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Delay Analysis of Epidemic Schemes in Sparse and Dense
Heterogeneous Contact Environments

Pavlos Sermpezis and Thrasyvoulos Spyropoulos

Abstract

Epidemic algorithms have found their way into many areas of computer
science, such as databases and distributed systems, and recently for commu-
nication in Opportunistic and Delay Tolerant Networks (DTNs). To ensure
analytical tractability, existing analyses of epidemic spreading predominantly
consider homogeneous contact rates between nodes. However, this assump-
tion is generally not true, especially in opportunistic networks between mo-
bile nodes. In this paper we consider two classes of contact/mobility models
with heterogeneous contact rates. We derive simple closed form approxima-
tions and bounds for the basic epidemic spreading step, and prove conditions
for their accuracy. To demonstrate the utility of this result in practice, we
use it to derive the delay of epidemic routing and variants (gossiping and 2-
hop routing) as well as to construct a network size estimator based on local
measurements. We use simulation results based on synthetic heterogeneous
models to validate our analysis, as well as real traces to demonstrate that
our expressions can still be useful even in scenarios with significantly more
complex structure.

Index Terms

Mobile opportunistic networks, epidemic algorithms, heterogeneous con-
tact dynamics, performance modeling
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1 Introduction

Epidemic spreading is probably one of the most popular bio-inspired principles that
have made their way into computer engineering. Epidemic algorithms and variants
(e.g. gossip) have been used for communication in distributed systems, synchro-
nization of distributed databases, content searching in peer-to-peer systems, etc.
Recently, epidemic-based schemes have also been proposed for routing and data
dissemination in Opportunistic Networks. Opportunistic or Delay Tolerant Net-
works (DTNs) are envisioned to support communication in case of failure or lack
of infrastructure (disaster, censorship, rural areas), but also to enhance existing
wireless networks (e.g., offload cellular traffic, novel applications).

In Opportunistic networks, when two mobile devices (smartphones, laptops,
etc) are in proximity (in contact) they can exchange data or information using local
wireless communication (e.g. Bluetooth or WiFi). Message dissemination can be
end-to-end or content-centric, yet neither the existence nor the knowledge of an
end-to-end path is assumed. Nevertheless, over a sequence of node encounters,
messages can get copied to many nodes as well as forwarded over multiple hops.
In the epidemic routing case [1], any node that has a message X (is “infected”)
will forward it to any node encountered that does not have it yet (is “susceptible”).
While this guarantees that every node in the network will eventually receive the
message, it comes with a high resource overhead. Numerous variants have been
proposed to improve the resource usage of epidemic routing while maintaining
good performance (see [2, 3] for a detailed survey).

Since the mobility process of nodes involved (e.g. humans or vehicles carrying
the devices) is, in most cases, not deterministic, the performance of epidemic algo-
rithms (and variants) heavily depends on the underlying contact patterns between
nodes. To this end, epidemic algorithms have been extensively studied through
both simulations and analytical models. While simulations with state-of-the-art
synthetic models or real mobility traces can provide more reliable predictions for
the specific scenario tested, analytical models can give quick, qualitative results and
intuition, answer “what-if” questions, and help optimize protocols (e.g. choosing
the number of copies in [4], or gossip probability [5]).

For the sake of tractability, state-of-the-art analytical models for epidemic spread-
ing mainly rely on simple mobility assumptions (e.g. Random Walk, Random Way-
point), where node mobility is stochastic and independent, identically distributed
(IID) (see e.g. [5–7]). Nevertheless, numerous studies of real mobility traces [8–11]
reveal a different picture. One key finding is that contact rates between different
pairs of nodes can vary widely. Furthermore, many pairs of nodes may never meet.
This puts in question the accuracy and utility of these models’ predictions. Yet,
departures from these assumptions [9,12–14] seem to quickly increase complexity
and/or limit the applicability of results.

This raises the question: can we derive useful and accurate closed form expres-
sions for the performance of epidemic schemes, under more generic mobility as-
sumptions? To this end, in this paper we consider a large class of contact/mobility
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models with heterogeneous contact rates. At first, we assume every pair of nodes
{i, j} meets according to a random process with a different mean contact rate λij ,
drawn from an arbitrary probability distribution F (λ) with known mean µλ and
variance σ2

λ. We then further relax our assumptions and allow pairs of nodes to
never meet each other. Our contributions can be summarized as follows:

• We derive simple closed form approximations for the expected delay of the
basic epidemic algorithm that only involve 1st and 2nd moments of the con-
tact rate distribution F (λ). We prove that these approximations become ex-
act asymptotically on the network size. We also derive upper and lower
bounds for finite network sizes. To our best knowledge, this is the first
closed-form result for the two contact classes considered (Section 2).

• To demonstrate how these results could be used in practice, we derive closed
form expressions for the delay of various epidemic based protocols and use
our theory to propose an efficient local network size estimator for heteroge-
neous contact networks (Section 3).

• We validate these results against various synthetic simulation scenarios be-
longing to the above contact classes, and show that their accuracy is signifi-
cant even for moderate network sizes (Section 4.1).

• Finally, we test our results and estimator on real mobility traces, and show
that our simple expressions can still be of use even in scenarios with signifi-
cantly more complex structure than the one assumed (Section 4.2).

As a final note, while our focus here will be in the domain of opportunistic
and delay-tolerant networking, we believe our framework has more general appli-
cability to epidemic algorithms in many different contexts, as long as the contact
process between nodes fits our contact classes. For example, one could imagine
the probabilistic spread of malware over an email or chat network [15], where the
spread is possible when two nodes decide to communicate. For this reason, we
present our analysis in the general context of epidemic spreading. We focus on
opportunistic networks when we discuss applications and compare our results to
real scenarios.

2 Approximation and Bounds for Epidemic Step

We consider a network composed of N nodes. Each pair of nodes {i, j} “meets”
at random intervals with an average rate λij . Some nodes might never come in
contact, in which case λij = 0. A contact network can then be represented by a
matrix Λ = {λij} with zero and non-zero entries.

Depending on the scenario considered, this contact might be two smartphones
coming within (Bluetooth) transmission range, two users initiating an online chat,
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Figure 1: Epidemic spreading over a homogeneous network with N nodes

Figure 2: Epidemic spreading in a heterogeneous network with 4 nodes

etc. During a contact, a message (e.g. a file, a virus, or a trending video) cur-
rently on one of the nodes could be forwarded to (“infect”) the other node as well.
In the basic epidemic scheme (epidemic routing in the context of DTNs [1]), a
message starts from a source node, and a message transfer occurs at every contact
opportunity involving a node with the message and one without it. We are usu-
ally interested in the time until either all nodes (broadcast) or a specific destination
node (unicast) get infected. This time heavily depends on Λ.

To simplify analysis, it is commonly assumed (in both DTNs and biology) that
all inter-contact times are independent and exponentially distributed with the same
rate λij = λ (IID) [5,6]. This assumption allows one to model epidemic spreading
with a pure-birth Markov chain, as depicted in Fig. 1.

We say that the process is at step k (or state k), when k nodes, including the
source, have the packet. The random variable Tk,k+1, is the time it takes to move
from step k to step k+1, and can be easily shown in the IID case to be exponen-
tially distributed with rate k(N − k)λ and mean value E[Tk,k+1] = 1

k(N−k)λ . The

expected delay until all nodes are infected is then
∑N−1

k=1 E[Tk,k+1].
While the expected delay of the basic epidemic step E[Tk,k+1] is easy to derive

in the IID contact case, this assumption is rather strong. Our goal in this paper is
to raise this assumption and derive closed form expressions that are both accurate
and simple. Specifically, we first assume that pairwise rates are not identical (Sec-
tion 2.1). Then we also allow an arbitrary number of pairs to never meet (Sec-
tion 2.2).
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2.1 Heterogeneous Contact Networks with Full Mixing

We first consider the following class of contact models.

Definition 1 (Heterogeneous Full Mixing). Inter-contact times between a given
pair of nodes i and j are exponentially distributed with a different non-zero rate
λij , and independent of each other. λij is drawn from an arbitrary distribution
F (λ), λ ∈ (0,∞), with known mean µλ and variance σ2

λ.

In other words, we allow different pairs to contact each other more frequently
than others (but, we assume for the moment all contact rates to be non-zero). While
this contact class is far from exhaustive, F (λ) can describe a significantly broader
range of scenarios. For example, large σ2

λ values imply that some pairs will rarely
contact each other while others much more often. An F (λ) symmetric around
µλ (e.g. uniform distribution) implies a balanced number of high and low rates,
while a right-skewed F (λ) (e.g. Pareto) describes a network with most pairs hav-
ing large intercontact times, but few meeting very frequently. Small µλ values
could correspond to slow moving nodes, e.g. pedestrians, (or large geographi-
cal areas). Finally, multi-modal F (λ) functions might approximate scenarios with
some hierarchical structure.

However, we retain the assumption of exponential and independent pair inter-
contact times. While inter-meeting rates cannot be expected to be always and ex-
actly exponential (although some studies do claim this to be the case, at least for
a subset of node pairs [9, 10]), detailed studies of the same real traces [16, 17]
show that (aggregate) intermeeting times exhibit an exponential tail. This expo-
nential tail is also supported by known results about the hitting times of random
walks [18]. Finally, an interesting recent study makes the case that the usually
studied aggregate inter-meeting time distribution might be non-exponential, even
if the individual pair meetings are exponential but with different rates [19], which
is consistent with the above mobility class.

Besides theoretical reasons, there are also important practical reasons for this
assumption. The few studies we are aware of that assume more general inter-
contact times [13, 20] only deal with asymptotic behavior (i.e. whether delay is fi-
nite or infinite). We therefore choose to retain this assumption and provide more ex-
pressive results. We then use real traces as well as one scenario where inter-contact
times are explicitly designed to be non-exponential (but “heavy-tailed”) [21], to
see when these results are or are not useful.

Unlike the case of IID contacts, where we only need to track the number of
nodes k that are infected, in this heterogeneous case we need to know which nodes
exactly are included in the k infected nodes. As is shown in Fig. 2, complexity
increases quickly, even for a simple 4-node network. The state space explodes
with

(N
k

)
different starting states for step k, each with a different probability. While

keeping track of these probabilities could be done recursively, the task becomes
intractable and such a chain can only be solved numerically. To avoid this compli-
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cation, the main idea behind our results is to prove that, in the limit of large N , all
such starting states become statistically equivalent, and then collapse them.

Before we proceed, we prove a simple proposition, that we will need later,
which follows from Chebyshev’s inequality.

Proposition 2.1. Let X =
∑N

i=1 λi, where the λi are IID random variables with
finite mean µλ and finite non-zero variance σ2

λ. Let further cµ be a real positive
number. Then, if µX is the mean value of X ,

P

( |X − µX |
µX

≥ cµ

)
≤ 1

N

σ2
λ

c2
µµ2

λ

Proof. As X is a sum of N IID random variables, it holds that µX = Nµλ and
σ2

X = Nσ2
λ [22], where σ2

X denotes the variance of X . We can apply Chebyshev’s
inequality for X to show that P

(
|X−µX |

σX
≥ c

)
≤ 1

c2 , for any real positive number
c. By setting c = cµµX

σX
and replacing µX and σX with the expressions above, we

end up with the result.

We now state our first result that gives a simple closed form approximation for
the delay of an epidemic step. The accuracy of this approximation improves as
(i) the number of nodes in the network increases, (ii) the mean contact intensity
µλ increases, or (iii) the variance σ2

λ decreases. Furthermore, our simulation-based
evaluation (Section 4.1) reveals that the accuracy of this result, in practice, is satis-
factory even for moderate network sizes (e.g. 100 nodes).

Theorem 2.2. For all contact models belonging in the Heterogeneous Full Mixing
class, the expected time from step k to step k+1 in epidemic spreading can be
approximated by:

E[Tk,k+1] =
1

k(N − k)µλ
+

σ2
λ

[k(N − k)]2µ3
λ

. (1)

Proof. There are three sources of randomness at play when calculating E[Tk,k+1]:
(i) A network is initially created according to F (λ). In other words, N(N −

1)/2 contact rates λij are drawn independently from F (λ). The resulting graph or
(symmetric) contact rate matrix Λ = {λij} is a contact network instance.

(ii) When at step k, there are k nodes with the message. Conditioned on Λ,
Tk,k+1 is a random variable whose distribution will also depend on the actual set
of k nodes that have the message, and their contact rates with the remaining nodes.
Let Ck

m denote this set, where m is an integer indicating one of the
(N

k

)
possible

sets of infected relays at step k.
(iii) Finally, conditional on both the network instance Λ and Ck

m, Tk,k+1 will
also depend on the randomness of the inter-contact times involved.

Let node i ∈ Ck
m and node j /∈ Ck

m and denote as tij the next time node i will
meet node j, after the kth node received the packet. Then, Tk,k+1 = min

i∈Ck
m j /∈Ck

m

{tij}.
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As tij are independent, exponentially distributed random variables Tk,k+1 is also
exponentially distributed with rate

∑
i∈Ck

m

∑
j /∈Ck

m
λij . Hence,

E
[
Tk,k+1|Ck

m,Λ
]

=
1∑

i∈Ck
m

∑
j /∈Ck

m
λij

(2)

Using the properties of conditional expectation, we get the expected time from step
k to step k+1:

E [Tk,k+1|Λ] =
(N

k )∑

m=1

1∑
i∈Ck

m

∑
j /∈Ck

m
λij

· P{Ck
m|Λ} (3)

The problem in Eq.(3) is that keeping track of the probabilities P{Ck
m|Λ} is ex-

ceedingly complex, and even if we did (e.g. recursively) it would not lead to a
useful expression.

Instead, we take the expectation over all possible Λ

E [Tk,k+1] =
∫

Λ

(N
k )∑

m=1

1∑
i∈Ck

m

∑
j /∈Ck

m
λij

· P{Ck
m|Λ}P{Λ}dΛ. (4)

In Eq.(4), we first pick the network Λ and its elements, and then consider all pos-
sible partitions of nodes into two sets of k and N − k. We repeat over all networks
and average. Since the network creation process (i.e. populating the elements of
matrix Λ) is ergodic, we could exchange this order to get1:

E [Tk,k+1] =
(N

k )∑

m=1

E

[
1
X

]
· P{Ck

m}, (5)

where X is a random variable equal to
∑

i∈Ck
m

∑
j /∈Ck

m
λij , and the expectation

of 1
X is taken over Λ. Furthermore Ck

m now simply denotes one of the possible
partitions of nodes into k and N − k nodes. Since the different elements in Λ are
IID, the k(N−k) contact rates λij included in X are distributed according to F (λ)
for any partition Ck

m. By taking the expectation over all Λ, there is no dependence
anymore on the exact partition and

E [Tk,k+1] = E

[
1
X

] (N
k )∑

m=1

·P{Ck
m} = E

[
1
X

]
. (6)

Calculating E[ 1
X ] is still no easy task. Since it involves a k(N−k)-th order convo-

lution (X is a sum of k(N − k) terms). Instead, we will estimate it, by expressing

1This can be rigorously shown, in the limit of a large network. However, the proof is technical
and is omitted from this report.
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the function f(X) = 1
X as a Taylor series expansion, centered at µX , the mean

value of X .

Tf (X) =
∞∑

n=0

f (n)(µX)
n!

(X − µX)n =
∞∑

n=0

(−1)n(X − µX)n

(µX)n+1
(7)

We can approximate f by taking the first m terms of the Taylor series. That
will result in:

f(X) ≈
m∑

n=0

(−1)n

(µX)n+1
(X − µX)n (8)

An approximation for the mean value of f(X) results after taking the expectation
of both sides in the last equation.

E[f(X)] ≈
m∑

n=0

(−1)n

(µX)n+1
Mn (9)

where Mn = E[(X − µX)n] is the nth central moment.
This method, of approximating a function with a finite Taylor sum and taking

the expectation of it for evaluating the mean value of the function, is widely known
as the delta method [23, 24].

As the final step, we need to derive the expected value of X , µX (as well as
higher moments, depending on the number of Taylor series terms we use). To
derive Eq.(1) we consider only the first three terms in Eq.(9). We thus only need
the 1st and 2nd moments of X (sum of independent variables), given by [22]

µX = k(N − k)µλ, (10)

σ2
X = k(N − k)σ2

λ. (11)

Replacing them in Eq.(9) gives us Eq.(1).
Convergence of approximation: The more terms of Eq.(9) we take into account,

the larger the accuracy we can achieve. This accuracy depends on the distribution
of X and on the linearity of f . The more probability mass is concentrated around
the mean value µX and the more linear f is over the range of data, the less terms
are needed [23, 24]. Using Proposition 2.1, the probability that X is not within a
certain interval around the mean, ±cµµX , is inversely proportional to the number
of nodes in the network and to the mean intermeeting rate µλ. It is also proportional
to the variance of F (λ), which means that large differences between different pair
contact rates will require larger network sizes for the approximation to reach a
given level of accuracy. However, what our result implies is that, if our network
is large enough, the statistics over a single network instance will converge to their
ensemble statistics of F (λ). In practice, there is usually no need to consider more
than a few terms.
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In the following analysis we use the above approximation that depends on the
first two moments of the distribution F (λ). Our choice is a tradeoff between usabil-
ity and expressibility of the result, and its accuracy. The above theorem provides
the guidelines for exploring various tradeoffs.

2.2 Heterogeneous Contact Networks with Sparse Mixing

We have so far required all pairs of nodes to meet with non-zero rate, i.e. λij > 0.
This is an undesirable restriction. Intuition as well as studies of real traces suggest
that many pairs of nodes in fact never meet. We now relax this assumption and
extend our results to sparse contact networks.

Definition 2 (Sparse Contact Graph with Heterogeneous Mixing). For each pair
of nodes i and j the following holds: (i) with probability 1 − p they never contact
each other, (ii) with probability p they regularly contact with rate λij . For the
latter pairs, λij is drawn from an arbitrary distribution F (λ), λ ∈ (0,∞), with
known mean µλ and variance σ2

λ, and the inter-contact times are exponentially
distributed.

In other words, we now first create a Poisson (or Erdös-Renyi) graph [25] be-
tween nodes. We then assign rates λij , as before, but only to the existing links.
With the parameter p, we can now also capture arbitrarily sparse scenarios, where
each node meets only an a percentage of all nodes2.

Theorem 2.3. In scenarios belonging in the contact class defined by Definition 2,
the approximation for the expected time from step k to step k+1 in epidemic spread-
ing is:

E[Tk,k+1] =
1

k(N − k)pµλ
+

(1− p) + σ2
λ

µ2
λ

[k(N − k)p]2µλ
(12)

Proof. The proof follows similar steps as that of Theorem 2.2. We therefore only
sketch here the key differences. We can again define, at step k, the set Ck

m of
“infected” nodes. However, we now also need to define for each node i ∈ Ck

m

the set Dk
m(i) = {j : j /∈ Ck

m and λij > 0}, which is the set of the nodes j
that have not received yet the packet and can meet node i. In the full mixing case,
the size of the set Dk

m(i) is ‖Dk
m(i)‖ = (N − k). However, in the sparse case,

0 ≤ ‖Dk
m(i)‖ ≤ N − k.

The total transition rate from state k to state k + 1, conditional on Ck
m is then∑

i∈Ck
m

∑
j∈Dk

m(i) λij . Using similar arguments as in Theorem 2.2, we can show

that E[Tk,k+1] = E
[

1
X

]
, where X is a sum of

∑
i∈Ck

m
‖Dk

m(i)‖ of IID random
variables λij , and the expectation is taken over all network instances (i.e. over all
Poisson graphs with parameter p and link weights according to F (λ)).

2We do assume that the probability p is large enough for connectivity to be achieved. In practice,
the theory of Poisson graphs tells us that connectivity can be achieved with arbitrary low p as long
as N is large enough (with percolation occurring at an average degree as low as 1 in the limit) [25].
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But
∑

i∈Ck
m
‖Dk

m(i)‖ is itself a random variable. By the definition of a Poisson
graph, for each node i ∈ Ck

m, there are N − k other nodes j /∈ Ck
m that are its

neighbors each with probability p, and independent of all other links. Hence, each
‖Dk

m(i)‖ is binomially distributed as

P{‖Dk
m(i)‖ = x} =

(
N − k

x

)
px(1− p)(N−k)−x, (13)

Its expectation and variance are given by E
[
‖Dk

m(i)‖
]

= (N−k)p and σ2
‖Dk

m(i)‖ =

(N − k)p(1 − p), respectively. Since ‖Dk
m(i)‖ are also independent for different

i we can use the rule for expectations of random sums of IID variables [22] to get
the mean and variance of random variable X ,

µX = E
[∑

i∈Ck
m
‖Dk

m(i)‖
]
· E[λij ] = k(N − k)p · µλ, (14)

σ2
X = E[

∑
i∈Ck

m
‖Dk

m(i)‖]σ2
λ + µ2

λσ2
(
∑

i∈Ck
m
‖Dk

m(i)‖)

= k(N − k)p
[
σ2

λ + µ2
λ(1− p)

]
(15)

With these first and second moments of X in hand, we can go ahead and derive an
approximation for E[Tk,k+1] = E

[
1
X

]
. The analysis is the same as in Full Mixing

class. We only need to replace µX and σ2
X from Eq.(14) and Eq.(15).

2.3 Bounding the Expected Step Time

While our approximation is provably accurate in the limit of large networks, it is
of interest to know what kind of errors to expect in theory for finite sized networks.
We will do this by deriving lower and upper bounds for the mean step delay. Eq.(6)
suggests that the derivation of E[Tk,k+1] boils down to the derivation of the expec-
tation of E

[
1
X

]
= E[f(X)] (see proof of Theorem 2.2). Yet f(X) is a convex

function and X a sum of (k(N − k)) random variables. We can thus base our anal-
ysis on known bounds for the expectation of convex functions of random variables.
We will express our bounds for the more generic case of Poisson mixing. The full
mixing result can be derived by setting p = 1.

2.3.1 Lower Bound

A lower bound for E[f(X)] can be taken by the classic Jensen’s inequality, and is
equal to f(µX). Therefore the lower bound for the step time is:

E[Tk,k+1] ≥ 1
k(N − k)pµλ

(16)

Note that this is also equal to the first order approximation using the Delta
method in Section 2.1. The tightness of this bound, as in the case of the approxi-
mation, increases under the same conditions as Theorem 2.2 (larger network size,
etc.).
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2.3.2 Upper Bound

Bounding E[Tk,k+1] from above is more crucial than bounding it from below, as it
provides us with a worst case estimate (in the stochastic sense).

An upper bound for a convex function f : [a, b] → R of a random variable X is
given by the Edmundson-Madansky inequality [26]. As proven in [27], more tight
bounds can be estimated by using higher-order moments of the random variable
X . These upper bounds are given by the next equation, where EMn ≤ EMn−1

and as n →∞ the upper bound converges to E[f(X)].

EMn =
n∑

i=0

(
n

i

)
E[(X − a)i(b−X)n−i]

(b− a)n
f

(
a +

i

n
(b− a)

)
(17)

Eq.(17) can give very bounds by considering a large number of terms. Neverthe-
less, this leads to a complex expression and we might not always know all the
moments of X, E[Xn]. We will thus focus only on the 2nd order bound.

If F (λ) is defined in a closed interval [a, b] then the computation of the upper
bound EM2 is trivial as Eq.(17) requires only the values of the mean and variance
of X , which are already derived. However, if F (λ) is defined in (0,∞), we cannot
apply Eq.(17) as it is. For these cases, we can still derive an upper bound that holds
for a fraction of all the possible random networks of size N that result from F (λ).

Theorem 2.4. Let F (λ)(0 < µλ,σλ < ∞) be an arbitrary distribution of contact
rates defined in (0,∞). Then, ∀ε > 0, ∃N0 : an upper bound (EM2) for the mean
step delay exists for a fraction p0 ≥ 1 − ε of all possible networks instances in
F (λ) of size N > N0. The bound is given by

E[Tk,k+1] ≤ 1
k(N − k)pµλ


1 +

c2+1
2

(
(1− p) +

(
σλ
µλ

)2
)

k(N − k)p− c2

(
(1− p) +

(
σλ
µλ

)2
)


 (18)

and N0 = d1 + 1
ε

(
σλ

µλ

)2

e, where c = 1√
ε
.

Proof. Chebyshev’s inequality states that the values of X are within the interval
[µX − cσX , µX + cσX ] with a probability p0 ≥ 1 − ε, where ε = 1

c2
. As the

value of X is determined by the network (size and first and second moments of
meeting rates across pairs), it follows that this will hold for at least a fraction p0 of
the networks. To apply the bound of Eq.(17), we can now consider X only inside
the interval [µX − cσX , µX + cσX ]. We can thus replace α = µX − cσX and
β = µX + cσX , and use the values of µX and σX in Eq.(17). Considering only
EM2 leads us to the desired Eq.(18), after some calculations.

Furthermore, from Proposition 2.1, we set c · σX = cµ · µX , where cµ is a
constant in (0, 1) because X is always positive. Then it holds that c · σX

µX
< 1 or

equivalently
(
c · σX

µX

)2

< 1. Replacing ε = 1
c2

, µX and σ2
X we take 1

ε

(1−p)+
(

σλ
µλ

)2

k(N−k)p <

10



1. The previous expression takes its max value for k = 1, thus to be satisfied for

every step k it must always hold that N > 1 + 1
ε

(1−p)+
(

σλ
µλ

)2

p = N0.

From Theorem 2.4 it follows that an upper bound that holds for a fraction 1− ε
of all the possible network instances cannot be always found for arbitrarily small
N . The smaller the ε, the larger N is demanded. For very large networks the
upper bound holds for every network instance. However, for little skewed contact
mean rates distributions the bound exists and ε can be selected to be small even for
moderate network sizes.

3 Applications

Having found the necessary approximations and bounds for individual epidemic
steps in heterogeneous scenarios, we turn our attention to applications of these
results, focusing on opportunistic networks. We first use the basic building blocks
of our analysis to predict the “end-to-end” delay for epidemic broadcast and unicast
routing [1], probabilistic flooding (gossiping) [5], and 2-hop routing [6]. We also
use our result to derive a local estimator of network size N , and to analyze its
convergence properties.

3.1 Epidemic Routing

The broadcast delay of epidemic spreading (i.e. the total time to deliver the mes-
sage to every node), can be easily derived by adding up the expected delays of all
steps (due to the linearity of expectation). Hence,

E[T br
epid] =

N−1∑

k=1

E[Tk,k+1]. (19)

In unicast routing, we are interested instead on the time until a given destination
node receives the message. Assuming the selection of the source and destination
nodes is random, the probability that the destination node is the kth node to receive
the message is the same for every k. Consequently,

E[T uni
epid] =

1
N − 1

N∑

n=2

n−1∑

k=1

E[Tk,k+1] =
1

N − 1

N−1∑

k=1

(N − k)E[Tk,k+1]. (20)

For E[Tk,k+1] we can use either the approximate value of Eq.(1) or Eq.(12),
depending on the type of scenario at hand (Full or Poisson mixing). We can also
derive lower and upper bounds using the respective results from Section 2. As
an example, the 2nd order approximation for epidemic unicast routing in a Full
mixing scenario is

E[T uni
epid] ≈

ln(N)
N

1
µλ

+
1.65N + 2ln(N)

N3

σ2
λ

µ3
λ

. (21)

11



and the details for its derivation are given in Appendix 7.1.

3.2 Probabilistic Routing - Gossiping

In probabilistic routing, when two nodes meet, the node that carries the message
forwards it to the other node with probability pr (except if the other node is the
destination node). This is equivalent to thinning the (Poisson) contact process be-
tween two pairs [22]. The meeting events of a node pair will be a Poisson process
with decreased rate λ

′
ij = prλij . Thus, the mean value and variance of the rates

become µ
′
λ = prµλ and σ2′

λ = p2
rσ

2
λ. We can replace these values in any of the

equations in Section 2 to get the mean step delay E[Tk,k+1]. We can then use the
epidemic equation above (Eq.(20)) to get approximations or bounds for the unicast
delay. Replacing µ

′
λ and σ2′

λ in Eq.(21) gives us a 2nd order approximation for

probabilistic routing: E[T uni
rnd ] =

E[T uni
epid]

pr
.

3.3 2-hop Routing

In the 2-hop routing scheme, the source sends the message to every node it meets,
like in epidemic routing. However, other nodes receiving the message can only
give it directly to the destination, when and if they encounter it. We present here
the delay approximation in Poisson mixing scenarios (see Appendix 7.2).

E[T 2hop
D ] =


 1

pµλ
+

(1− p) +
(

σλ
µλ

)2

p2µλ(N − 1)




N−1∑

k=1

(N−2)!
(N−k−1)!

(N − 1)k
(22)

3.4 Network Size Estimator

As a final example of an application of our analysis, we turn our attention to the
problem of distributed estimation of the network size N . In opportunistic networks,
a node might want to know the network size for application reasons (e.g. to join
the largest network around) or to tune specific protocol parameters (e.g. TTL). As
one example, in Spray and Wait routing the number of copies needed in order to
achieve a given performance relative to the optimal one depends on the network
size N [4]. If a new node joins the network, or N changes over time due to nodes
joining and leaving, it will need to derive and maintain an estimate of N .

One way would be to count the unique number of nodes met. However, this
process may lead to very long delays as all nodes must be encountered. While
node collaboration could speed up this process, it comes with a communication
overhead and the need to keep N unique IDs and compare them at every meeting.
For this reason, approximate methods have been proposed [4, 28], based on either
purely local [4] or distributed algorithms [28].

The advantage of purely local approaches [4] is much faster convergence with
less overhead (albeit at a cost of a small statistical error). However, this approach
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applies to stable, homogeneous networks only and cannot be directly applied to
heterogeneous networks. The approach we propose here requires each node to
maintain a locally measured estimate related to contact times. If node i just met
some node, then it will measure the time until it meets any other node. Let us
denote such consecutive samples as ti1,n and the estimator T̂ i

1 = 1
m

∑m
n=1 ti1,n.

Then, it holds that

lim
m→∞E

[
1
m

m∑

n=1

ti1,n

]
→ 1∑

j λij
. (23)

In other words, the local estimator T̂ i
1 converges to E[Tk,k+1], as measured

from the perspective of node i: each ti1,n is exponentially (and independently) dis-
tributed with rate

∑
j λij . In practice, this estimator would be implemented with

an exponential weighted moving average (as in [4]).
T̂ i

1 depends on the size of the network N . We could thus try to build an estima-
tor out of it. Let us assume full mixing and define µi

λ as µi
λ = 1

N−1

∑
j λij . Then

it holds that

E
[
T̂ i

1

]
=

1
(N − 1)µi

λ

. (24)

If we had a perfect estimator for T̂ i
1 and knew µi

λ we could use the following
estimator N̂ = 1

T̂ i
1µi

λ

+ 1. However, measuring µi
λ requires seeing all nodes mul-

tiple times in order to get reliable estimates for the λij rates involved, as well as
maintaining IDs. In addition, as nodes join and leave this value change over time,
possibly faster than the estimation process.

Instead, of measuring and using the actual value of µi
λ each node could use the

expected value µλ, the mean value of F (λ). This is a structural property of the
network, independent of network size and instance, and could be known a priori
or slowly estimated with less overhead per time. Based on these observations, the
following theorem derives an estimator for the network size N̂ based on T̂ i

1, µλ

(and p for sparse mixing). The proof follows a similar methodology as those in
Section 2 and can be found in Appendix 7.3.

Theorem 3.1. For a network with N nodes, in which the nodes meet according to
the Heterogeneous Contact Class of Definition 2 - with parameters µλ, σλ and p -
an estimator for the total number of nodes in the network is

N̂ =
1
p
· 1
T̂ i

1 · µλ

+ 1, (25)

where T̂ i
1 = 1

m

∑m
k=1 ti1,k. For this estimator, it holds that
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E[N̂ ] ≈ 1 + (N − 1) · 1

1 +
(1−p)+

σ2
λ

µ2
λ

p(N−1)

·




1 +
1
m

1 + 3
(1−p)+

σ2
λ

µ2
λ

p(N−1)
1 +

(1−p)+
σ2

λ
µ2

λ
p(N−1)




2




, (26)

that is, it is asymptotically unbiased as the number of samples m and network
size increase.

Remark: We stress here that it is beyond the scope of this paper to derive the
best estimator possible, or show how it should be implemented. Our goal here was
only to show how our model could be used to derive a reasonable estimator for
heterogeneous networks and analyze its performance.

4 Model Validation

In order to validate the accuracy of our results we first compare them (in Sec-
tion 4.1) against simulations of various synthetic scenarios belonging to the Het-
erogeneous Contact Classes of Definitions 1 and 2.

4.1 Model Validation

Since our theoretical results are only asymptotically accurate in N , the network
size, we use Monte Carlo simulations to examine the accuracy of our various ana-
lytical expressions (i) in finite size networks and (ii) as a function of other param-
eters of interest (e.g. statistics of the network generating function F (λ)).

In each simulation, we create a network of N nodes and a contact pattern by
generating a N × N matrix Λ = {λij}. Each entry λij characterizes the contact
process of the pair of nodes i and j: it is zero with probability 1 − p (in Poisson
mixing), otherwise it takes values drawn from a chosen distribution F (λ) with
mean µλ and variance σ2

λ. Then for the pairs that meet (λij > 0) we generate a
sequence of contact events with exponentially distributed intercontact times with
rate λij > 0.

For every simulation point (network size / mobility pattern pair), we run 10000
simulations and calculate the average message delay. We have considered various
contact rate distributions F (λ) and parameters. We compare the simulation value
to the approximations, lower and upper bounds derived in Section 2. Since in most
cases 0 < λ < ∞, we apply Theorem 2.4 for the upper bound (which holds for
95% of the possible networks, in the sense of this theorem).

Fig. 3 shows the delay for epidemic broadcast in dense networks (Full Mixing
scenarios). We present three different mobily cases with similar inter-meeting time
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mean rate but different variance. There are a couple of interesting things to observe
in these figures: (i) the accuracy of the approximation and the tightness of the
bounds is significant even for small networks of less than 100 nodes, (ii) accuracy
improves with network size and lower variance, as our theory predicts, and (iii) in
Fig. 3(c) the upper bounds for 95% of the cases exist only after a network size N0,
in the sense of Theorem 2.4.

In Fig. 4, we present the simulated delay and the analytical results for epidemic
broadcast in sparse networks (Poisson Mixing scenarios). The previous observa-
tions (Fig. 3) hold also in these cases. Additionally, we can observe that for sparse
networks analytical values converge slower (i.e. for larger network sizes) com-
pared to the dense networks3. Especially, the more sparse a network is (i.e. smaller
p), the slower the analytical values converge.

In Fig. 5, we also present some results for unicast routing schemes, namely for
the delay of epidemic (unicast) routing and probabilistic routing, as described in
Section 3. The plots again suggest significant accuracy for our analytical results
already for reasonable network sizes, and convergence properties consistent with
the theory.

4.2 Real Mobility Traces

The results of the previous section show that our analytical predictions achieve
significant accuracy even in finite networks whose mobility patterns fall under the
Full or Poisson Mixing heterogeneous contact classes. While these contact classes
are rather broad, whether they capture “real” scenarios, and to what extent, depends
on the application setting, contact scenario, etc.

In the context of opportunistic networks, some mobility traces collected in real
experiments and/or networks do exist. Arguably, the size of most of them is small
and they represent each only a single instance of the random mobility process at
play, often with a number of measurement complications and errors. Nevertheless,
it is of interest to see how our performance predictors behave in some of these
scenarios, and whether they can capture the quantities of interest (even if qualita-
tively), despite the considerably higher complexity (e.g. community structure) of
such scenarios, and departures from the assumptions for which our predictors are
designed.

To this end, we use the following sets of real mobility traces: (i) Cabspotting
[29], which contains GPS coordinates from 536 taxi cabs collected over 30 days in
San Francisco, and (ii) Infocom [30], which contains traces of Bluetooth sightings
of 78 mobile nodes from the 4 days iMotes experiment during Infocom 2006. We
also generated mobility traces with three recent mobility models that have been
shown to capture well different aspects of real mobility traces, namely, TVCM [31],
HCMM [32] and SLAW [21]. In order to compare with analysis, we parse each
trace and estimate the mean contact rate for all pairs {i, j}. We then produce

3The absence of delay values for small networks is due to lack of connectivity of the contact
graph.
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Figure 3: Delay of epidemic spreading (broadcast) in Dense (Full Mixing) net-
works. Contact rates are distributed according to (a): F (λ) ∼ Log-normal, µλ =
0.33·10−3sec−1, σλ

µλ
= 0.5, (b): F (λ) ∼ Exponential, µλ = 1·10−3sec−1, σλ

µλ
= 1

and (c): F (λ) ∼ Pareto, µλ = 2.8 · 10−3sec−1, σλ
µλ

= 2.23.
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(c) p = 0.2

Figure 4: Delay of epidemic spreading (broadcast) in Sparse (Poisson Mixing)
networks, with different meeting probabilities. Contact rates are distributed ac-
cording to (a): F (λ) ∼ Pareto, µλ = 2.8 · 10−3sec−1, σλ

µλ
= 2.23, (b): F (λ) ∼

Log-normal, µλ = 2.8 · 10−3sec−1, σλ
µλ

= 2.23 and (c): F (λ) ∼ Exponential,
µλ = 1 · 10−3sec−1, σλ

µλ
= 1.
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(a) Epidemic routing
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Figure 5: Delay of two unicast routing protocols in a full mixing network. (a)
Epidemic routing and (b) Probabilistic routing with pr = 0.2. Contact rates are
distributed according to F (λ) ∼ Log-normal, µλ = 0.33 · 10−3sec−1, σλ

µλ
= 1.86.

estimates for the 1st and 2nd moments of these rates, µ̂λ and σ̂2
λ, as well as the

percentage of connected pairs p̂ and use them in our analytical expressions.

4.2.1 Message Spreading

As our first example, we consider unicast routing. Fig. 6 shows the message delay
under epidemic and 2-hop routing. Source and destination are chosen randomly in
different runs and messages are generated in random points of the trace.

The first thing to observe is that delay values span a wide range of values for
different source-destination pairs. This implies a large amount of heterogeneity in
the “reachability” of different nodes. Our analytical predictions are shown as thick
dark horizontal lines. As it can be seen, our result is in most cases close to the
median and in almost all cases between the 25th and 75th percentile of the delay
observed in both the real traces and mobility models4.

4.2.2 Network Size Estimation

In this second example, we will check the performance of our network estima-
tor. We assign to each node in the network an estimator that counts its inter-
meeting time intervals and computes the network size according to Theorem 3.1.
In Fig. 7(a), we consider the cabspotting trace. We form sub-networks of different
sizes by picking a subset of nodes randomly from the original trace. Somewhat
surprisingly, it can be observed that our estimator closely follows the actual net-
work size. Note that we have used the values of µλ and p of the original network
(536 nodes) for all the considered sub-networks. This supports our argument that

4We tend to underestimate the delay in SLAW, a mobility model that was designed to capture
power-law characteristics of contact meetings [21]
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Figure 6: Box-plots of the unicast (i.e. message delivery) delay under epidemic and
2-hop routing. On each box, the central horizontal line is the median, the edges of
the box are the 25th and 75th percentiles, the whiskers extend to the most extreme
data points not considered outliers, and outliers are plotted individually as crosses.
The thick lines represent the theoretical values predicted by our model.

such general properties of the mobility process provide sufficient knowledge to the
estimator. Nodes could thus estimate them once (paying the overhead involved)
and reuse them for much longer periods of time.

We have also simulated our estimator in the sythetic mobility scenarios and
have found an acceptable match as well. Results are shown in Fig. 7(b). The
reason for the lower accuracy of the estimations for the scenarios generated by
HCMM and TVCM, compared to the scenario generated by SLAW, is that these
mobility models generate networks with significant community structure [31, 32].

While nodes seem to find the correct size, on average, intuition suggests that,
in finite size networks, some nodes will be “faster” on average than others (i.e.
have a higher

∑
j λij), due to the randomness of each pairwise rate. It can be seen

from our discussion of the estimator (Section 3.4) and Eq.(24) that faster nodes
will overestimate the network size while slower nodes will underestimate it.

To this end, we plot in Fig. 8 the experimental CDF of the network size esti-
mators for two scenarios. In the SLAW mobility scenario (where the real network
value is 100 and the mean value of our estimate is 94), Fig. 8(b), the individual
estimations of different nodes are not spread very far from their mean value, which
means that the majority of the nodes estimate quite well the size of the network.
The eCDF for the cabspotting scenario , Fig. 8(a) shows a bit more spread, but the
majority of the nodes estimate the size of their network with relatively low error.
Nevertheless, the results make a case for an enhancing mechanism in which nodes
could occasionaly average their estimates over some contacts, in order to obtain
even more accurate estimates.

Summarizing, it is somewhat remarkable that our estimator and delay predictor
are close to the actual results (qualitatively or even quantitatively in some cases) in
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a range of real or realistic scenarios; studies of these scenarios reveal considerable
differences to the much simpler contact classes for which our results are derived.
We should also be careful not to jump to generalizations about the accuracy of
these results in all real scenarios, as we are aware of situations that could force
our predictors to err significantly. Nevertheless, we believe these results are quite
promising in the direction of finding simple, usable analytical expressions even for
complex, heterogeneous contact scenarios.
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Figure 7: Network size estimator. (a): Estimator compared to real values for each
sub-network of the Cabspotting trace, (b): Estimator compared to real values for
traces generated by three mobility models.
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Figure 8: Network size estimator. ECDF of estimations among all nodes for (a):
a Sub-network of 100 nodes of the Cabspotting trace, (b): a trace of 100 nodes,
generated by the SLAW mobility model
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5 Related Work

Models for epidemic spreading of deceases [25] and/or computer malware [15],
were early derived, based on the well known SIR model, and studied widely. In
DTNs, efforts to analyze the performance of epidemic routing and other protocols
also abound. Stochastic analyses, like the one in [6], define a Markov chain as in
Fig. 1, in order to give closed form results for epidemic and 2-hop routing. Fluid
models [5, 7, 33], take an approach similar to the SIR model in biology, and define
the number of messages in the network as a continuous function (of time). Then,
ordinary differential equations (ODEs) are used to derive expressions for the total
delay, delivery probability etc. While these models provide closed form results
and thus can be used in tuning protocol parameters (e.g. gossiping probability [5],
number of copies [4], TTL [34], they all assume a homogeneous network with a
common meeting rate for every pair of nodes.

Recent studies on real network traces [8–11] suggest that the homogeneity
assumption is not true. To overcome this limitation, a number of works has in-
troduced heterogeneity in contact network models, by allowing different meeting
rates for each node pair [9, 11, 12, 14, 35]. Yet, most of these works use the hetero-
geneous model to design new, better protocols (e.g. multicast [9] or unicast [11])
that take heterogeneity into account, but do not analyze performance. One excep-
tion is [14], but only for the cases of direct transmission and 2-hop routing. To our
best knowledge, the work closer to this paper is that of [35], where a very generic
contact graph is considered. However, due to the large generality of the contact
model, only upper bounds for the delay can be provided.

In our work, while we allow arbitrary link rates between nodes, as in [9, 14,
35], we restrict the underlying contact graph model, in order to derive closed-form
approximations and bounds. We validated our results with synthetic simulations
for the targeted contact classes, as previous work did [4–6], but also demonstrate
their applicability in real networks.

As a final note, in theoretical biology and epidemiology, there are many studies
trying to capture heterogeneity and model it in the context of complex networks
[36, 37], using different levels of mixing [38] or stratified populations [39]. Yet,
the majority of these works focus on deriving thresholds above which the epidemic
will spread and their results usually consider infinite time.

6 Conclusions

In this paper, we have considered two classes of heterogeneous contact models,
and have derived simple closed form approximations and bounds for epidemic
spreading. From the validation of the model against synthetic models and real-
istic traces we can conclude that: (a) simple delay expressions, that can be used for
performance prediction and protocol optimization, exist not only for the homoge-
neous contact case; (b) performance predictions that are accurate qualitatively, and
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(somewhat more surprisingly) sometimes quantitatively also, can be made even for
a number of real scenarios, despite the highly more complex structure of the lat-
ter. We believe that our methodology might be applicable in more generic contact
graph structures as well (e.g. the configuration model [25]). However, we also
think that a limit exists, probably related to the size of the min-cut of the con-
tact graph, beyond which are techniques are not applicable and other methods are
needed (e.g. [35]). We intend to explore these issues further as part of future work.

7 Appendix

7.1 Approximation for Expected Unicast Delay under Epidemic Rout-
ing

Substituting Eq.(1) in Eq.(20) we get

E[T uni
epid] =

1
N − 1

N−1∑

k=1

(N − k)E[Tk,k+1]

=

∑N−1
k=1 (N − k) ·

(
1

k(N−k)µλ
+ σ2

λ

[k(N−k)]2µ3
λ

)

N − 1

=
1

N − 1

N−1∑

k=1

(
1

kµλ
+

σ2
λ

k2(N − k)µ3
λ

)

=
1

(N − 1)µλ

[
N−1∑

k=1

1
k

+
σ2

λ

µ2
λ

N−1∑

k=1

1
k2(N − k)

]

(27)

Since
∑N−1

k=1
1
k is an harmonic sum it can be approximated as [40]

N−1∑

k=1

1
k
≈ ln(N − 1). (28)

Also, using partial fraction decomposition, the second sum in Eq.(27) becomes

N−1∑

k=1

1
k2(N − k)

=
1

N2

(
N−1∑

k=1

1
k

+
N−1∑

k=1

1
N − k

+ N
N−1∑

k=1

1
k2

)
. (29)

Using the approximation for the harmonic sum (Eq.(28)) and the approximation [40]

N−1∑

k=1

1
k2
≈ 1.65, (30)

in Eq.(29) we get

N−1∑

k=1

1
k2(N − k)

=
1.65N + 2 ∗ ln(N − 1)

N2
. (31)
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Replacing Eq.(28) and Eq.(31) in Eq.(27) and approximating N−1 ≈ N we result
in Eq.(21).

7.2 Delay Approximation under 2-hop Routing

Under 2-hop routing, in step k there are k nodes that carry the message (the source
and k − 1 relays). As relays can forward the message only to the destination node
and the source to everyone it meets, there are N − 1 possible meeting events in
which a message exchange can take place, i.e. (a) N − k − 1 possible meetings
between the source and a non-infected node, other than the destination, and (b)
k possible meetings between the infected nodes (including the source) and the
destination. Due to randomness, the probability that the destination node will be
involved in the exact next meeting event with message exchange is k

(N−k−1)+k =
k

N−1 .
Then, if T 2hop

k,D is the time from step k till the message delivery and T 2hop
k,k+1 the

time till the next meeting event with message exchange, it holds that

E[T 2hop
k,D ] = E[T 2hop

k,k+1] +
(

1− k

N − 1

)
E[T 2hop

k+1,D],

and recursively we result in:

E[T 2hop
D ] =

N−1∑

k=1

(N−1)!
(N−k−1)!

(N − 1)k
E[T 2hop

k,k+1]. (32)

In Eq.(32) the expectation E[T 2hop
k,k+1] corresponds to the delay of step k for 2-hop

routing, i.e. the expected time to go from k infected nodes to k + 1. Compared to
the epidemic routing, the difference is that now, in step k, the meeting events with
message exchange are only N − 1, instead to k(N − k). We thus need to replace
the value k(N − k) in the denominator of all results in Section 2 with N − 1 to
get the respective value for E[T 2hop

k,k+1]. For example, the equivalent of Eq.(1) under
2-hop routing is

E[Tk,k+1] =
1

(N − 1)µλ
+

σ2
λ

[(N − 1)]2µ3
λ

. (33)

The previous arguments can be applied also in the Poisson Mixing cases. So if we
replace in Eq.(12) the terms k(N − k) with (N − 1) we will get the expected step
delay under 2-hop routing E[T 2hop

D ] for Poisson Mixing scenarios and if we further
use the result to Eq.(32) we will end up to Eq.(22).

7.3 Asymtotical Behavior of the Network Size Estimator

Proof. The proposed estimator for the network size, i.e. the total number of nodes
in the network is

N̂ =
1
p
· 1
T̂ i

1 · µλ

+ 1 (34)
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where T̂ i
1 = 1

m

∑m
k=1 ti1,k.

The expectation of N̂ is given by

E[N̂ ] =
1

p · µλ
· E

[
1
T̂ i

1

]
+ 1 (35)

and for computing it we need first to compute E

[
1
T̂ i
1

]
. Thus

E

[
1
T̂ i

1

]
= E

[
1

1
m

∑m
k=1 ti1,k

]
= m · E

[
1∑m

k=1 ti1,k

]
(36)

Approximating the expectation in Eq.(36) with a Taylor sum (applying the Delta
Method, as in Section 2) we get

E

[
1
T̂ i

1

]
≈ m ·


 1

E[
∑m

k=1 ti1,k]
+

var
(∑m

k=1 ti1,k

)

(
E[

∑m
k=1 ti1,k]

)3


 (37)

In Eq.(36), the different samples ti1,k are IID random variables, so, it holds
that [22]

E

[
m∑

k=1

ti1,k

]
= m · E[ti1] (38)

var

(
m∑

k=1

ti1,k

)
= m · var(ti1) (39)

ti1 is exponentially distributed with rate
∑

j λij . If we denote X =
∑

j λij , then
the probability density function of X , i.e. fX , is the convolution of the pdf of the
different λij involved in the sum. Applying the property of conditional expectation,
we have

E[ti1] =
∫ ∞

0
E[ti1|X]fX(X)dX

=
∫ ∞

0

1
X

fX(X)dX = E

[
1
X

]
(40)

where the equality between the first and the second line holds because ti1 is expo-
nentially distributed with rate X . With the same arguments we get also the variance
of ti1

var
(
ti1

)
=

∫ ∞

0
var

(
[ti1|X

)
fX(X)dX

=
∫ ∞

0

1
X2

fX(X)dX = E

[
1

X2

]
(41)
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To compute E
[

1
X

]
and E

[
1

X2

]
, Eq.(40) and Eq.(41), we will apply once more the

Delta method and consider, as before, the first three terms of the Taylor sum. Thus,

E[ti1] ≈ 1
E[X]

·
(

1 +
var(X)
(E[X])2

)
(42)

var
(
ti1

)
≈ 1

(E[X])2
·
(

1 +
3var(X)
(E[X])2

)
(43)

Subsituting the values of equations (38), (39), (40) and (41) in Eq.(37), after a few
simple steps we end up to

E

[
1
T̂ i

1

]
≈ E[X]

1 + var(X)

(E[X])2

·


1 +

1
m
·

1 + 3 var(X)

(E[X])2(
1 + var(X)

(E[X])2

)2


 (44)

Node i can meet N − 1 other nodes each one with probability p and their meet-
ing rate is drawn from F (λ) and is also independent of the other rates. It means
that X =

∑
j λij is a sum a random number of IID random variables λij , so, its

expectation and variance are given by (Section 2.2)

E[X] = p(N − 1)µλ (45)

var(X) = p(N − 1)
(
σ2

λ + (1− p)µ2
λ

)
(46)

Now if we use the values of Eq.(45) and Eq.(46) in Eq.(44) and then apply the
result to Eq.(35) we end up to Eq.(26).

For large networks, i.e. large N , the ratio
(1−p)+

σ2
λ

µ2
λ

p(N−1) becomes much smaller
than 1 and Eq.(26) is approximately

E[N̂ ] = (N − 1) ·
(

1 +
1
m

)
+ 1 (47)

Now it is clear that for a large number of samples, m, the expectation of the esti-
mator equals the real value of the network size N .
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