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On the Impact of Incentives in eMule
Analysis and Measurements of a Popular File-Sharing Application

Damiano Carra, Pietro Michiardi, Hani Salah, and Thorsten Strufe, Member, IEEE

Abstract—Motivated by the popularity of content distribution
and file sharing applications that nowadays dominate Internet
traffic, we focus on the incentive mechanism of a very popular,
yet not very well studied, peer-to-peer application, eMule.

In our work, we recognize that the incentive scheme of
eMule is more sophisticated than current alternatives (e.g.,
BitTorrent) as it uses a general, priority-based, time-dependent
queuing discipline to differentiate service among cooperative
users and free-riders. In this paper, we describe a general model
of such an incentive mechanism and analyze its properties in
terms of application performance. We validate our model using
both numerical simulations (when analytical techniques become
prohibitive) and with a measurement campaign of the live eMule
system.

Our results, in addition to validating our model, indicate that
the incentive scheme of eMule suffers from starvation. Therefore,
we present an alternative scheme that mitigates this problem,
and validate it through numerical simulations and a second
measurement campaign.

Index Terms—Dynamic Priority, Performance Evaluation

I. INTRODUCTION

C
onsumption of digital content is one of the most popular

uses of the Internet, involving millions of end-hosts: con-

tent distribution services, such as direct download/streaming

sites using One-Click Hosting (OCH) [1] and peer-to-peer

(P2P) applications dominate Internet traffic [2], [3], [4], [5].

The popularity of such services and applications, and their

impact on Internet traffic, has attracted a lot of attention in

the past decade: the literature is rich of extensive studies of

P2P applications – in particular of BitTorrent – and OCH [6],

with the goal of measuring [7], understanding, and modeling

their performance [8], [9], [10], [11].

In addition to the scaling properties and their performance,

an integral part of such services is the presence of incentive

mechanisms to combat “free-riders”, users, who do not offer

local resources (bandwidth and storage) but make the most

of the contributions of the mass. Although incentive mecha-

nisms are very important for P2P applications, they are also

adopted in OCH services to create differentiation between

D. Carra is with the Computer Science Dep., University of Verona, Italy.
E-mail: damiano.carra@univr.it

P. Michiardi is with EURECOM, Sophia Antipolis, France. E-mail:
pietro.michiardi@eurecom.fr

H. Salah and T. Strufe are with Computer Science Dep., TU Darmstadt,
Germany. E-mail: {hsalah,strufe}@cs.tu-darmstadt.de

Manuscript received March 1, 2012; revised July 23, 2012.
This work has been partially supported by the project ANR-09-VERSO-014

VIPEER, the IT R&D program of MKE/KEIT of South Korea [10035587],
and the DAAD (grant no. A/09/97120). The authors would like to thank
Ghannam Aljabari from Palestine Polytechnic University for his invaluable
support to the experiments, and the anonymous reviewers for their comments
that allowed improving the quality of our work.

unsubscribed and premium clients. A prominent example of

incentive schemes – or variations thereof – that has received

a lot of attention is that of BitTorrent [12].

The endeavor of this work is to focus on eMule/aMule

[13], [14], another file-sharing application that is very popular

among users. Recent studies indeed have shown that it is used

by millions [15], [16], only counting the peers that participate

in the KAD network and disregarding clients that are solely

connected through the E2DK network, but it has much less

been studied in literature. Specifically, we investigate the built-

in incentive mechanism as it is substantially different from

those implemented in other P2P applications. However, the

proposed model could be used in other contexts, including

OCH services and various kinds of scheduling problems (e.g.,

operating systems and parallel processing systems). Instead

of having short-term goals, as in BitTorrent, the incentive

mechanism in eMule is content-oblivious: users are granted

credits (using a fairly complex procedure) that are used to

gain service from other peers across multiple contents.

In this paper, we first recognize that the incentive scheme

of eMule is a special instance of a more general scheduling

mechanism, that awards resources (in the context of eMule,

upload slots) using a time-based priority queueing discipline.

We call this scheme a proportional differentiation mechanism

and propose a model to study its properties under realistic

settings. That is, we assume finite-capacity queues and include

churn, a characteristic trait of P2P applications where peers

may join or leave the system at any time. Our model is

validated both with numerical simulations and with an exten-

sive measurement campaign on the current deployment of the

eMule/aMule system.

Backed by our findings, we realize that the current imple-

mentation of the incentive scheme in eMule suffers from star-

vation: peers with little resources may have to wait for a long

time before being served by other peers. We thus propose an

alternative mechanism (that we call additive differentiation),

which mitigates starvation while maintaining the flexibility of

the original proportional mechanism in tuning service differ-

entiation using a handful of parameters. Finally, we validate

the additive scheme using numerical simulations and another

measurement campaign in which we deploy a modified aMule

client that implements our incentive mechanism.

II. THE EMULE INCENTIVE SYSTEM

The motivation for eMule [13], [17] peers to use a priority

scheme for awarding upload slots to remote peers stems from

the fact that peers may behave selfishly and free-ride on

system resources. As such, the priority scheme is effectively
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an incentive mechanism that aims at fostering peer coopera-

tion. However, unlike other popular file-sharing applications

such as BitTorrent [12], which implements an instantaneous

mechanism akin to the tit-for-tat scheme, time in eMule plays

an important role.

Each peer in eMule records the volume of data exchanged

(download and upload) with every other peer it has interacted

with in the past. The combination of these two values is re-

ferred to as credits. Such credits are used to assign the priority

that remote peers will be granted for each content request.

Note that credits are accumulated by each peer independently

of the requested or served content. Credits associated to an

uploading peer are stored locally, and not at the credited peer

itself.

A peer in eMule implements a time-dependent priority

discipline with preemption. For a generic request j received

from a remote peer, its priority over time is computed as

follows:

qj(t) =
(

t− Tarrival + T30Is(t)
)

· fp · Cj(t) (1)

where Tarrival is the arrival time of the request, t ≥ Tarrival, T30

is a constant equal to 30 minutes, Is(t) is the indicator function

for the service – which takes the value 1 if the request is in

service, and 0 otherwise – fp is a constant value associated to

each file, and Cj(t) is the priority coefficient for that specific

request (derived from the credits), which varies over time.

Pending requests may change priority class while they are

waiting to be served (or even while they are being served).

Indeed, the coefficient Cj(t) is computed as follows:

Cj(t) = max

(

1,min

(

2U(t)

D(t)
,
√

U(t) + 2, 10

))

where U(t) and D(t) depict the total volume of data (ex-

pressed in MBytes) respectively uploaded and downloaded at

time t by the peer that issued the request j, as tracked by

the peer currently acting as a single server queue for that

particular request j. In eMule, the constant fp can take one of

the following values: 0.2, 0.6, 0.7, 0.9, 1.8. As a result of the

“min” and “max” operations, it holds that 1 ≤ Cj(t) ≤ 10.

The number of requests a client can accept is limited. There

are mainly two parameters that control this limit: the maximum

number of connections and the maximum number of download

requests. The maximum number of connections imposes a

limit on the number of TCP connections (one connection per

client). Once the client is connected, it can send a download

request for a specific file – note that only one request at a time

is accepted in the waiting queue from a given peer. Given these

two parameters, it is hard to understand which one mainly

limits the system, since they can be both changed by the users.

As we will see in the next Section, we will consider a single

limiting parameter k, without specifying if it represents the

maximum number of connections or the maximum number of

download requests. A measurement campaign will show that,

in most of the cases, there is no connection slot available,

therefore k will be interpreted as the maximum number of

connections.

III. PERFORMANCE MODELING

In this section, we provide a simple model that can be used

to evaluate the impact of the eMule incentive scheme on the

system performance, measured in time a request spends in the

system. The model is represented by a single server queue

with a finite buffer and a scheduling discipline based on a

dynamic priority. For such a simple model, we provide a set

of interesting, original results.

A. Time-Dependent Priority

We consider a M/M/1/k + 1 queue, where jobs, which

hereafter we call requests, arrive according to a Poisson

process, and their service times are exponentially distributed.

Although the assumption of exponential service times is un-

realistic from a practical perspective, it greatly simplifies the

analysis from the theoretical point of view. We will see, using

a the numerical approach, that the impact of this simplification

is not significant.

The single server queue allows P different priority classes

(or groups): requests for group i (i = 1, 2, . . . , P ) arrive

according to an independent Poisson processes with rate piλ,

where λ is the total arrival rate and pi is the probability that

the requests belong to group i, with
∑

i pi = 1. The request

processing time is exponentially distributed with parameter

µi = µ∀i. We note that this assumption of a unique service

rate µ reflects a system in which the requests arriving from

different priority classes concern the same set of “objects”,

and thus the service rate is the same, independently of class

i.
We define:

ρi =
piλ

µ
, ρ =

λ

µ
and W0 =

ρ

µ
,

where W0 is the expected completion time for the request (job)

in service.

In contrast to the usual convention, we assume that a request

i has priority over another request j if its priority value is

larger than the priority value of request j. We assume that

requests do not leave the system until they are served.

With a time-dependent discipline, the priority of a request

depends both (i) on the specific group it belongs to and (ii) on

the amount of time spent by such requests in the system. As

such, these schemes have the desirable property that request

starvation is not present (if ρ < 1): indeed, as time progresses,

the priority of a request grows, and it is eventually served

by the system. The single server queue executes a simple

scheduling process that selects the next request to be served

based solely on its instantaneous priority.

Let Tarrival be the arrival time of a request and let Tleave be

the time when the request leaves the system. We consider a

class of priority schemes in which the priority qi(t) at time

t assigned to a request belonging to group i is given by the

following general expression:

qi(t) = bi(t− Tarrival)
r
+ ai, (2)

with Tarrival ≤ t ≤ Tleave. Each priority group can be identified

by the coefficients bi and ai, with i = 1, 2, . . . , P , 0 < b1 ≤
b2 ≤ . . . ≤ bP and 0 < a1 ≤ a2 ≤ . . . ≤ aP .
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Fig. 1. Examples of the evolution of the priority in case of proportional and
additive schemes.

In Figure 1, we show two different cases. On the left hand

side, we show the case where ai = 0 , ∀i ∈ P and r > 1: the

priority over time of the requests follows a convex function.

In case of r < 1 we have a similar behaviour, with concave

functions. We label this approach the proportional scheme.

On the right hand side, we show the case where bi = b,
∀i ∈ P and r = 1. The difference in terms of priority between

two requests remains constant over time. We call this approach

the additive scheme (the reasons for these names, proportional

and additive scheme, will become clear later in the paper).

B. Proportional Scheme: Main Results

We consider the case where the coefficients ai in Eq. 2 are

all set to zero, i.e., we consider the proportional scheme. The

literature is rich of studies that consider M/M/1 or M/G/1
single server queues that execute a variety of priority queueing

disciplines [18], [19], [20], [21]. However, prior works mainly

focus on systems with an infinite buffer size. Instead, in this

work we are interested in studying applications under the more

realistic assumption of limited buffers.

We focus on closed systems, where the number of requests

inside the system is constant (equal to k+1), and a new request

is accepted only when the request in service leaves the system.

In this case the request arrival rate equals the service rate, i.e.,

λ = µ. Since the request processing time is exponentially

distributed, the arrival process is still Poisson. The group of

the new arrival is independent from the group of the request

that has completed the service.

Closed systems represent an analytically tractable approx-

imation of the heavy traffic regime, i.e., a regime where the

offered load approaches the service rate. We are interested in

the heavy traffic regime, which is the one eMule operates in:

the request rate to access content approaches or is larger than

the service rate a peer can offer (cf. Sec. V).

Service without Preemption: In case of service without

preemption, once a request has been scheduled, the next

request will be scheduled only when the current request has

been fully served.

The authors in [22] have found an interesting relation in

case of a M/G/1 queue (i.e., with infinite buffer) and heavy

traffic regime (with an additional constraint, i.e., the parameter

r is set to one): the ratio between mean waiting times of two

classes depends on the ratio of the priority coefficients, i.e.,

Wi

Wj
→

bj
bi
.

In the following Theorem, we extend this result in case of

closed systems and without constraints for the parameter r.

Moreover, we provide a simple way to compute the mean

waiting times Wi for each class.

Theorem 1: Given any two priority groups i and j, the

mean waiting times Wi and Wj , in case of a non preemptive

service, in closed systems, satisfies the following condition:

Wi

Wj
=

(

bj
bi

)1/r

. (3)

The mean waiting times can be computed as:

Wi =
1

b
1/r
i

k

µ

1
∑P

i=1
pi

bi1/r

. (4)

Proof: See Appendix A.

Theorem 1 indicates that, independently from the traffic

composition (i.e., the values of ρi), a time-dependent priority

discipline provides a proportional differentiated service that

depends on r and the coefficients bi and bj .

The theorem is interesting because it also shows the relation

between the mean waiting times and the parameters of the

system (k, µ, r and bi) that can be tuned by the system

administrator.

Service with Preemption: We now consider the case in which

the service to any request can be suspended by a new request

that, as time progresses, has gained a higher priority than

the currently scheduled one. The suspended request can be

resumed if its priority returns to be the highest.

Let Ti be the mean time spent in the single server queuing

system by a request belonging to priority class i, i.e., Ti =
E[Tleave−Tarrival]. Clearly, we have that Ti = Wi+1/µ, where

Wi is the mean waiting time for a request in the class i.

The following result holds:

Theorem 2: Given any two priority groups i and j, the

mean times spent in the system, Ti and Tj , in case of a

preemptive service, in closed systems, satisfies the following

condition:

Ti

Tj
=

(

bj
bi

)1/r

. (5)

The mean time spent in the system can be computed as:

Ti =
1

b
1/r
i

k + 1

µ

1
∑P

i=1
pi

bi1/r

. (6)

Proof: See Appendix B.

To the best of our knowledge, this result, or part of it, has

not been found before, not even in the case of infinite buffers.
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C. Relevance of the Main Results

The main results discussed above can be applied to char-

acterize the performance of eMule. In particular, we shall

consider Theorem 2, next, since eMule clients offer a service

with preemption.1

Considering Eq. 1, let’s neglect the term T30Is(t) to simplify

the expression, and assume fp = 0.7 for each file (this is the

default value in eMule). In this case, Theorem 2 indicates that

if the mean download time for a request with top priority is

TH , then the mean download time for a request with the lowest

possible priority will be TL = 10TH (since the ratio between

the maximum possible value and the minimum possible value

of Cj(t) is 10). The parameter k represents the maximum

number of connections, and it may be used to tune the absolute

values of the mean time spent in the system.

In practice, however, the eMule system is more complex

than the model we presented so far. A more realistic model

should include the ability of eMule to allow parallel uploads

among Q slots; moreover, peer churn (dynamic departure of

peers, along with their requests) should also be accounted for

in the model. In the following, we show that the simple model

presented in this Section is able to predict the performance of a

more complex model (which can be solved only numerically).

In other words, we show that the impact of some parameters,

such as Q of the churn, is negligible; this in turn suggests that

we can use the simple model to study the eMule system.

IV. NUMERICAL VALIDATION OF THE MODEL

We consider the following three modifications to the single

server model described in Sec. III-A:

1. We allow the service rate to be generally distributed.

This means that, with a closed system, the arrival rate

is generally distributed too.

2. The system serves Q requests in parallel, giving to each

of them a service rate equal to µ/Q. The system has a

waiting line of k positions, therefore the total number of

requests in the system is k +Q.

3. The requests in the waiting queue can leave the system

at any time. In particular, the requests are active for a

random interval, which is generally distributed. When

they become inactive, they leave the waiting queue –

in practice, when the client that has issued the request

disconnects, its request is discarded by the system. We

refer to this behavior as “churn.” Since we have a closed

system, if a position becomes available, it is immediately

occupied by a new request. Note, that this has an impact

on the arrival process. The new arrival belongs to class i
with probability pi, independently from the class of the

request that has left the system.

The enhanced model, is hard, if not impossible, to solve

analytically. We therefore revert to a numerical solution ap-

plying a dynamic Monte Carlo simulation. In particular, we

make use of the Stochastic Simulation (also known as Gillespie

algorithm). In practice, the model (which is a Markov process)

1For the sake of completeness, we also presented the non-preemptive case,
which can be useful to model other incentive schemes such as the ones used
in OCH services.

is simulated for a sufficiently long time, and then the statistics

of interest are taken. The approach is interesting since, given

a performance index, it is possible to estimate not only the

mean, but also the whole probability distribution; the error in

the estimation can be decreased to a desired level with the

usual statistical techniques (multiple runs, with evaluation of

confidence intervals).

In the following, we show the numerical solutions obtained

with stochastic simulations and compare them with the the-

oretical results obtained in Sec. III-B. We observe that part

of the theoretical results are able to predict the performance

of the enhanced model with the three modifications explained

above. We will show only some representative results for the

preemptive case, but we have obtained similar results for the

non-preemptive case and with many different settings (e.g.,

with many different service time distributions), that we omit

from this paper due to lack of space.

We consider four classes with parameters bi equal to 1, 2, 4

and 10 respectively, and equal probability, i.e., pi = p = 0.25.

We set the parameter r (see Eq. 2) to 1. The buffer size

is k = 1000 and the service rate for requests is Weibull

distributed with scale parameter µ = 10 and shape parameter

s. We consider a Weibull distribution since, by changing

the shape parameter, it is possible to obtain a light tailed

distribution (s > 1), a heavy tailed distribution (s < 1) or

an exponential distribution (s = 1).

We start validating our stochastic simulation solver against

the main theoretical results (Theorem 2), i.e., we use a shape

parameter s = 1 to obtain an exponential distribution, the

system serves Q = 1 request at a time, and we have

requests that are always active (no churn). Table I shows the

mean time spent in the system by the requests belonging to

different classes. The second and the third column show the

absolute values of the Tis, theoretical and simulated (with the

corresponding 98% confidence interval). Moreover, the last

column shows the ratio between T1 and Ti: considering class

1 as the reference class, the ratio should be equal to bi/b1.

Since b1 = 1, the ratio should be equal to bi, i.e., the last

column should be equal to the first column. The results show

a clear match between theoretical and numerical results, thus

validating our numerical solver.

TABLE I
MEAN TIME SPENT IN THE SYSTEM: VALIDATION OF THE NUMERICAL

SOLVER OF THE M/M/1 CLOSED SYSTEM MODEL (FOR THE NUMERICAL

RESULTS, 98% CONFIDENCE INTERVALS ARE SHOWN).

bi T theor
i

T numeric
i

T numeric
1

/T numeric
i

1 2162.16 2157.99 ± 6.30 –

2 1081.08 1080.26 ± 3.02 2.00± 3 · 10−5

4 540.54 540.86 ± 1.58 3.99± 0.01

10 216.21 216.93 ± 0.64 9.96± 0.05

We now consider the case where the distribution of the

service time is heavy tailed (s = 0.5), the system serves

Q = 6 requests in parallel, and there is churn: we assume

that the requests are active for a random interval, which is

Weibull distributed, with scale parameter equal to 600 and
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shape parameter equal to 0.7 (heavy tailed distribution). Note

that, with this level of churn, approximately 33% of the

requests leave the system while waiting to be served.

The main difference with respect to the basic model is that

it is not possible to compute the absolute values of the Tis. On

the other hand, the proportional property, i.e., Ti

Tj
=
(

bj
bi

)1/r

,

is still valid, as shown in Table II

TABLE II
MEAN TIME SPENT IN THE SYSTEM IN CASE OF CHURN, MULTIPLE

PARALLEL UPLOADS AND SERVICE TIME WEIBULL DISTRIBUTED (98%
CONFIDENCE INTERVALS ARE SHOWN).

bi T numeric
1

/T numeric
i

1 –

2 1.99± 0.001

4 3.97± 0.002

10 9.86± 0.006

Table II shows the case where all the three modifications –

service time Weibull distributed, Q requests served in parallel,

and churn – are applied. We have tested the impact of each

modification alone: none of them has an impact greater than

the others, therefore all of them agree in the slight deviation

with respect to the proportional property.

In summary, the basic M/M/1 closed system model repre-

sents a good approximation even for more complex systems,

with different service time distributions, number of requests

served in parallel and levels of churn.

V. MEASUREMENTS

In this section, we provide the results of an extensive

measurement campaign on the eMule system in order to

further validate our theoretical results.

The eMule system differs from the model in many details.

For instance the credits depend on the amount of data down-

loaded and uploaded, therefore they change over time: this

behavior can not be modeled with simple tools, therefore we

can only observe its impact on the main performance metric.

A. Heavy Traffic Regime

The first step before starting to study the eMule performance

is to check if the system is indeed working in the heavy

traffic regime. To this aim, we have performed a specific

measurement campaign.

The eMule clients are designed to report the position in the

queue of the download requests. If peer i sends a download

requests to peer j, peer i is able to visualize the status of

such a request; we have modified an aMule client such that

this status is written in the logs. The possible values that the

status can assume are the following: On Queue (OQ), Queue

Full (QF) and Too Many Connections (TMC). The status OQ

says that the download request of peer i has been placed in the

waiting queue by peer j; in this case, it is possible to know the

position in the queue. The status QF says that the download

request of peer i has been discarded by peer j because there

are no positions available. The status TMC indicates that peer

j is receiving too many connection requests, therefore the

connection request is denied (and consequently the download

request can not be sent).

For the measurement campaign we have taken 64 popular

contents and sent the request for downloading the content. This

translated into approximately 5400 individual requests, i.e. the

client tried to connect and to send the download request to

5400 different peers. The results of these requests have been

recorded in the log file.

The results of the measurement campaign shows that 87.4%

of the connection requests are denied (status: TMC), and 3.2%

of the download requests are denied (status: QF). Therefore,

more than 90% of the contacted peers are saturated, i.e.,

they can not accept either a new incoming connection or a

new incoming download request. Since in most of the cases

connection slots are not available, we can interpret the buffer

size k in the model and the maximum number of connections.

B. Measurement Setup

For the evaluation of the performance of eMule, we take

the perspective of a single node that serves the requests

for non copyrighted content issued by other peers. As such,

we have instrumented an aMule client (version 2.2.6, [14])

to log different information. Among them, we consider all

the events related to aMule’s incentive system: in particular,

we record when a node issues a request (i.e., the request

enters the waiting queue) when the request is served (i.e.

it leaves the waiting queue and takes a serving slot), when

the request has been completely served, or when it is sent

back in the waiting queue (e.g., as a result of preemption).

Additionally, our instrumented client reports all the incentive-

related numerical values, such as bytes uploaded to other

peers, bytes downloaded from other peers, and computed

credits.

The log traces we obtain require post-processing, since they

contain data that may affect the analysis. For instance, when

we compute the total time spent in the system, we consider

peers that have left after downloading the content, i.e., we filter

partial sessions due to churn.

Another issue is related to the time-varying nature of

eMule credits: since the credits depend on the amount of data

uploaded and downloaded, the credits of a generic peer may

change over time. To simplify our analysis, we have divided

the possible credits in ten classes: class i contains the peers

with credits greater or equal to i − 0.5, but smaller than

i+0.5. The only exceptions are class 1, which contains peers

with credits between 1 and 1.5, and class 10, which contains

peers with credits between 9.5 and 10, since eMule imposes a

minimum and a maximum value for Cj(t) (equal to 1 and 10

respectively). We have verified that most of the peers remain

in the same class during our experiments, and we have filtered

out the (very) few exceptions.

In our measurement campaign, we have tested our instru-

mented client in different periods of time. In the following,

we will show some representative results in which we tested

two values of available bandwidth for serving requests (240

and 360 kbit/s), and three values of uploading (serving) slots

Q: 10, 4, and 1 slot.
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C. Measurement Results

Table III shows the results (time spent in the system, ex-

pressed in minutes) with bandwidth 240 kbit/s and different

offered uploading slots. For each class (first column, which

provides the values of the coefficients bis) we show the

number of samples that contributed to provide the mean

download time, along with the mean download time itself

and the 95% confidence interval. Note that, differently from

the numerical solution presented in Sec. IV, where we have

performed multiple short runs, here we can only analyze a

single, long observation (the experiment covers approximately

12 days).

Since we have a single observation, we can not compute

the ratio with the corresponding confidence interval as we

have done with the numerical solution in Sec. IV. We therefore

consider an alternative approach: we use the download time

of the lowest priority class (for which we also have the

highest number of samples) as a reference Tj , and we compute

the download times of the other classes, Ti applying the

proportional property of Theorem 2, i.e., Ti =
bj
bi
Tj . The

fourth column shows the results of this computation, while

the last column shows the absolute relative error (difference)

between the measured and the expected means.

TABLE III
MEASUREMENT RESULTS WITH BANDWIDTH 240 KBIT/S AND DIFFERENT

SERVING SLOTS.

Mean (minute) Expected

Class # samples with 95% Conf. Int. Mean Error

Uploading slots Q=10

1 3758 511.29 ± 4.5 - -

2 36 269 ± 17.9 255.65 13.35

3 59 182.19 ± 12.3 170.43 11.76

4 13 148.75 ± 13.5 127.82 20.93

10 416 49.5 ± 1.1 51.13 1.63

Uploading slots Q=1

1 4289 357.6 ± 4.33 - -

2 61 158.8 ± 19.18 187.8 29

3 13 145 ± 22.74 125.5 19.5

4 127 73 ± 4.71 93.9 20.9

10 287 35.2 ± 1.71 37.6 2.4

The confidence interval of each class overlaps or is close

to the mean theoretical value. Considering the approximations

made to compute the performance indexes during the measure-

ments, we can observe a good match between measurements

and theoretical values. In some cases, the low number of

samples (second column) translates into a higher confidence

interval and higher absolute error.

Note that the two measurement campaigns (corresponding

to different values of Q) have been performed under different

conditions, i.e., in different times and with a different set of

shared files, therefore the results are not directly comparable.

However, it is important to note that, independently from the

value of Q, the proportional property holds, therefore the

model is able to predict accurately the performance of the

eMule system.

10
-3

10
-2

10
-1

10
0

10
3

10
4

P
D

F

time

proportional
additive

FCFS

Fig. 2. PDF of the waiting times for different priority schemes.

VI. AN ALTERNATIVE INCENTIVE SYSTEM

In this section, we illustrate a possible problem with the

credit system currently implemented in eMule:the distribution

of the request waiting times with a scheme akin to proportional

differentiation exhibits heavy tails. As such, we propose,

analyze and validate a possible alternative time-dependent

priority discipline that can be obtained from Eq. 2 by setting

the coefficients bi = b, ∀i ∈ P and r = 1: we call this

approach additive scheme.

A. Distribution of the Waiting Times: Results From a Numer-

ical Analysis

In this section we are interested in understanding some

basic properties of the complete probability distributions of

the request waiting times. Since it is hard to derive such

distributions analytically, we take a numerical approach which

is similar to that developed in [23]. In particular, we have

used our numerical solver based on Stochastic Simulations

(cf. Sec. IV) to obtain the results. We assume a finite buffer

of size k = 5000.

We compare the distribution obtained by three service disci-

plines: (i) the basic First Come First Serve (FCFS) discipline,

(ii) the time-dependent proportional scheme (Sec. III-B) and

(iii) the time-dependent additive scheme.

Specifically, for the proportional scheme we generate a large

set of requests whose priority class is triangularly distributed

in the interval bi ∈ {1, 10}, with r = 1 and ai = 0 ∀i ∈ P .

We choose the triangular distribution, with its peak in the

lowest value of bi, since the measurement campaign has shown

that most of the requests come from peers with low credits.

Similarly, we evaluate the additive scheme for a set of requests

whose priority class is identified by coefficients chosen at

random (following a triangular distribution with peak in the

lowest value of ai) in the set ai ∈ {1, 2500}, with r = 1
and bi = 1 ∀i ∈ P . The results of our experiments consist in

the empirical probability density function (PDF) of the request

waiting times in the system, and are depicted in Figure 2.

Our results indicate that, for the FCFS scheme, the PDF

of the waiting times exhibits a peak around the mean waiting

time, as expected. Figure 2 illustrates that, for the proportional

case, the PDF exhibits heavy tails, a result also observed in

[24]. We performed another experiment with bi ∈ {1, 50} to

study the sensitivity of the proportional scheme to the range

in which the coefficient bi can take value: also in this case,
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the results (that we do not report here for the sake of clarity)

show a PDF with heavy tails.

In [24], the authors consider also the additive scheme:

they show that the additive scheme exhibits heavy tails if

the coefficients ai are selected from a probability distribution

that has heavy tails. This means that, if the coefficients are

bounded, i.e., ai < amax, ∀i ∈ P , the waiting time distribution

does not have heavy tails, as our numerical results confirm

(see Fig. 2). We note that the PDF is relatively tight and

centered around the mean waiting time of the FCFS scheme,

and has a support that is correlated to the difference between

the maximum and minimum values of the coefficients ai.
In summary, a system based on the proportional scheme

exhibits heavy tails in the distribution of the waiting times.

Instead, the additive scheme, independently from the coeffi-

cients ai, does not exhibit heavy tails.

B. Main Results for the Additive Scheme

For the additive scheme, we are able to find general results

which are valid for both the non-preemptive and the preemp-

tive cases. We assume, as in Sec. III-A, a M/M/1/k+1 closed

system.

Theorem 3: Given any two priority groups i and j, the

mean waiting times Wi and Wj , for both the non preemptive

and the preemptive cases, in closed systems, satisfies the

following condition:

(Wi −Wj) →
aj − ai

b
(7)

The mean waiting times can be computed as:

Wi = −
ai
b
+

k

µ
+

1

b

P
∑

i=1

piai. (8)

Proof: See Appendix C.

As for the proportional case, Theorem 3 provides a relation

between the mean waiting times independently from the traffic

composition (i.e., the values of ρi). Moreover, having a simple

expression for the absolute values of Wi, allows us to easily

evaluate the impact of the system parameters on the waiting

times. To the best of our knowledge, this result, or part of it,

has never been found before, not even in the infinite buffer

case.

C. Results

As previously done for the proportional case, we first

evaluate the accuracy of the simple model in predicting the

perfomance of an enhanced model where we introduce the

three modifications explained in Sec. IV: the service time is

Weibull distributed, Q requests are served in parallel, with

churn. The parameters of the service time distribution and of

the request online time remain the same used in Sec. IV. The

coefficient b is set to 1, while the coefficients ai are set to

14, 28, 56 and 140 – note that such coefficient are the values

1, 2, 4 and 10 all multiplied by 14, the reason of which will

become clear below. The number of requests served in parallel

is Q = 6.

TABLE IV
MEAN TIME SPENT IN THE SYSTEM WITH THE ADDITIVE (98%

CONFIDENCE INTERVALS ARE SHOWN).

ai ai − a1 W numeric
1

−W numeric
i

14 – –

28 14 15.11 ± 0.56

56 42 44.75 ± 0.51

140 126 130.79 ± 0.51

As previously noted, it is not possible to compute the

theoretical absolute values, therefore we will consider the main

property of Theorem 3, i.e. (Wi−Wj) → (aj−ai)/b. Table IV

shows the results obtained for the additive scheme. The second

column shows the difference between the coefficients ais and

the last column shows the difference between the mean waiting

times, showing a good match. We obtained similar results with

different settings (service time distribution, distributions of the

churn, different values of Q). This means that, even for general

distributions, the single server queue model represents a good

approximation of the system.

Once tested that the model maintains the properties for

the general case, we have performed a new measurement

campaign with a modified aMule client. In particular, we have

implemented the additive scheme by modifying the computa-

tion of the instantaneous priority, i.e., Eq. 1: the instantaneous

priority is set to:

qj(t) =
(

t− Tarrival

)

+ fp · Cj(t) · α (9)

We have not modified the values of the coefficients Cj(t),
but we have introduced a parameter α to differentiate better the

classes. In particular, we set α = 20. The value of fp ·Cj(t)·α
corresponds to the coefficient ai in Eq. 2. Since the default

value of fp is 0.7, and the minimum and the maximum values

of Cj(t) are 1 and 10 respectively, then the minimum and the

maximum values of ai are 14 and 140. In general, class i will

have coefficient ai = i · 14, i = 1, . . . , 10.

The measurement setup is similar to the one used for

the proportional case (cf. Sec. V). In particular, we have a

server bandwidth equal to 360 kbit/s. We have tested only

Q = 1 since, as already noted, the value of Q does not affect

the proportional or differential properties. Table V shows the

measurement results. For each class, we show the value of the

coefficient ai, the mean waiting time (in minutes) with the

95% confidence interval, and the expected mean computed

according to the main property of Theorem 3. In particular,

we have used class 1 as reference, and we have computed the

mean waiting time as Wi = W1 + a1 − ai.
Also in this case, we can observe a good match between

measurements and theoretical values, especially considering

the difference between class 1 and 10. The small number of

samples that we had in these experiments explains the wider

confidence interval values when compared to the results of

previous experiments (Table III).

In a generic uncontrolled environment, the additive scheme

is then able to provide service differentiation that depends

solely on the parameters of the incentive scheme.
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TABLE V
MEASUREMENT RESULTS WITH BANDWIDTH 360 KBIT/S AND DIFFERENT

BUFFER SIZES.

Mean (minute) Expected

Class ai # samples with 95% Conf. Int. Mean Error

1 14 3431 365.7 ± 5.3 - -

2 28 12 286.8 ± 23.57 351.7 64.9

4 56 11 291.3 ± 22.7 323.7 32.4

10 140 63 245.4 ± 14.91 239.7 5.7

D. Discussion

The proposed additive scheme has some benefits – it avoids

the heavy tails in the mean time spent in the system –

but it has also some drawbacks. In a peer-to-peer system

it is difficult to distinguish between a free-rider or a newly

arrived user without the help of additional components (e.g.,

a reputation system for identifying free-riders). A scheme that

tries to improve the performance of a newly arrived peer will

automatically help free riders.

The question then becomes if the gain that may come

from newly arrived users (if they can be involved in the

exchange faster than the actual scheme) is greater than the

cost of providing resources to free-riders. This remains an open

question that is out of the scope of this paper.

From our experience, we believe that the additive scheme

is a actually a better option: in [25] the authors show that in

eMule many users are willing to contribute to the system,

therefore providing a better service to newly arrived users

helps in spreading the content and alleviate the burden on

other users.

Despite the application of the additive scheme to eMule, the

main theoretical results provided in Sect. VI-B can be applied

to other context, i.e., system with time-dependent scheduling

disciplines under heavy traffic, where the problem of free-

riders may not be present – e.g., job scheduling in operating

systems.

VII. RELATED WORK

Incentives in P2P systems have been the subject of many

studies in the past few years – see [26], [27], [28] and the

references therein. Such studies are focused on BitTorrent.

There are some notable exceptions [29], [30], [31] that focused

on eMule. In [29] the authors analyze the effect of incentives

on the download time; nevertheless they use a simplified model

for the credits assigned to peers, and they do not focus on the

relation of the waiting times of the requests as we do in our

work. The aim of the work in [30] is to improve the fairness in

terms of downloaded and uploaded content, while we consider

the waiting time of the requests and the proportional property

given by the scheduling discipline. The authors in [32] study

the average download time of the peers, without distinction

among different classes (with respect to the credits) of peers,

while our work is focused on such a distinction.

With respect to the model, single server queues with time-

dependent priority disciplines have been studied originally in

[19] for the linear case (i.e., r = 1), and in [20], [21], [33] for

more general cases (r > 0). None of such works considers a

finite buffer and closed systems, as we do in this work. Only

[22] considered the heavy traffic regime for the linear time-

dependent priority scheme (r = 1) and infinite buffer, so our

results for the proportional scheme represent a generalization

of the results in [22].

The heavy traffic regime for the linear time-dependent

priority (i.e., r = 1), and some of the properties related to

the proportional scheme, has been also studied within the

Proportional Delay Differentiation (PDD) framework [34],

[35]. As previously pointed out, we consider the general case

with any value of r > 0 and finite buffer.

Also the authors in [34] study the properties of the additive

scheme under heavy traffic, in the specific case with bi = b =
1; however, they do so using a simulation-based approach.

Instead, we consider the general additive scheme with bi = b
and we provide analytical results of its properties for closed

systems.

Finally, all the above works consider systems and applica-

tions with no preemption, i.e., a single server queue in which,

once a request has been scheduled, it will be served before any

other request will be considered for scheduling. In contrast, we

provide results also for the preemptive work conserving case.

VIII. CONCLUSION

In this work we considered the incentive scheme adopted by

eMule / aMule, and studied its impact on the application by

modeling it as a time-dependent priority discipline. We showed

that service differentiation – that is, peers are granted upload

slots as a function of their contribution – is achieved with a

sophisticated combination of a “tit-for-tat”-like discipline, that

materializes in credits assigned to peers, and a time-dependent

priority scheme, where priority is assigned to peers based on

their credits. Essentially, the incentive mechanism of eMule /

aMule takes into account both the level of contribution of a

peer and the time it has spent waiting to be served.

Our analysis showed that it is possible to derive simple

laws that govern the service differentiation achieved by a

range of priority mechanisms, including that of eMule. In

practice, the relative performance of peers can be determined

by configuring a handful set of parameters. We validated

our model and an extension thereof (which accounts for

general service rate and churn) both numerically and with a

measurement campaign on the live eMule / aMule network.

Moreover, we identified an area in which the current eMule

incentive scheme may be improved: instead of using a propor-

tional service differentiation, in which some peers suffer from

starvation, we proposed an additive scheme that mitigates this

problem. We analyzed and validated our scheme through nu-

merical simulations and an additional measurement campaign,

and showed that our approach maintains the property of the

proportional scheme in that a handful set of parameters is

sufficient to regulate service differentiation.

In conclusion, we remark that our model could be applied

to other applications – e.g., OCH services, scheduling systems

– that necessitate service differentiation, with or without the

component that accounts for the level of contributions of the

entities involved. However, this requires an in-depth analysis
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that we leave as future work. Other future works include the

evaluation of the system with multiple servers, in order to

examine the performance of the total download time using

multiple sources.

APPENDIX A

PROOF OF THEOREM 1

We consider a generic request coming from group p, and

its mean waiting time, Wp. We start from the P simultaneous

equations used to derive the time spent in the system defined

in [19]. Let Ni be the mean number of requests of group i in

the queue, and let fip be the expected fraction of such requests

which receive service before the newly arrived request from

group p.

Let Mi be the mean number of requests of group i which

arrive during Wp, and let gip be the expected fraction of such

requests which receive service before the generic request of

group p we are considering.

Given these definitions, for a generic class p we have:

Wp = W0 +

P
∑

i=1

Nifip
µi

+

P
∑

i=1

Migip
µi

. (10)

We need to compute the different parameters. In case of Ni,

we can use Little’s theorem, obtaining Ni = λiTi. In case

of Mi, when observing the system for Wp seconds, we see

Mi = λiWp arrivals. In both cases, Ni and Mi, the mean

arrival rate λi is equal to piµ (recall that the group of the new

arrival is independent from the group of the request that has

completed the service).

For the parameters fip and gip, we note that the derivation

obtained in [19] and [33] are based only on the Little the-

orem, which is still valid in our case with a closed system.

Therefore, we can use those results and arrive at the following

expressions:

fip =

{

(bi/bp)
1/r i < p

1 i ≥ p

gip =

{

0 i ≤ p

1− (bp/bi)
1/r i > p

Combining all the information, we obtain

Wp =

W0 +

p−1
∑

i=1

ρiWi

(

bi
bp

)1/r

+

P
∑

i=p

ρiWi

1−

P
∑

i=p+1

ρi

(

1−

(

bp
bi

)1/r
) . (11)

At this point, [19] invokes the Kleinrock’s conservation law

to simplify the expression. Since we are considering a closed

system, we analyze Eq. 11 without using the Kleinrock’s

conservation law. For the lowest priority group (p = 1), noting

that
∑P

i=2 ρi = ρ − ρ1, in case of a closed system (ρ = 1),

from Eq. 11 we obtain

W0 +

P
∑

i=1

ρiWi = b
1/r
1 W1

P
∑

i=1

ρi

b
1/r
i

. (12)

For the group with p = 2, Eq. 11 becomes, after some

manipulation,

W2 =

W0 +

P
∑

i=1

ρiWi − ρ1W1

(

1−

(

b1
b2

)1/r
)

1−

P
∑

i=3

ρi + b
1/r
2

P
∑

i=3

ρi

b
1/r
i

. (13)

The numerator of the fraction, with the help of Eq. 12, can be

transformed into

b
1/r
1 W1

P
∑

i=1

ρi

b
1/r
i

− ρ1W1 + ρ1W1

(

b1
b2

)1/r

=

b
1/r
1 W1

(

ρ1

b
1/r
2

+

P
∑

i=2

ρi

b
1/r
i

)

.

The denominator of the fraction can be transformed into

ρ1 + ρ2 + b
1/r
2

P
∑

i=3

ρi

b
1/r
i

= b
1/r
2

(

ρ1

b
1/r
2

+

P
∑

i=2

ρi

b
1/r
i

)

.

Equation 13 then becomes

b
1/r
2 W2 = b

1/r
1 W1. (14)

With the help of Eqs. 14 and 12 we can compute W3; repeating

this process for all groups we obtain the result of the first part

of the Theorem.

The absolute values of the Wis can be found considering

that the number of requests in the queue is constant (k) and

equal to the sum of requests belonging to each group, which

can be derived from Wi using Little’s theorem.

P
∑

i=1

λiWi = k (15)

Since Wi =
(

b1
bi

)1/r

W1, we can derive the expression for

W1 and, consequently, for all Wis.

APPENDIX B

PROOF OF THEOREM 2

In case of service with preemption, we consider the mean

time spent in the system by a generic request coming from

group p, Tp. With similar arguments used in Appendix A we

have the following relation:

Tp =
1

µp
+

P
∑

i=1

Nifip
µi

+
P
∑

i=1

Migip
µi

. (16)

It is easy to show that the values of Ni, Mi, fip and gip remain

the same as in Appendix A. We obtain:

Tp =

1

µ
+

p−1
∑

i=1

ρiTi

(

bi
bp

)1/r

+

P
∑

i=p

ρiTi

1−
P
∑

i=p+1

ρi

(

1−

(

bp
bi

)1/r
) . (17)

Comparing Eqs. 17 and 11 we notice that they have the same

structure, with 1/µ instead of W0, and Ti instead of Wi.

Thus the proof follows exactly the same scheme used in

Appendix A.
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APPENDIX C

PROOF OF THEOREM 3

We consider first the non-preemptive case: the starting point

remains Eq. 10, and the value of Ni, Mi are the same, while

fip and gip change.

Let’s assume that the newly arrived request (which we call

the tagged request) belongs to group p. As said before, fip
represents the expected fraction of group i requests (already

in the queue at the arrival of the tagged request) which receive

service before the tagged request. Clearly, if i ≥ p, then fip =
1. If i < p, the request arrived at time Yi seconds before the

tagged one, with Wi > Yi such that

bYi + ai = ap,

will receive service before the tagged request. So, the group

i request should arrive at most Yi = (ap − ai)/b seconds

before the tagged one. Let P [wi > t] be the probability that

the waiting time wi (whose mean is Wi) is greater than t, we

obtain

fip =











∫

∞

(ap−ai)/b

λiP [wi > t] dt i < p

1 i ≥ p

The parameter gip represents the expected fraction of group

i requests which arrive during Wp and receive service before

the tagged request. If i ≤ p, then gip = 0. If i > p, the request

will receive service if it arrives before wp, and Vi seconds after

the tagged request, with:

bVi + ap = ai.

Therefore, gip = λi min
(

(ai−ap)/b, wp

)

. Following the same

approach used in [21] it is possible to show that

min
(

(ai − ap)/b, wp

)

=

∫ (ai−ap)/b

0

P [wp > t] dt.

We then obtain

gip =











0 i ≤ p

λi

∫ (ai−ap)/b

0

P [wp > t] dt i > p

Combining all the information, we obtain

Wp = W0 +

p−1
∑

i=1

ρi

∫

∞

(ap−ai)/b

P [wi > t] dt+

P
∑

i=p

ρiWi+

P
∑

i=p+1

ρi

∫ (ai−ap)/b

0

P [wp > t] dt.

(18)

Note that
∫

∞

x

P [wi > t] dt = Wi −

∫ x

0

P [wi > t] dt.

In case of heavy traffic, as done in [21], we can assume that

wi > (aj − ai)/b, for any j, and approximate the integrals by
∫ x

0 P [wi > t] dt ≈ x. Equation 18 becomes

Wp = W0 +

P
∑

i=1

ρiWi −

p−1
∑

i=1

ρi
ap − ai

b
+

P
∑

i=p+1

ρi
ai − ap

b
.

(19)

Since ρ = 1, we obtain

Wp +
ap
b

= W0 +
P
∑

i=1

ρiWi −
P
∑

i=1

ρi
ai
b

= constant. (20)

In case of service with preemption, we consider the mean time

spent in the system by a generic request coming from group p,

Tp. With similar arguments used for the non preemptive case,

we arrive at the following relation:

Tp =
1

µp
+

P
∑

i=1

ρiTi−

p−1
∑

i=1

ρi
ap − ai

b
+

P
∑

i=p+1

ρi
ai − ap

b
, (21)

which leads to:

Tp −
1

µp
+

ap
b

=

P
∑

i=1

ρiTi −

P
∑

i=1

ρi
ai
b

= constant. (22)

Recalling that Tp −
1
µp

= Wp, we have completed the proof

(the absolute values of Wis can be obtained following through

with almost identical arguments used in Appendix A).
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