cluster

centroids be~wA = {w1
A, . . . , w

L
A}. Let the vector of the cluster sizes be

~nA = {n1
A, . . . , n

L
A}. NodeA periodically pushes its local centroids~wA and

the size of each cluster~nA to its neighbors and pulls back the local centroids
and size of each cluster of neighbors. Then, each nodeA aggregates itsj-th
global centroidµA (j) as:

µA (j) =

∑
i∈SA

nj
iw

j
i∑

i∈SA
nj
i

(8)

for j ∈ [1, L], whereSA includes neighbors and nodeA itself, nj
i denotes

the size of thej-th cluster of nodei in SA, wj
i denotes thej-th centroid of

nodei.

5.4. Mapping Network Metric to Levels

Having obtained the clustering centroids, we next assign level values for net-
work metric values in each cluster. The cluster centroids are sorted in an ascending
(or descending for bandwidth) order. Then each nodeA stores the sorted centroids
into a listLcentroid. Each network metric value is mapped to the nearest centroid.
The level number is calculated as the index of that mapped centroid in the list.
Formally, given a network metric sampledx measured by nodeA. NodeA then
mapsdx to the nearest centroidµA(l) in the listLcentroid:

l = argmin
i∈[1,L]

|dx − µA(i)| (9)

Figure 4 illustrates the results after the level mapping process. We can see
that points of a cluster are mapped to an identical level number. Therefore, the
similarity of network metric values in a level is maximized.

15

������� 	�
������������ �����	 ������

� � �

������� � ������� � ������� �

�����
�����

Figure 4: Map network metric values to levels.

5.5. Determining the Number of Levels

The number of levels is up to the applications’ needs and can be configured
to a wide range of integer numbers. However, all nodes shouldhave the same
number of levels for interoperability.

We also propose an offline heuristic to recommend the number of levelsL that
tries to find the optimal clustering structure for a kind of network metric. Assume
that a nodeA collects the measurement results from some of online nodes.Then
the nodeA computes the optimal numberL of clusters that minimizes Eq (4),
i.e., the K-means clustering error function. Finally, nodeA distributes the optimal
numberL of clusters to other nodes.

5.6. Example

We next use an example to illustrate the process of the level mapping. Let the
numberL of clusters be 2. Assume that each node has two neighbors. Using the
measurements to neighbors, we construct anincomplete bandwidth matrix D1

as follows:

D1 =

[
0 0 0.125 0 0.125

0.125 0 0.125 0 0
1 1 0 0 1
1 0 0 0 1
1 0 0 8 0

]
(10)

based on the bandwidth matrixD in Eq (1).
We first perform the outlier detection. NodeE, i.e., the node corresponding

to the fifth row vector ofD1, constructs a hierarchical cluster tree based on net-
work metric values(1, 8, 0.125, 0.125, 1, 1) that include the measurements from
its neighborsA andD. From the hierarchical tree, we found that only the sample
8Mbps is in a singleton cluster. As a result, the value 8Mbps is regarded as an
outlier.

We next calculate the K-means clustering centroids. We run the distributed K-
means clustering until all nodes reach identical centroids, which are 0.125 Mbps
and 1 Mbps.

Finally, we compute the level value for each measured bandwidth inD1. For
example, 0.125 Mbps should be mapped to level 1, 1 Mbps and 8 Mbps should

16

be mapped to level 2. As a result, the pairwise level matrixY for the bandwidth
matrixD and the level matrixY 1 for the bandwidth matrixD1 are as follows:

Y =

[
0 2 2 2 2
2 0 2 2 2
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

]
Y 1 =

[
0 0 2 0 2
2 0 2 0 0
1 1 0 0 1
1 0 0 0 1
1 0 0 1 0

]
(11)

The level matricesY andY 1 preserve most observed asymmetries in the band-
width matrix, except the one betweenD andE because of a limited number of
levels.

6. Decentralized Level Estimation

Having shown how to map measured network metric values to discrete levels,
we next introduce how to estimate level numbers with decentralized coordinates
for unobserved network metric values. In order to accurately predict pairwise lev-
els, we model the optimization objective of finding the coordinates based on the
well-known Maximum Margin Matrix Factorization (MMMF) [38, 39]. We im-
plement a decentralized MMMF algorithm based on a novel distributed conjugate
gradient method that converges within a few tens of rounds and keeps to be stably
accurate after convergence. Table 1 summarizes key notations in HPM.

6.1. Problem Formulation
For large-scale and dynamic nodes in hybrid clouds, we prefer to estimate

pairwise levels in a distributed manner. Besides, in order to preserve the asym-
metry of level values, we should estimate unidirectional level values for a pair of
users.

6.1.1. Estimating the Level
We define the coordinate distances based on the matrix factorization, in order

to be general enough to adapt different kinds of network metric: The pairwise
coordinate distance is represented by the linear combination of two low-rank ma-
trices:

X̂ = U × V (12)

whereU is aN × d matrix andV is ad×N matrix andd denotes the rank of the
matricesU , V , d≪ N .

Suppose that there are a total ofL levels. Since a pairwise levelYij is an
ordinal value, i.e.,Yij ∈ {1, 2, . . . , L}, but the coordinate distancêXij is a real-
valued number, we have to classify the continuous coordinate distanceX̂ij into
the ground-truth levelYij.

17

Notation Meaning
N the number of nodes
D performance measurement matrix
L number of layers
d coordinate dimension
Il l-th cluster of the performance measurements
I whole set of clustersIl
µl averaged performance value of thel-th cluster
S set of neighbors of a node
Y layer matrix
X̂ij coordinate distance from nodei to nodej

θ̂ thresholds for layer mappings
h (z) soft-margin loss function
T a function quantifying the layer estimation errors(
ûi, v̂i, θ̂i

)
coordinate of each node,̂Xij = ûi × v̂j

α the regularization constant
Ω the set of observed layer values
∆ steepest direction
Λ conjugate direction
βi Polak-Ribière scalar
αi movement step
Ŷ an estimated layer matrix
lp number of UDP packets per measurement
CM maximal number of neighbors
Tg inter-gossip interval

Table 1: Key notations in HPM.

18

l=1

-0.2 0.3

l=2 l=3

≤-0.2 >0.3(-0.2,0.3]

thresholdsCoordinate

distance

levels

Figure 5: Map coordinate distances to level values.

For robust classification against coordinate errors, we usethresholds to map
coordinate distances to level values. Each node maintains adaptive thresholds and
use thresholds as separation points of mapping continuous coordinate distances to
ordinal level values. For each nodei, it maintainsL − 1 real-valued thresholds
~θi =

(
θi1, . . . , θi(L−1)

)
. The thresholds separate the whole range of real values

into L disjoint intervals:(−∞, θi1] , (θi1, θi2] , . . . ,
(
θi(L−1),+∞

)
. Then, nodei

maps each coordinate distance to the interval that containsthe distance. Finally,
nodei compute the level value as the index of that mapped interval.For example,
let the number of levelsL be 3 and let two real-valued numbers -0.2, 0.3 be two
thresholds. Figure 5 plots such an example of how to compute the levels for a
specific node.

Setting proper thresholds is fundamental for accurately computing the levels.
Uniformly distributed thresholds do not preserve the proximity of network met-
ric values, since most kinds of network metric are distributed non-uniformly, as
shown in Figure 6. Therefore, we need to adaptively set the thresholds according
to the distributions of network metric values. To that end, we treat the thresholds
~θi of a nodei as new dimensions of the coordinate, which will be computed in a
fully decentralized manner.

6.1.2. Coordinate Structure
The coordinate includes low-rank vectors and the thresholds. Let ~ui denote

i-th row vector ofU , ~vi denote thei-th column vector ofV and~θi denote thei-th
row vector of the threshold matrixθ =

(
~θ1, . . . , ~θN

)
. We set thecoordinate of

nodei to be the vector~xi =
(
~ui, ~vi, ~θi

)
.

Thecoordinate distanceX̂ij between nodei andj is computed by the inner

19

0 100 200 300 400
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

RTT (ms)

F
re

q
u

e
n

c
y

(a) RTT

0 1 2 3 4 5

x 10
5

0

0.1

0.2

0.3

0.4

Bandwidth (kbps)

F
re

q
u

e
n

c
y

(b) Bandwidth

0 10 20 30
0

0.02

0.04

0.06

0.08

0.1

0.12

Hop

F
re

q
u

e
n

c
y

(c) Hop

0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

1

Loss

F
re

q
u

e
n

c
y

(d) Loss

Figure 6: Distributions of popular network metric based on publicly available data sets in Section
3.

product of~ui and~vj :

X̂ij =
d∑

m=1

uimvmj (13)

The coordinate distance can be symmetric or asymmetric, since X̂ij may differ
from X̂ji.

For level estimation, each nodei independently maps the coordinate distances
from itself to other nodes using nodei’s thresholds~θi. Suppose that we need to
estimate the level value from nodei to nodej. We first compute the coordinate
distanceX̂ij from nodei to nodej. Then, we mapX̂ij into a level value using
nodei’s threshold vector~θi. Algorithm 1 summarizes the steps. Step 3 computes
the coordinate distance. Step 4 initializes the level number. Steps5 → 9 iterate

20

through the threshold values~θi to find a numerical interval that containŝXij . Steps
6→ 8 detects whether the current numerical interval containsX̂ij .

Algorithm 1: level Completion from nodei to nodej.

1: {Input: nodei’s coordinate~ui, ~vi, ~θi, nodej’s coordinate~uj, ~vj , ~θj}
2: {Output: estimated level valuel}
3: X̂ij = ~ui × ~vj
4: l = 1
5: for k = 1 : (L− 1) do
6: if X̂ij ≥ θik then
7: l← l + 1
8: end if
9: end for

6.1.3. Level Estimation Error
Having defined how to map coordinate distances to discrete levels, we next de-

fine the optimization objective for computing the coordinates, which measures the
difference between the ground-truth level values and the estimated level values.

Assume that we have measured the level valueYij (Yij ∈ [1, L]) from nodei to
nodej based on Section 5. Then in order to estimate the ground-truth level values
by Algorithm 1, nodei should map the coordinate distanceX̂ij to the numerical
interval

(
θi(Yij−1), θiYij

]
, whereθi0 = −∞, θiL = +∞. Otherwise, the level

estimation process incurs an error, where the coordinate distanceX̂ij is either
mapped to the left intervals of the thresholdθi(Yij−1), i.e., X̂ij − θi(Yij−1) < 0

or to the right intervals of the thresholdθiYij
, i.e., θiYij

− X̂ij < 0. We next
measure the level-estimation error based on thesoft-margin loss functionh (z) =
max (0, 1− z) for robustness against input noises:

f
(
Yij, X̂ij

)
= h

(
X̂ij − θi(Yij−1)

)
+ h

(
θiYij
− X̂ij

)
(14)

f
(
Yij, X̂ij

)
is a convex differential loss function that can be optimizedefficiently

by gradient based methods [38]. Therefore, when the estimated levels are incor-

rect,f
(
Yij, X̂ij

)
is a positive value.

Besides, for robustness against threshold errors, we incorporate all thresholds

21

into Eq (14):

L
(
Yij, X̂ij

)
=

Yij−1∑

r=1

h
(
X̂ij − θir

)
+

L−1∑

r=Yij

h
(
θir − X̂ij

)

=
L−1∑

r=1

h
(
T r
ij [r, Yij] ·

(
θir − X̂ij

))
(15)

whereT r
ij [r, Yij] is defined as:

T r
ij [r, Yij] =

{
+1 r≥Yij

−1 r<Yij
(16)

Although Eq (15) defines the classification errors, finding optimal coordinates
matching all observed levels is likely to fail (the overfitting phenomenon), since
the level matrixY is only approximately low-rank. In order to avoid such over-
fitting situations, combining the error function with an adequate regularization
model is a common practice. Therefore, by incorporating thesum of the Frobe-
nius norm of~ui and~vi as the regularization term for capacity control, we minimize
the following regularized objective of Eq (15):

JC =
∑

i 6=j,i,j∈[1,N]

L−1∑
r=1

h
(
T r
ij [r, Yij] · (θir − (~ui × ~vj))

)
+

α
2

(
N∑
i=1

(
‖~ui‖

2
F + ‖~vi‖

2
F

)) (17)

whereα denotes the regularization constant, and‖ ~z1:m‖
2
F =

∑m

i=1 z
2
i denotes the

Frobenius norm.

6.2. Distributed Conjugate Gradient Optimization

We now introduce how to compute the coordinates for each nodein a fully
decentralized manner. Generally, assume that each nodei periodically samples a
number of online nodesSi as neighbors. Nodei probes several kinds of network
metric values to and from its neighbors with cooperation. Then for each kind
of network metric, nodei maps the network metric values to discrete levels by
Section 5. Each node then predicts unobserved pairwise level values to nodes that
are not its neighbors.

The objective (17) needs the complete pairwise level matrixY , which implies
a centralized computation process. Since we prefer a fully distributed computation

22

process, we decompose the objectiveJC into separable objectivesJ i
D of each node

i and its neighborsSi:

JD (~xi) =
∑
j∈Si

L−1∑
r=1

h
(
T r
ij [r, Yij] · (θir − (~ui × ~vj))

)
+

α
2

((
‖~ui‖

2
F + ‖~vi‖

2
F

)) (18)

Therefore, Eq (18) can be independently optimized by nodei.
We choose the Polak-Ribière variant of the nonlinear conjugate gradient meth-

ods (PR-CG) to minimize the objective (18) due to its fast convergence and ro-
bustness [44]. For a nonlinear objective function, PR-CG iteratively updates the
position of the solution vector~x according to the conjugate direction of~x until
reaching a local minimum. There are two important parameters for PR-CG:

• Conjugate direction Λx. It is a conjugate version of the successive gradi-
ents obtained as the progress of the iterations.

• Movement stepα. It determines how far we move in the conjugate di-
rection. The movement stepα is calculated through a line search method
[44].

For example, let~xi be the concatenation of the coordinate components ofi,

i.e., ~xi =
[
~ui; ~vi; ~θi

]
. Let ~xi(0) be a random vector. In a roundl (l ≥ 1), for each

nodei, PR-CG updates nodei’s vector~xi(l−1) a small stepαi towards~xi(l−1)’s
conjugate directionΛxi(l):

~xi(l)← ~xi(l − 1) + αiΛxi(l) (19)

We can see that PR-CG incurs low computation overhead that iscomparable to
gradient based methods.

Algorithm 2 presents the detailed steps of the distributed coordinate update
procedure. Each node periodically updates its coordinate according to Eq (19).
The procedure first constructs the vector~xi (line 3) and calculates the steepest
direction∆ (line 4 → 6) that is the negative gradient of the vector~xi. Then, line
7 computes the Polak-Ribière scalarβ for updating the conjugate gradient. Line
8 updates the new conjugate directionΛ based on the steepest direction∆ andβ
times of the conjugate direction of last round. Line 9 determines the optimized
step lengthαi based on the line search method [44]. Then line 10 updates the
vector based on the conjugate gradient vectorΛ and the step lengthαi. Lines

23

Algorithm 2: HPM Algorithm

1: {Input: nodei’s current coordinate~ui, ~vi, ~θi, nodei’s steepest direction∆xi, node
i’s conjugate directionΛxi, the set of neighborsS, the level valuesY from nodei to
its neighbors inS, the coordinates of neighbors inS.}

2: {Output: nodei’s updated coordinate~ui, ~vi, ~θi, nodei’s updated steepest direction
∆xi, nodei’s updated conjugate directionΛxi}

3: ~xi ←
[
~ui; ~vi; ~θi

]
;

4:

∂JD
∂uih

= αuih −
∑

j∈Si

L−1∑

r=1

T r
ij [r, Yij] ·h

′
(
T r
ij [r, Yij] ·

(
θir − X̂ij

))
vjh (20)

∂JD
∂vih

= αvih −
∑

j∈Si

L−1∑

r=1

T r
ji [r, Yji] ·h

′
(
T r
ji [r, Yji] ·

(
θjr − X̂ij

))
ujh (21)

∂JD
∂θir

=
∑

j∈Si

T r
ij [r, Yij] ·h

′
(
T r
ij [r, Yij] ·

(
θir − X̂ij

))
(22)

5:

∇xJD (~xi) =

[
∂JD
∂u

;
∂JD
∂v

;
∂JD
∂θ

]
(23)

6: ∆← −∇xJD (~xi);

7: β ← ∆T (∆−∆xi)

∆xT
i
∆xi

;

8: Λ← ∆+ βΛxi;
9: αi ← argmin

αi

JD (~xi + αiΛ);

10: ~xi ← ~xi + αiΛ;
11: ∆xi ← ∆;
12: Λxi ← Λ;
13: ~ui ← ~xi[1 : d];
14: ~vi ← ~xi[(d+ 1) : 2d];
15: ~θi ← ~xi[(2d+ 1) : (2d+ L− 1)];

11→ 12 compute the new steepest direction∆xi and the conjugate directionΛxi.
Finally, lines13→ 15 update nodei’s coordinate.

We analyze the storage of each node from Algorithm 2. First, the length of
the steepest direction and the conjugate direction both equals that of the vector
x. Storing the node’s coordinate, its steepest direction andits conjugate direction

24

Table 2: Default Parameter Configuration for HPM
Parameter Value
number of levelsL 10
regularization constantα 0.3
number of neighborsCM 32
coordinate dimensiond 5
neighbor choice random
update round 120 rounds

requiresO (2d+ L) space. Second, each node needs to store recent level samples
to neighbors and the coordinates of neighbors. For|Si| neighbors, the storage
becomesO (|Si| × (2d+ L)). Therefore, the overall space overhead of Algorithm
2 isO (|Si| × (2d+ L)).

7. Simulation

In this section, we evaluate HPM’s performance with real-world data sets. We
address four questions:

• Does HPM predict accurate hierarchical proximity that is consistent with
the pairwise proximity of nodes?

• Is HPM sensitive to parameter settings?

• Is HPM robust to missing measurements or coordinate errors?

• Does HPM scale with increasing number of levels or system size?

We use the data sets in Section 3. We repeat the experiments inten times and
compute the average results and the corresponding standarddeviations. HPM’s
default parameters are shown in Table 2.

7.1. Performance Comparison

We first test whether the level numbers predicted by HPM preserve the pair-
wise proximity of the data sets. For that purpose, we use a well-known metric

25

Cophenetic Correlation Coefficient (CCC) [45] to quantify the matching de-
gree between the estimated pairwise levelsŶ and the pairwise proximityD:

CCC =

∑
(i,j)∈Ω

(
Dij − D̄

) (
Ŷij − Ȳ

)

√[∑
(i,j)∈Ω

(
Dij − D̄

)2]
[∑

(i,j)∈Ω

(
Ŷij − Ȳ

)2
] (24)

whereD̄ = 1∑
(i,j)∈Ω 1

∑
(i,j)∈Ω Dij is the average value of the performance matrix

D, Ȳ = 1∑
(i,j)∈Ω 1

∑
(i,j)∈Ω Ŷij, is the average level value of the estimated level

matrix Ŷ , andΩ is the set of performance measurements. The CCC takes values
between -1 and +1. Higher CCC values mean that the pairwise levels match much
closer with the pairwise proximity.

We compare HPM with six related methods:

• Optimal . We regard the pairwise levels computed by thecentralized K-
means clustering methodas theOptimal pairwise levels, since the K-means
clustering based results optimally preserve the similarity of the metric val-
ues mapped into each level number. Accordingly, HPM tries toestimate the
pairwise levels computed by the K-means clustering method.

• Hierarchical Clustering . As discussed in the introduction section, the hi-
erarchical clustering method can compute the logical tree that represents
multilevel proximity between a set of nodes with respect to any distance
metric. Accordingly, we compute the logical tree using the hierarchical
clustering method, and treat the pairwise level of their closest common an-
cestor of two bottom leaf nodes as the estimated levels by thehierarchical
clustering method.

• NonMetric . The NonMetric method [14] estimates the latency or the avail-
able bandwidth based on decentralized coordinates. The coordinates are up-
dated based on the spring field simulation. However, the NonMetric method
only estimates continuous distances. For ease of comparison, we compute
the logical tree of the estimated distances based on (ii) thehierarchical clus-
tering method.

• LandmarkMDS . The LandmarkMDS method [46] estimates the pairwise
hops based on the Multidimensional Scaling (MDS) method. Similar to the

26

NonMetric method, we compute the logical tree of the estimated distances
based on the hierarchical clustering method.

• Vivaldi . The Vivaldi method [9] estimates the RTTs based on decentralized
coordinates that are calculated based on the spring field simulation. Simi-
lar to the NonMetric method, we compute the logical tree of the estimated
distances based on the hierarchical clustering method.

• Sequoia. The Sequoia method [20] constructs the logical tree of participat-
ing nodes based on a tree embedding process.

We can see that all methods except Optimal and HPM do not specify the max-
imum number of allowed levels. For fair comparison, our evaluation consists of
two parts depending on whether we limit the number of levels:First, we do not
specify the maximum levels. We compute the logical trees forHierarchical clus-
tering, NonMetric, LandmarkMDS, Vivaldi and Sequoia. Thenwe compute the
Cophenetic Correlation Coefficient values for these logical trees. Second, we limit
the maximum levels for all methods. After we construct the logical trees for Hi-
erarchical clustering, NonMetric, LandmarkMDS, Vivaldi and Sequoia, we com-
pute the pairwise levels for these logical trees, then we re-scale the corresponding
levels of the tree into the interval whose upper bound is the allowed maximum
level. We finally compute the Cophenetic Correlation Coefficient values for the
re-scaled levels.

Figure 7 shows the results for the case without limiting the maximum number
of levels. The Optimal method has the highest matching degree with the ground-
truth pairwise proximity, and HPM has similar accuracy as the Optimal approach.
We can see that the Optimal and HPM methods are able to estimate the accurate
levels that match the latent structure of the data sets.

However, Optimal and HPM methods have much lower CCC values on the
loss data set than those on other data sets. This is because most pairwise loss rates
are zeros, which makes the distributed clustering process prone to be trapped into
bad local minimum.

On the other hand, the Hierarchical clustering, NonMetric,LandmarkMDS
and Vivaldi methods have much smaller CCC values than the Optimal and HPM
methods, which implies that the estimated logical trees do not well match the
pairwise proximity of the data sets. Furthermore, Optimal and HPM have similar
CCC values on all four network metric, but other methods havevarying CCC
values for different network metric, which means that Optimal and HPM have
better generality with respect to different network metricthan other methods. For

27

RTT Bandwidth Hop Loss
−0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

C
C

C

Vivaldi
NonMetric
Sequoia
LandmarkMDS
Hierarchical Clustering
Optimal
HPM

Figure 7: The average values and the corresponding standarddeviations of the cophenetic corre-
lation coefficients of different methods when we do not limitthe maximum number of levels.

example, the Hierarchical clustering method has a high CCC value on the RTT
metric, but has quite low CCC values on the other three metric.

Second, let all methods use the same number of levels, we compare the match-
ing degree between the estimated levels and the pairwise proximity of the data
sets. Figure 8 shows the Cophenetic Correlation Coefficients as we vary the max-
imum number of levels. Similar to Figure 7, the Optimal method has the highest
matching degree. HPM has nearly the same accuracy as the Optimal approach.
We can see that the Optimal and HPM methods are able to accurately predict the
pairwise proximity of the data sets with respect to different number of levels. On
the other hand, the Hierarchical clustering, NonMetric, LandmarkMDS, Vivaldi
and Sequoia have much lower CCC values than the Optimal and the HPM method,
less than 0.4 on average, which implies that the logical trees estimated by these
four methods have a high degree of mismatch with respect to the ground-truth
pairwise proximity.

7.2. Sensitivity Analysis

We analyze the effects of the parameter choice on the accuracy of HPM. Since
HPM incrementally adjusts its coordinate position, we evaluate its convergence
and robustness as a function of the number of rounds of coordinate updates in-
crease. Assume that all nodes join the system at time zero, and each node updates
its coordinate once per round. Let the default parameter configuration of HPM
be defined in Table 2. We compare the differences between the estimated levels
of the Optimal method and those of the HPM method based on the Normalized

28

5 10 15 20 25 30 35 40
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Levels

C
C

C

Vivaldi

NonMetric

Sequoia

LandmarkMDS

Optimal

HPM

Hierarchical Clustering

(a) RTT.

0 5 10 15 20 25 30 35 40

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Levels

C
C

C

Vivaldi

NonMetric

Sequoia

LandmarkMDS

Optimal

HPM

Hierarchical Clustering

(b) Bandwidth.

0 5 10 15 20 25 30 35 40

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Levels

C
C

C

Vivaldi

NonMetric

Sequoia

LandmarkMDS

Optimal

HPM

Hierarchical Clustering

(c) Hop.

5 10 15 20 25 30 35 40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Levels

C
C

C

Vivaldi

NonMetric

Sequoia

LandmarkMDS

Optimal

HPM

Hierarchical Clustering

(d) Loss.

Figure 8: The cophenetic correlation coefficients for various methods with increasing number of
levels.

Mean Absolute Error (NMAE):

NMAE =

∑
(i,j):Yij>0

∣∣∣Yij − Ŷij

∣∣∣
∑

(i,j):Yij>0 Yij

(25)

whereYij denotes the level value fromi to j by the Optimal method,̂Yij de-
notes the estimated level value fromi to j by HPM. the NMAE metric can adapt
to various performance metric that have different level intervals. Smaller NMAE
values correspond to higher prediction accuracy. We reportthe averaged results
that are based on ten repeated simulations.

29

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Round

N
M

A
E

L=2

L=6

L=10

L=20

L=40

(a) RTT

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Round

N
M

A
E

L=2

L=6

L=10

L=20

L=40

(b) Bandwidth

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Round

N
M

A
E

L=2

L=6

L=10

L=20

L=40

(c) Hop

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

Round

N
M

A
E

L=2

L=6

L=10

L=20

L=40

(d) Loss

Figure 9: The rate of convergence of HPM as we vary the number of levels.

7.2.1. Number of levels
We first test HPM’s accuracy as a function of the number of levels. Figure 9

shows the convergence for different number of levels. HPM converges in about
20 rounds, then remains accurate afterwards. We see that HPMconverges fast and
that varying the number of levels does not affect the convergence speed of HPM.
Therefore, HPM can achieve very good accuracy independent of the number of
levels.

7.2.2. Size of Neighbors
We next evaluate the accuracy of HPM as a function of the number of neigh-

bors. Figure 10 shows the results. We see that increasing thenumber of neighbors
generally increases the accuracy of HPM. But the performance improvements be-
come negligible when the number of neighbors exceeds 16. Therefore, a moderate

30

8 16 24 32 40 48 56 64
0.06

0.08

0.1

0.12

0.14

0.16

Neighbors

N
M

A
E

 RTT

Bandwidth

Hop

Loss

Figure 10: The effectiveness of the number of neighbors.

number of neighbors is enough for accurate level estimations.

7.2.3. Neighbor Selection Choice
We test whether the choices of neighbors affect HPM’s accuracy. We use four

kinds of neighbors:

• Random. We choose neighbors uniformly at random from the whole set of
nodes.

• Closest. We choose neighbors that have lowest RTT, loss, hops or highest
bandwidth.

• Farthest. We choose neighbors that have highest RTT, loss, hops or lowest
bandwidth.

• Hybrid . We select half neighbors using the Closest based selectionand the
other half neighbors using the Farthest based selection.

Figure 11 shows that the Random based neighbor selection policy achieves the
highest accuracy, compared to the other three policies. As aresult, we can ran-
domly choose neighbors for level estimations, which can be implemented easily.

7.2.4. Dimensionality
We next evaluate the effectiveness of the coordinate dimension on the accu-

racy of HPM. Figure 12 plots the simulation results with varying coordinate di-
mensions. The results show that low coordinate dimensions are enough for con-
verging to accurate level predictions. Increasing the coordinate dimensions does
not significantly increase the accuracy of level predictions.

31

RTT Bandwidth Hop Loss
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Data Sets

N
M

A
E

Random

Closest

Farthest

Hybrid

Figure 11: The effect of neighbor selection policies on rateof converge.

0 5 10 15 20
0.08

0.09

0.1

0.11

0.12

0.13

Coordinate Dimension

N
M

A
E

 RTT

Bandwidth

Hop

Loss

RTT,Bandwidth

Figure 12: The effect of coordinate dimension on the rate of convergence. We vary the coordinate
dimension ranging from 2 to 16 on all data sets.

32

7.2.5. Regularization constantα
We finally test whether the regularization parameterα in the loss function of

Eq (18) affects HPM’s accuracy. When varyingα from 0.1 to 2, we did not see
any significant effect on the accuracy. Therefore, HPM is quite robust against the
choice of the regularization parameterα.

7.3. Robustness

We test the robustness of HPM in this section.

7.3.1. High Erroneous Nodes
We first test whether HPM is sensitive erroneous coordinates. We divide the

overall set of nodes in the data sets into two equal halves, only half of the nodes
join the system at time 0 and the other half nodes join the system after 40 rounds.
As a result, the erroneous coordinates are injected into thesystem after 40 rounds.
To quantify the stability of the coordinate of each nodei, we calculate theCoor-
dinate Drift using thel1 norm defined as

∑2d+L−1

m=1
|xi (m)− x̃i (m)| (26)

where~xi =
[
~ui; ~vi; ~θi

]
denotes the updated coordinate, andx̃i denotes the previ-

ous coordinate. We plot the accuracy of level estimations and coordinate drifts in
Figure 13.

We can see that the first half nodes converges to stable coordinates within 20
rounds and keep steady until 40 rounds. Furthermore, the coordinate drifts de-
crease close to zeros after the coordinates are stabilized after 20 rounds. When
the other half nodes join the system after 40 rounds, the overall coordinate er-
rors increase sharply after 40 rounds, since the coordinates of newly-joined nodes
are randomly initialized and incur high errors. Accordingly, the coordinate drifts
also increase. However, the whole set of coordinates converge within the next
20 rounds to stable positions. The newly stabilized coordinates have the similar
accuracy as those before 40 rounds and the coordinate driftsalso decrease to the
similar degrees as those before 40 rounds.

7.3.2. Missing Measurements
We next test HPM’s performance when some level measurementsto neighbors

are unavailable due to node failures or routing disruptions. In each round, for each
node, we choose uniformly at random a fraction of neighbors that do not respond

33

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Round

N
M

A
E

0 20 40 60 80
0

0.5

1

1.5

2

2.5

3

3.5

4

D
ri
ft

Accuracy
Drift

(a) RTT.

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Round

N
M

A
E

0 20 40 60 80
0

0.5

1

1.5

2

2.5

3

3.5

4

D
ri
ft

Accuracy
Drift

(b) Bandwidth.

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Round

N
M

A
E

0 20 40 60 80
0

0.5

1

1.5

2

2.5

3

3.5

4

D
ri
ft

 Accuracy

Drift

(c) Hop.

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Round

N
M

A
E

0 20 40 60 80
0

0.5

1

1.5

2

2.5

3

3.5

4

D
ri
ft

Accuracy
Drift

(d) Loss.

Figure 13: The effect of high-error coordinates on the rate of convergence. The vertical line after
60 rounds indicates the joining event of new nodes.

34

0 0.02 0.04 0.06 0.08 0.1
0

0.05

0.1

0.15

0.2

Percent of Missing Measurements

N
M

A
E

RTT

Bandwidth

Hop

Loss

Figure 14: HPM’s accuracy as a function of the percent of missing measurements to neighbors.

the level measurements. We than collect the final performance statistics of all
nodes. Figure 14 plots the results. We can see that HPM is robust against missing
measurements: the estimation accuracy degrades slightly with increasing percent
of missing measurements. This is because the conjugate gradient optimization
method is quite robust to incomplete information.

7.4. Scalability

In this section we show the scalability of HPM.

7.4.1. CPU Efficiency
We first test the efficiency of HPM as a function of the number oflevels. We

compute the CPU time of completing one round of distributed K-means clustering
algorithm and that of finishing one round of coordinate update. From Figure 15
we can see that with increasing number of levels, the CPU timeof the distributed
K-means clustering and the coordinate update increase almost linearly. However,
the slope of the fitted line is quite modest. As a result, HPM scales well with
increasing number of levels.

Besides, we also evaluate the CPU efficiency of HPM in terms ofthe number
of neighbors or the coordinate dimension. We found that the CPU time is quite
stable as we increase the number of neighbors or the coordinate dimensions.

7.4.2. Accuracy With Increasing System Size
Our previous evaluation uses a fixed number of nodes. In this section, we test

HPM’s accuracy with increasing number of participating nodes. We choose the
RTT and bandwidth metric as examples. Due to the limited sizeof the RTT data
set, we use a larger RTT data set from the Meridian project [47].

35

2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

Levels

C
P

U
 t
im

e
 (

S
e
c
)

y = 0.003*x + 0.02

Bandwidth

 Linear fitting

(a) Distributed K-means clustering

2 4 6 8 10 12 14 16 18 20
0

0.005

0.01

0.015

0.02

0.025

Levels

C
P

U
 t
im

e
 (

S
e
c
)

y = 0.00085*x + 0.0047

RTT

 Linear fitting

(b) Coordinate update

Figure 15: The CPU time as a function of the number of levels onthe bandwidth data set.

200 400 600 800
0.12

0.14

0.16

0.18

0.2

0.22

Nodes

N
M

A
E

(a) Meridian RTT data set

50 100 150 200 250 300 350
0

0.05

0.1

0.15

0.2

Nodes

N
M

A
E

(b) Bandwidth data set

Figure 16: HPM’s accuracy as a function of the size of nodes.

From Figure 16, we can see that there are clearly phase changes with increas-
ing number of nodes on the RTT and bandwidth data sets. The change points
of different phases for RTT and bandwidth metric occur when the system size
is much smaller than the overall size of the data sets. At the beginning, HPM
incurs higher estimation errors with increasing number of nodes; but soon HPM
keeps to be stably accurate. This is because smaller system size means narrower
search spaces for the optimization problem, which implies that the solution is
much closer to the global optimum [38].

36

8. PlanetLab Evaluation

8.1. Implementation

We have implemented HPM in Java. The main logic consists of approximately
4000 lines, including theneighborhood managementcomponent, theperfor-
mance measurementcomponent, thelayer mapping component, thelayer es-
timation component, as shown in Figure 17. Each node periodically triggers
the performance measurement component to probe performance metric towards
available neighbors, then calls the layer mapping component to calculate discrete
levels with updated clustering centroids, and finally updates its coordinate based
on the layer estimation component. Besides, each node can request the coordi-
nates of any pairs of nodes based on the XML RPC interface and compute the
corresponding two-direction levels based on the requestedcoordinates.

Our prototype measures the RTT and loss metric simultaneously. Each node
A periodically triggers a measurement event, which sends a sequence of probe
packets to a randomly selected neighborB, and returns immediately in an asyn-
chronous manner. Accordingly, the receiverB echoes the sender with an acknowl-
edge packet as soon as it receives a measurement packet. Finally nodeA computes
the RTT and loss metric as:

• RTT. The round trip time is calculated by averaging the period ofeach
pair of a measurement packet and the corresponding acknowledge packet,
(
∑Lsuccess

i=1 Ti)/Lsuccess , whereLsuccess is the number of successful pairs of
measurement and acknowledge packets,Ti is the time period of thei-th pair
of measurement and acknowledge packets.

• Loss Rate. The loss rate is calculated by the ratio between the number of ac-

knowledge packets to the total number of measurement packets,
(
1− Lsuccess

Ltotal

)
,

whereLtotal is the overall number of measurement packets.

Furthermore, as the performance measurements to neighborskeep changing
due to dynamic network conditions, we use the exponential moving average filter
with a coefficient at 0.05 to smooth out short-term fluctuations. After completing
a performance measurement to a neighbor, nodeA updates its coordinate vector
based on available performance samples of all neighbors, inorder to optimize the
convergence of its coordinate vector.

37

���� �

�� !"#�$

%&'&!�%�'(

)�$*�$%&'+� %�&,-$�%�'(

.&/�$ �,(%&(�'

.&/�$

%&00 '!

�� !"#�$

%&'&!�%�'(

)�$*�$%&'+� %�&,-$�%�'(

.&/�$ �,(%&(�'

.&/�$

%&00 '!

���� 1

2-'+(�' 3&44,

5�&,-$�%�'(,

Figure 17: The HPM architecture.

8.2. PlanetLab Experiments

We selected 269 physical machines on PlanetLab and installed the HPM pro-
gram. We update the cluster centroids and issue the performance measurement
based on the gossip communication. The inter-gossip interval Tg is 30 seconds.
Accordingly, the coordinates are updated approximately per 30 seconds. Each
node independently maintains two coordinates based on HPM,one coordinate for
the RTT metric and the other one for the loss metric. We chooseother parameters
for HPM as those shown in Table 2 in the Simulation section.

The evaluation metric for the prototype include:

• Relative Error , Each nodei calculates the relative error with each neigh-

bor j between the estimated level and the ground-truth level as
|Yij−Ŷij|

Yij
,

whereYij denotes the level number computed by the distributed K-means
clustering method and̂Yij denotes the estimated level number by Algorithm
2. Then each nodei updates the relative error towards the neighborj when
nodei’s coordinate changes or nodei obtains new performance measure-
ments to nodej. The updating rule is based on the exponentially moving
average with a coefficient at 0.05.

• Coordinate Drift , We calculate the coordinate drift per minute based on
Eq (26) in order to quantify the stability of each node’s coordinate.

• Bandwidth Costs, We collect the bandwidth costs of HPM per minute, in-
cluding the gossip messages and measurement costs incurredby the packet
trains.

38

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
C

D
F

Relative Error

RTT

Loss

(a) Accuracy.

0 200 400 600 800 1000
0

0.5

1

1.5

2

Time (Minutes)

M
e
a
n
 D

ri
ft

0 200 400 600 800 1000
0

0.5

1

1.5

2

S
td

RTT

Loss

(b) Movement drift.

0 200 400 600 800 1000
0

1

2

3

4

5

6

Time (Minutes)

C
o
s
ts

 (
K

B
/M

in
)

mean

mean+std

mean−std

(c) Bandwidth costs.

Figure 18: Performance statistics of HPM on PlanetLab. Std denotes the standard deviation.

Relative Error : Figure 18(a) plots the CCDF of the relative errors of level
estimations by HPM. For the RTT based level estimation, HPM incurs low es-
timation errors for each node pair, where the maximum relative error is around
0.4. For the loss based level estimation, HPM is even more accurate and predicts
accurate level values for most node pairs, where in around 95% of the cases of
the median relative errors are below 0.1. Therefore, HPM predicts representative
metric quite accurately.

Coordinate Drifts : We next plot the dynamics of the coordinate drifts in Fig-
ure 18(b). The results show that the coordinate drifts are relatively high at the
bootstrap phase, with mean and standard deviation at aroundtwo. This is because
the initial coordinates move at large steps to converge to accurate positions. On
the other hand, after ten minutes, the coordinates keep to bestable with close-to-

39

zero coordinate drifts. We can see that ten minutes correspond to twenty rounds
of coordinate updates, since the coordinate update interval is around 30 seconds.
The convergence speed of the PlanetLab deployment is consistent with that in the
simulation results.

Bandwidth Costs: Figure 18(c) depicts the dynamics of the system overhead.
The mean control overhead stay around 1.8 KB per minute during the experiment
period, which is quite modest. However, the standard deviations of the control
overhead at the beginning are relatively large, since each node needs to contact
multiple potential neighbors returned from the bootstrap node. After the initial
contact process, the overhead becomes steadily low.

Summary of Results: We confirm that HPM can converge to stable positions
with accurate level predictions at low bandwidth costs. Furthermore, HPM can
still estimate levels very accurately for skewed network metric such as the loss
rates where most of them are zeros.

9. Application

In this section, we illustrate several service provision that can benefit from
HPM in the context of the Nano Data Center (NaDa) [6], which isa kind of hy-
brid clouds that uses Nano data centers to reduce the energy consumption of tra-
ditional data centers. NaDa comprises geographically distributed in-house gate-
ways. NaDa can allow ISPs to host Internet applications and content on residential
gateways to reduce the access time for end hosts.

We assume that each node in NaDa computes its coordinate using HPM, and
that each node learns the coordinates of all nodes in the system through a co-
ordinate propagation scheme such as the anti-entropy gossiping procedure. Since
each coordinate requires(2d+L) space, storing the coordinates ofN nodes incurs
O (N ·(2d+ L)) space, which is quite modest.

9.1. K nearest neighbor search

TheK nearest neighbor search aims to findK nano servers having the low-
est delays or the highest bandwidth to the target.K nearest neighbor search helps
optimize the streaming applications and the content backupservice, since redirect-
ing host requests to nearest nano servers can reduce the delays and increase the
transmission throughput. Furthermore, locatingK nearby nano servers (K ≥ 1)
can be used for parallel connections in the content backup service to avoid the
performance bottlenecks of some nano servers.

40

We simulateK nearest neighbor search using HPM as follows: first, we ran-
domly choose a target from the whole set of nodes, and configure the other nodes
as nano servers; second, we randomly choose nano servers that have the small-
est levels to the target to be the closest nodes to the target,since lower levels
correspond to lower delays or higher bandwidth. For indirect methods includ-
ing Vivaldi, NonMetric, Sequoia and LandmarkMDS, we determine the closest
nano servers to the target using estimated delays or bandwidth. Besides, in order
to quantify the effectiveness of the K nearest neighbor search, we calculated the

stretch of found closest nodesfor each targeti as
∑

j∈Ĉi
Dij

∑
j∈Ci

Dij
, whereĈi denotes the

closest nodes found by HPM, andCi represents the ground-truth closest nodes.
The ground-truth closest nodes correspond to nodes that have the lowest delays or
the highest bandwidth to the target.

According to the definition of the stretch, for RTT, the stretch is≥ 1, the lower
the stretch, the better HPM performs; on the other hand, for the bandwidth metric,
the stretch is≤ 1, the closer to one the better HPM performs. Figure 19 shows the
evaluation of mean stretch with increasing numberK of required nano nodes. The
Optimal method and HPM significantly improve the stretch compared to other in-
direct methods including Vivaldi, NonMetric, Sequoia and LandmarkMDS. More-
over, HPM has similar stretch as the Optimal method for the bandwidth metric and
the delay metric (whenK exceeds 5), implying that HPM can find closest nodes
that are as good as those using the Centralized method. On theother hand, indirect
methods including Vivaldi, NonMetric, Sequoia and LandmarkMDS have much
worse stretch than Optimal and HPM on the delay and bandwidthdata sets.

For the delay metric, the stretch values of Optimal and HPM decrease from
around 3 and around 6 to nearly 1 asK reaches 2 and 5, respectively, and stay
close to 1 afterwards. This means that the use of Optimal and HPM may select
inaccurate closest nodes whenK is low, since the level values are only coarse-
grained proximity metric. On the other hand, Optimal and HPMbecome very
accurate with increasingK. On the other hand, for the bandwidth metric, Optimal
and HPM have a stretch close to 1, which decreases slightly with increasingK,
indicating that HPM could find high bandwidth nodes, but may miss some of the
best ones.

9.2. Proximity-aware matchmaking

Proximity-aware matchmaking finds nodes that have the best proximity [10],
by locating hosts that havelowest pairwisedelays or highest bandwidth to each
other. The proximity-aware matchmaking is useful for finding groups of nodes in

41

0 5 10 15 20 25 30

1

2

4

8

16

32

64

128

256

K

S
tr

e
tc

h
 (

lo
g
 s

c
a
le

)

 Vivaldi

NonMetric

Sequoia

LandmarkMDS

HPM

Optimal

(a) RTT.

0 5 10 15 20 25 30
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

K

S
tr

e
tc

h

Vivaldi

NonMetric

Sequoia

LandmarkMDS

Optimal

HPM

(b) Bandwidth.

Figure 19: The stretch ofK nearest neighbor search with varying number of required nodes.

networked games in order to increase the responsiveness between game levels.
The proximity-aware matchmaking differs from theK nearest neighbor search,

since now we need to select nodes for each nodei such thatthe selected nodes and
nodei have the lowest delays or the highest bandwidth to each other, however, in
theK nearest neighbor search we only need to findK − 1 nodes have the lowest
delays or the highest bandwidth to nodei.

Furthermore, in order to quantify the network quality of matchmaking nodes,
we redefine thestretch of the matchmaking as the ratio between the averaged
delays or bandwidth of the found nodes and those of the ground-truth closest

nodes, i.e.,
∑

j 6=k,j,k∈Ĉi
Djk

∑
j 6=k,j,k∈Ci

Djk
, whereĈi denotes the set of found nodes plusi, andCi

denotes the set of ground-truth nodes plusi.
To simulate the proximity-aware matchmaking forK nodes using HPM (in-

direct methods including Vivaldi, NonMetric, Sequoia and LandmarkMDS) with
low computation overhead, for each nodei, we locate(K − 1) nodes that mini-
mize the sum of pairwise levels of theseK nodes (minimize the sum of pairwise
delays or maximize the sum of pairwise bandwidth for indirect methods) through
Nlog (N) randomized combinations of nodes, where ties are broken arbitrarily.

Figure 20 shows the mean stretch of matchmaking as a functionof the num-
ber of required nodes. Optimal and HPM can find nodes that havemuch higher
proximity with each other than those found by Vivaldi, NonMetric, Sequoia and
LandmarkMDS. Furthermore, HPM has nearly identical stretch as the Optimal
method.

For the delay metric, HPM and Optimal increase the stretch whenK reaches
3, and decrease the stretch to close to 1 afterwards, implying that the level based

42

0 5 10 15 20 25 30

1

2

4

8

16

32

64

128

K

S
tr

e
tc

h
 (

lo
g
 s

c
a
le

)

 Vivaldi

NonMetric

Sequoia

LandmarkMDS

HPM

Optimal

(a) RTT.

0 5 10 15 20 25 30
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

K

S
tr

e
tc

h

Vivaldi

NonMetric

Sequoia

LandmarkMDS

HPM

Optimal

(b) Bandwidth.

Figure 20: The stretch of proximity-aware matchmaking withincreasing number of required
nodes.

matchmaking produces less accurate results when participating nodes are very
few. However, in an interactive game, the number of players is typically around
ten, in which case HPM will do a very good job in match-making.On the other
hand, for the bandwidth metric, HPM and Optimal improve the stretch from 0.85
to 0.9 when the number of nodes reaches 4, and stay around 0.9 afterwards, indi-
cating that HPM and Optimal increase the matchmaking accuracy with increasing
number of participating nodes.

9.3. Network performance anomaly detection

Finding the occurrence of performance anomaly (such as highdelay or loss
events) becomes increasingly critical for network infrastructures. Using thresh-
olds to detect anomalous and nearly anomalous network performance is a popular
anomaly detection approach [48], which determine whether the performance mea-
surements violate the thresholds. Accordingly, the anomaly detection aims to find
all node pairs whose end to end performance measurements areabove (or below
for the bandwidth) these anomaly thresholds.

Similar as Barford et al. [48], we explicitly introduce performance thresholds
as a set of percentile values of the measurement distribution that separate equally
with each other. To simulate the threshold based anomaly detection using HPM,
we use the anomaly thresholds as additional level separation points and a perfor-
mance measurement mapped to one of these level separation points is regarded
as an anomaly. For indirect methods including Vivaldi, NonMetric, Sequoia and
LandmarkMDS, we compare the estimated delays or bandwidth with the thresh-
olds to detect anomalies. For comparison, we vary the numberof anomaly thresh-

43

0 10 20 30 40
0.5

0.6

0.7

0.8

0.9

1

Thresholds

T
ru

e
 P

o
s
it
iv

e

Vivaldi

NonMetric

Sequoia

LandmarkMDS

HPM

(a) RTT.

0 10 20 30 40
0.2

0.4

0.6

0.8

1

Thresholds

T
ru

e
 P

o
s
it
iv

e

Vivaldi

NonMetric

Sequoia

LandmarkMDS

HPM

(b) Bandwidth.

0 10 20 30 40
0.5

0.6

0.7

0.8

0.9

1

Thresholds

T
ru

e
 P

o
s
it
iv

e

Vivaldi

NonMetric

Sequoia

LandmarkMDS

HPM

(c) Hop.

0 10 20 30 40
0.4

0.6

0.8

1

Thresholds

T
ru

e
 P

o
s
it
iv

e

Vivaldi

NonMetric

Sequoia

LandmarkMDS

HPM

(d) Loss.

Figure 21: True positive statistics.

olds, and compute the mean percentage of anomaly that is detected successfully
(true positive) and the percentage of estimated anomaly that do not belong to the
true anomaly (false positive).

Figure 21 and 22 depict the true positive and false positive statistics by varying
the number of anomaly performance thresholds. The Optimal approach has the
highest detection precision. HPM has slightly lower anomaly detection accuracy
than the Optimal method due to the low-dimensional approximations. Further-
more, HPM has higher detection accuracy than Vivaldi, NonMetric, Sequoia and
LandmarkMDS.

10. Conclusion

Hybrid cloud computing provides promisingly elastic, flexible and secure ser-
vice provision for diverse cloud services. Due to the geographically distributed

44

0 10 20 30 40
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Thresholds

F
a

ls
e

 P
o

s
it
iv

e

Vivaldi

NonMetric

Sequoia

LandmarkMDS

HPM

(a) RTT.

0 10 20 30 40
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Thresholds

F
a

ls
e

 P
o

s
it
iv

e

Vivaldi

NonMetric

Sequoia

LandmarkMDS

HPM

(b) Bandwidth.

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Thresholds

F
a

ls
e

 P
o

s
it
iv

e

Vivaldi

NonMetric

Sequoia

LandmarkMDS

HPM

(c) Hop.

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

Thresholds

F
a

ls
e

 P
o

s
it
iv

e

Vivaldi

NonMetric

Sequoia

LandmarkMDS

HPM

(d) Loss.

Figure 22: False positive statistics.

and heterogeneous participating nodes, metering the network conditions between
nodes is increasingly important for optimizing the performance of service provi-
sion. However, the large scale and dynamic nature of hybrid-cloud nodes cause
challenges for the measurement process. HPM solves this challenging problem
in a scalable and decentralized manner. It offers a powerfulprimitive: given any
performance metric, it constructs a hierarchical structure with tunable levels of
proximity, and does so scalably and accurately. In order to preserve the asym-
metry in the hierarchy, we propose a distributed K-means clustering method [43]
based level mapping method that maps performance measurements into levels that
are separable for dissimilar measurements and coherent forsimilar ones. Next, in
order to reduce the performance measurement overhead of level mappings for all
node pairs, each node measures the level values to a small number of nodes, then

45

maintains a low-dimensional coordinate with these level measurements by a novel
distributed conjugate gradient optimization scheme, and uses the coordinate dis-
tances to extrapolate the level values to other nodes.

Simulation results and PlanetLab experiments confirm that HPM can achieve
close to optimal performance, and is quite robust with respect to the choice of
the parameter values. Furthermore, we show how to use HPM in the context of a
novel Nano data center architecture [6].

11. Acknowledgements

This work was supported by the National Grand Fundamental Research 973
Program of China (Grant No.2011CB302601), the National High Technology Re-
search and Development 863 Program of China (Grant No.2013AA010206), the
National Natural Science Foundation of China (Grant No.60873215), the Natural
Science Foundation for Distinguished Young Scholars of Hunan Province (Grant
No.S2010J5050), Specialized Research Fund for the Doctoral Program of Higher
Education (Grant No.200899980003) and the Collaborative Project FIGARO sup-
ported by the European Commission under the 7th Framework Program (Grant
No. 258378). We thank Xingkong Ma for helpful discussions.

References

[1] LACIE, Wuala Secure Online Storage,http://www.wuala.com/ ,
2011.

[2] Microsoft, Halo game,http://halo.xbox.com/en-us , 2011.

[3] R. N. Calheiros, C. Vecchiola, D. Karunamoorthy, R. Buyya, The aneka plat-
form and qos-driven resource provisioning for elastic applications on hybrid
clouds, Future Gener. Comput. Syst. 28 (2012) 861–870.

[4] C. Vecchiola, R. N. Calheiros, D. Karunamoorthy, R. Buyya, Deadline-
driven provisioning of resources for scientific applications in hybrid clouds
with aneka, Future Gener. Comput. Syst. 28 (2012) 58–65.

[5] H. Lin, X. Ma, J. Archuleta, W.-c. Feng, M. Gardner, Z. Zhang, Moon:
Mapreduce on opportunistic environments, in: Proceedingsof the 19th
ACM International Symposium on High Performance Distributed Comput-
ing, HPDC ’10, ACM, New York, NY, USA, 2010, pp. 95–106.

46

[6] N. Laoutaris, P. Rodriguez, L. Massoulie, ECHOS: Edge Capacity Hosting
Overlays of Nano Data Centers, SIGCOMM Comput. Commun. Rev.38
(2008) 51–54.

[7] G. Mateescu, W. Gentzsch, C. J. Ribbens, Hybrid computing-where hpc
meets grid and cloud computing, Future Gener. Comput. Syst.27 (2011)
440–453.

[8] T. S. E. Ng, H. Zhang, Predicting Internet Network Distance with
Coordinates-Based Approaches, in: Proc. of IEEE INFOCOM 2002.

[9] F. Dabek, R. Cox, F. Kaashoek, R. Morris, Vivaldi: a Decentralized Network
Coordinate System, in: Proc. of ACM SIGCOMM 2004, pp. 15–26.

[10] S. Agarwal, J. R. Lorch, Matchmaking for Online Games and Other Latency-
sensitive P2P Systems, in: Proc. of ACM SIGCOMM 2009, pp. 315–326.

[11] D. Milic, Milic, T. Braun, Braun, NetICE9: A stable landmark-less network
positioning system, in: Proc. of LCN ’10, pp. 96–103.

[12] Y. Liao, P. Geurts, G. Leduc, Network Distance Prediction Based on De-
centralized Matrix Factorization, in: M. Crovella, L. Feeney, D. Rubenstein,
S. Raghavan (Eds.), NETWORKING 2010, volume 6091 ofLecture Notes
in Computer Science, Springer Berlin / Heidelberg, 2010, pp. 15–26.

[13] Y. Chen, X. Wang, C. Shi, E. K. Lua, X. Fu, B. Deng, X. Li, Phoenix: A
weight-based network coordinate system using matrix factorization, IEEE
Transactions on Network and Service Management 8 (2011) 334–347.

[14] P. B. Key, L. Massoulié, D.-C. Tomozei, Non-Metric Coordinates for Pre-
dicting Network Proximity, in: Proc. of IEEE INFOCOM, pp. 1840–1848.

[15] O. Beaumont, L. Eyraud-Dubois, Y. J. Won, Using the Last-mile Model
as a Distributed Scheme for Available Bandwidth Prediction, in: Proc. of
Euro-Par’11, pp. 103–116.

[16] J. R. Douceur, J. Mickens, T. Moscibroda, D. Panigrahi,Collaborative Mea-
surements of Upload Speeds in P2P Systems, in: Proc. of INFOCOM 2010.

[17] C. Xing, M. Chen, L. Yang, Predicting Available Bandwidth of Internet Path
with Ultra Metric Space-based Approaches, in: Proc. of GLOBECOM’09,
pp. 584–589.

47

[18] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. E. Anderson, A. Krish-
namurthy, A. Venkataramani, iPlane: An Information Plane for Distributed
Services, in: Proc. of USENIX OSDI 2006, pp. 367–380.

[19] H. V. Madhyastha, E. Katz-Bassett, T. E. Anderson, A. Krishnamurthy,
A. Venkataramani, iPlane Nano: Path Prediction for Peer-to-Peer Appli-
cations, in: Proc. of USENIX NSDI 2009, pp. 137–152.

[20] V. Ramasubramanian, D. Malkhi, F. Kuhn, M. Balakrishnan, A. Gupta,
A. Akella, On the Treeness of Internet Latency and Bandwidth, in: Proc. of
ACM SIGMETRICS 2009, pp. 61–72.

[21] S. Song, P. J. Keleher, B. Bhattacharjee, A. Sussman, Decentralized, accu-
rate, and low-cost network bandwidth prediction, in: INFOCOM, pp. 6–10.

[22] Y. Chen, D. Bindel, H. H. Song, R. H. Katz, Algebra-basedScalable
Overlay Network Monitoring: Algorithms, Evaluation, and Applications,
IEEE/ACM Trans. Netw. 15 (2007) 1084–1097.

[23] M. Coates, Y. Pointurier, M. Rabbat, Compressed Network Monitoring for
IP and All-Optical Networks, in: Proc. of ACM IMC 2009, pp. 241–252.

[24] S. Qazi, T. Moors, On the impact of routing matrix inconsistencies on statis-
tical path monitoring in overlay networks, Comput. Netw. 54(2010) 1554–
1572.

[25] O. Beaumont, N. Bonichon, P. Duchon, H. Larchevêque, Use of Internet Em-
bedding Tools for Heterogeneous Resources Aggregation, in: IEEE (Ed.),
Heterogeneity in Computing Workshop (HCW) - in IPDPS 2011, Anchor-
age,États-Unis, pp. 114–124.

[26] H. Eom, D. I. Wolinsky, R. J. O. Figueiredo, SOLARE: Self-Organizing
Latency-Aware Resource Ensemble, in: HPCC, pp. 229–236.

[27] S. Malik, F. Huet, D. Caromel, Latency Based Dynamic Grouping Aware
Cloud Scheduling, in: Proc. of WAINA ’12, pp. 1190–1195.

[28] R. Xu, I. Wunsch, D., Survey of Clustering Algorithms, IEEE Transactions
on Neural Networks 16 (2005) 645 –678.

[29] S. Banerjee, C. Kommareddy, B. Bhattacharjee, Scalable Peer Finding on
the Internet, in: In Global Internet Symposium.

48

[30] S. Wieser, L. Böszörményi, Decentralized topologyaggregation for qos es-
timation in large overlay networks, in: Proc. of NCA, pp. 298–301.

[31] H. Balakrishnan, R. H. Katz, V. N. Padmanbhan, The Effects of Asymmetry
on TCP Performance, Mob. Netw. Appl. 4 (1999) 219–241.

[32] Y. He, M. Faloutsos, S. Krishnamurthy, B. Huffaker, On routing asymmetry
in the internet, in: Proc. of IEEE GLOBECOM 2005, volume 2.

[33] A. Pathak, H. Pucha, Y. Zhang, Y. C. Hu, Z. M. Mao, A Measurement Study
of Internet Delay Asymmetry, in: Proc. of PAM 2008, pp. 182–191.

[34] P. Sharma, Z. Xu, S. Banerjee, S.-J. Lee, Estimating Network Proximity and
Latency, Computer Communication Review 36 (2006) 39–50.

[35] A.-J. Su, D. Choffnes, F. E. Bustamante, A. Kuzmanovic,Relative Network
Positioning via CDN Redirections, in: Proc. of ICDCS ’08, pp. 377–386.

[36] H. Shen, K. Hwang, Locality-Preserving Clustering andDiscovery of Re-
sources in Wide-Area Distributed Computational Grids, IEEE Trans. Com-
puters 61 (2012) 458–473.

[37] Y. Liao, W. Du, P. Geurts, G. Leduc, Decentralized prediction of end-to-end
network performance classes, in: Proc. of CoNEXT ’11, pp. 14:1–14:12.

[38] J. D. M. Rennie, N. Srebro, Fast Maximum Margin Matrix Factorization for
Collaborative Prediction, in: Proc. of ICML 2005, pp. 713–719.

[39] M. Weimer, A. Karatzoglou, A. Smola, Improving MaximumMargin Matrix
Factorization, Mach. Learn. 72 (2008) 263–276.

[40] J. Stribling, All Pairs of Ping Data for PlanetLab,http://pdos.csail.
mit.edu/ ˜ strib/pl_app , 2005.

[41] S.-J. Lee, P. Sharma, S. Banerjee, S. Basu, R. Fonseca, Measuring Band-
width Between PlanetLab Nodes, in: Proc. of PAM 2005, pp. 292–305.

[42] Y. A. Wang, C. Huang, J. Li, K. W. Ross, Queen: EstimatingPacket Loss
Rate between Arbitrary Internet Hosts, in: Proc. of PAM 2009, pp. 57–66.

[43] S. Datta, C. Giannella, H. Kargupta, Approximate Distributed K-Means
Clustering over a Peer-to-Peer Network, IEEE Trans. Knowl.Data Eng. 21
(2009) 1372 –1388.

49

[44] J. R. Shewchuk, An Introduction to the Conjugate Gradient Method
Without the Agonizing Pain, Technical Report, Pittsburgh,PA, USA, 1994.
http://www.ncstrl.org:8900/ncstrl/servlet/search?
formname=detail\&id=oai\%3Ancstrlh\%3Acmucs\
%3ACMU\%2F\%2FCS-94-125.

[45] R. R. Sokal, F. J. Rohlf, The Comparison of Dendrograms by Objective
Methods, Taxon 11 (1962).

[46] B. Eriksson, P. Barford, R. D. Nowak, Estimating Hop Distance Between
Arbitrary Host Pairs, in: Proc. of IEEE INFOCOM, pp. 801–809.

[47] B. Wong, A. Slivkins, E. G. Sirer, Meridian: a Lightweight Network Loca-
tion Service Without Virtual Coordinates, in: Proc. of SIGCOMM’05, pp.
85–96.

[48] P. Barford, N. Duffield, A. Ron, J. Sommers, Network Performance
Anomaly Detection and Localization, in: Proc. of IEEE INFOCOM 2009,
pp. 1377 –1385.

Yongquan Fu received the B.S. degree in computer science andtechnology
from the School of Computer of Shandong University, China, in 2005, and re-
ceived the M.S. in Computer Science and technology in the School of Computer
Science of National University of Defense Technology, China, in 2008. He is cur-
rently a Ph.D. candidate in the School of Computer Science ofNational University
of Defense Technology. He is a student member of CCF and ACM. His current
research interests lie in the areas of network measurement,Peer-to-Peer network
and distributed system.

50

