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Abstract—The endeavor of this work is to study the impact of content popularity in a large-scale Peer-to-Peer network, namely KAD.
Based on an extensive measurement campaign, we pinpoint several deficiencies of KAD in handling popular content and provide a

series of improvements to address such shortcomings.

Our work reveals that keywords, which are associated to content, may become popular for two distinct reasons. First, we show that
some keywords are intrinsically popular because they are common to many disparate contents: in such case we ameliorate KAD by

introducing a simple mechanism that identifies stopwords.

Then, we focus on keyword popularity that directly relates to popular content. We design and evaluate an adaptive load balancing
mechanism that is backward compatible with the original implementation of KAD. Our scheme features the following properties: (i) it
drives the process that selects the location of peers responsible to store references to objects, based on object popularity; (ii) it solves
problems related to saturated peers that would otherwise inflict a significant drop in the diversity of references to objects, and (iii) if
coupled with a load-aware content search procedure, it allows for a more fair and efficient usage of peer resources.

1 INTRODUCTION

He traffic generated by peer-to-peer (P2P) applica-

tions represents a significant portion of the Internet
traffic [1], [2]. KAD-based P2P systems have become very
popular: KAD is a Kademlia-based P2P routing system.
Kademlia [3] is a distributed hash table (DHT) that is
implemented in several popular P2P applications, such
as Overnet [4], eMule [5] and aMule [6], which involve
several millions of users worldwide [7]. Simplified ver-
sions have been implemented in Mainline BitTorrent [8],
Azureus [9] and Ares [10]. Thus it is important to un-
derstand whether the inner components of KAD, namely
the mechanisms used to publish and search for content,
are well designed and whether they can be improved to
obtain performance and efficiency gains.

The design of large scale distributed systems poses
many challenges due to the heterogeneity of its com-
ponents. Many systems based on DHTs have been pro-
posed to deal with heterogeneity, primarily focusing
on node churn. The dynamic nature of arrivals and
departures of peers, and the resulting heterogeneous
session times, represents one of the main, and better
studied, characteristics of P2P networks.
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Despite the vast amount of work on DHTs, little has
been said about the heterogeneity in terms of content
popularity. When dealing with content popularity, we
need to consider both objects and references. In a DHT
network, to simplify the search based on keywords,
nodes store not only objects, but also the references to
objects. While object popularity is determined by the
number of replicas that exist, reference popularity arises
for two reasons. Either the object (where the reference
points to) is popular, or the reference contains a popular
name or common keyword, such as “the,” “mp3,” or
“dvd,” which can be found in different object names.

In this work we investigate how KAD copes with object
and reference popularity. To this aim, we perform a set
of measurements. While the solution to reference popu-
larity due to common keywords is straightforward, han-
dling heterogeneous object popularity represents a major
challenge. The main problem is to balance the amount
of load each peer must support to store objects and
references in a dynamic way that adapts to variations in
content popularity. Current solutions use a statically pre-
set number of peers to achieve load balancing. Instead,
we propose an adaptive load balancing mechanism for
KAD-based systems.

1.1 Main Contributions

Our work makes several contributions, ranging from
the design of high performance measurement tools, to
system design and evaluation. This paper builds upon a
set of preliminary works [11], [12], extends their scope
and offers a consolidated, holistic view of popularity
management in KAD. Furthermore, we note that issues
related to content popularity affects not only KAD, but
many other P2P system: while the solutions presented



in this paper are specific to KAD, the main ideas -
e.g., exploiting content replication to enable an adaptive
scheme — can be applied to other systems as well.
Essentially, this work provides a reference toward the
informed design of P2P systems that must support very
popular content. In the following, we briefly summarize
the main contributions of our work.

Measurement tools: We designed and implemented two
measurement tools, a content spy called Mistral and an
instrumented aMule client, which contribute to a better
understanding of how KAD works. Mistral exploits for
its operation the so called Sybil attack [13], [14], [15] and
is, to the best of our knowledge, the first tool applying
the Sybil attack to KAD.

Measurement campaign: With our tools, we establish an
extensive measurement campaign to characterize content
popularity and the traffic associated to content pub-
lishing and searching. The results show that content
publishing generates ten times more messages than con-
tent searching; in addition, publish messages are, on
average, ten times larger than search messages. These
results have never been observed before: in [16], for
instance, the authors focus solely on query performance
metrics, whereas the focus of this work is on a complete
characterization of both, search and publishing traffic.
We have also studied how KAD manages popular
content. Our results indicate that a large fraction of
references to popular objects are lost due to peer sat-
uration. Moreover, our measurements identify the KAD
lookup procedure as one of the main culprits of the
load imbalance that occurs when references are placed
and retrieved. This is in contrast with previous work,
e.g. [17], where the authors consider routing to be the
main problem. Finally, our measurements show that
many of the keywords that compose the reference names
are meaningless stopwords, which constitute a substan-
tial overhead. Stopwords have been used for decades
in indexing and retrieval, but never for filtering the
searches in P2P systems. As such, in this work we
study means to reduce the publishing overhead without
reducing the retrieval success rate of the KAD system.

Load balancing: We design a load balancing scheme that
selects the peers used for storing references as a function
of the object popularity. Our aim is to maintain backward
compatibility: as such, our design does not alter the stan-
dard KAD protocol. The improvements we propose only
modify the algorithms for search and publish executed
by the peers. Despite the many papers on load balancing
in P2P systems (see Sect.2.3), our proposal is the first
adaptive load balancing scheme for KAD. Moreover, we
improve the content search procedure of KAD to better
exploit reference replication. Our goal is to decrease
the burden imposed on few peers by the current KAD
implementation and spread the load more evenly.

Evaluation: We evaluate our load balancing and search
schemes using a trace-driven simulator, which can repro-
duce realistic peer arrivals and departures; our results

show that our load balancing scheme is effective in dis-
tributing the load among peers, and the search procedure
is able to find objects referenced by many peers.

2 BACKGROUND AND RELATED WORK
2.1 The Kademlia DHT System

KAD is a DHT protocol based on the Kademlia frame-
work [3]. Peers and objects in KAD have an unique
identifier, referred to as KAD ID, which is 128 bit long.
The KAD IDs are randomly assigned to peers using a
cryptographic hash function. The distance between two
entities — peers, objects — is defined through the bitwise
XOR of their KAD IDs.

The basic operations performed by each node can be
grouped into two sets: routing management and content
management. Routing management takes care of popu-
lating and maintaining routing tables: in particular, the
maintenance phase updates and rearranges each entry —
which we refer to as contacts — of the routing table. A
peer stores only a few contacts to peers that are far away
in the KAD ID space and increasingly more contacts to
peers closer in the KAD ID space. If a contact points to a
peer that is offline, we refer to it as stale. The routing
management is also responsible for replying to route
requests issued by other nodes during the lookup phase
(Sect.2.2). In practice, a route request contains a target
KAD ID and the desired number of contacts (usually
two or four). A node that receives a route request for
target T replies with contacts in its routing table that
are the closest to T'. The details on the process of filling
the routing entries can be found in [7]. As reported in
[18], routing tables contain many entries such that, on
average, 2-3 hops are sufficient to reach a target.

Content management takes care of publishing the
references to the objects a peer has, as well as retrieving
the references to the objects a peer is looking for. KAD
implements a two-level publishing scheme; a reference
to an object comprises a source and W keywords (see
Appendix A.1, Fig.7 for an example):

o The source, whose KAD ID is obtained by hashing
the content of the object, contains information about
the object and the pointer to the publishing node;

o Keywords, whose KAD IDs are obtained by hashing
the individual keywords of the object name, contain
(some) information about the object and the pointer
to the source.

In the following, when we refer to source, keyword, or
target, we always mean the corresponding KAD ID. We
call publishing node the node who owns an object and
host nodes the nodes that have a reference to that object.
When a node searches for a content, it first searches
the keywords that describe the content, obtaining the
pointers to different sources that contain such keywords.
It then selects a source and contacts it to obtain the
information necessary to reach the publishing node.

Since references are stored on nodes that can disappear
at any point in time, the publishing node pushes multiple



copies (the default value is 10) of each reference — source
and keywords — on different host nodes. An expiration
time is associated with each reference — 5 hours for a
source and 24 hours for a keyword — after which the
information on the host node is removed.

2.2 Content Management

Content management procedures, such as publishing
and searching, use a common function called Lookup.
Given a target KAD ID, the Lookup procedure builds
a temporary contact list, called candidate list, which
contains the contacts that are closer to the target. KAD
creates a thread for each keyword and source, so that
the lookup is done in parallel for the different target
KAD IDs. The list building process is done iteratively
with the help of different peers. Here we summarize
the main steps of the Lookup procedure: for a detailed
explanation, we refer the interested reader to [19][20].

Initialization: The (publishing or searching) peer first
retrieves from its routing table the 50 closest contacts
to the target and stores them in the candidate list. The
contacts are sorted by their distance, closest first. The
peer sends a request to the first & = 3 contacts, asking
for B closer contacts contained in the routing tables of
the queried peers (in case of publishing 5 = 4, while in
case of searching 5 = 2). Such a request is called route
request. A timeout is associated to the Lookup process:
if the peer does not receive any reply, it can remove the
stale contacts from the candidates, and it can send out
new route requests.

Processing Replies: When a response arrives, the peer
inserts the 8 contacts it has received into the candidate
list in case they are not already present. Given the
updated candidate list, a new route request is sent if,
among the « closest to the target, there is a new contact
that is closer to the target than the peer that provided
that contact.

Stabilization: The Lookup procedure terminates when,
for at least three seconds, no response arrives, or the
responses contain contacts that are either already present
in the candidate list or further away from the target than
the top « candidates. At this point no new route request
is sent and the list becomes stable.

In every step of the Lookup procedure, only the peers
whose KAD IDs share at least the first eight bits with
the destination are considered: this is referred to as
the tolerance zone. When the candidate list becomes
stable, the peer can start the publishing or searching
process. In case of publishing, the peer sends a ‘store
reference’ message to the top ten candidates in the
candidate list. As a response to each publishing mes-
sage, the peer receives a value called load. Each host
peer accepts up to a maximum number (default set to
50,000) of references for a given keyword. The load
is defined as the ratio between the current number of
references published for a given keyword on a peer and
the threshold value of 50,000 (times 100). It is important

to note that, although host nodes with a load equal to
100 discard publishing message they receive, they nev-
ertheless return an acknowledgment to the publishing
nodes. As a consequence, when a node is located in a
hot spot for a popular keyword, the threshold of 50,000
possible references can be reached easily and any further
references (even to rare keywords) will thus be lost.

In case of search, peers send a ‘search reference’
message to the first candidate in their list. If the response
contains 300 references (sources), the process stops; oth-
erwise, peers iterate through their candidates until the
threshold of 300 sources is reached. Since host nodes
may store up to 50,000 references for a given keyword, a
reply message includes 300 references drawn randomly
from the whole set stored by the peer.

2.3 Related Work

In Sect.5 we propose essentially two solutions for deal-
ing with popular content: the use of stopwords, and an
adaptive load balancing scheme. Here we discuss the
related work on these two topics.

Stopwords have been used for decades in indexing
and retrieval, but never for filtering search results in
P2P systems. The works in [21], [22] and [23] provide
a general architecture that aims at building a full-text
search engine, while in our approach we do not intend
to support full-text search over the entire document;
instead, our goal is to enhance the indexing process for
file names in P2P systems.

The paper of Qiao and Bustamante [16] presents mea-
surement results from a study of Gnutella and Overnet
(a precursor of KAD). Among other things, the authors
evaluate the performance of queries in Overnet. Of
particular interest to our work are their results on queries
to popular keywords. In our work, we consider the
publishing load (instead of the load due to the queries),
which represents the majority of the overhead traffic.

Load balancing for DHT systems has been extensively
studied in the past: here we consider the most represen-
tative works. Many solutions [24][25][26] focus on the
balancing of the responsibility zone, assuming a load
uniformly distributed in the identifier space, while we
consider the problem due to skewness in the popularity
of the objects.

Many works based on the concept of wvirtual servers
[27][28] have been devised to cope with heterogeneity
of peer resources and content popularity: such schemes
have a fixed number of possible peers for balancing
the load. Instead, in our solution the content popular-
ity itself drives the number of peers selected to store
objects, and as such this number is not fixed a-priori.
The work in [29], which is focuses on KAD, also uses
a fixed maximum number of peers for load balancing.
Moreover, such a mechanism introduces new messages
that require a modification to the original KAD protocol.
Our solution, instead, does not change the KAD protocol.

Other works [30][31] consider the transfer of the con-
tent from overloaded peers to underloaded ones (content



migration): load balancing is initiated by host nodes,
and incurs in a high overhead. In our scheme, the load
balancing is performed by the publishing peers, without
any additional overhead with respect to the basic KAD
scheme. The authors in [17] propose a load balancing
scheme which is not adaptive, and does not avoid loss
of information.

3 MEASUREMENT TOOLS

In what follows, we provide an extensive set of mea-
surement results that explain how content management
in KAD works. To this aim, we designed a series of tools
to collect a vast amount of information on KAD.

Instrumented client: We have instrumented an aMule
client to log the internal state of its KAD implementation.
For instance, it detects the candidate list built for each
published reference; or it records all the management
messages (publishes, searches, replies).

Spying for Content with Mistral: Mistral exploits for its
operation the well known Sybil attack [13], [14], [15]. It
introduces a large number of “fake” peers, the sybils, all
controlled by us and executed on a the same machine.
If positioned in a clever way in the KAD ID space, the
Sybils can gain control over a fraction of the network or
even over the entire network. In particular, the Sybils can
intercept almost all the management traffic and provide
forged replies. In our case, we have used the Sybils for
recording passively the management messages (publish,
search). The interested reader can find the details of
Mistral design in Appendix A.2.

Other tools: During our measurements, we have used a
KAD crawler, called Blizzard, which has been presented
in [7]: we report here the main features of the crawler
for the sake of clarity. Blizzard logs the IP address and
the KAD ID of each peer it visits, and whether or not
that peer responded to the crawler. The implementation
of Blizzard is simple: the crawler starts by contacting a
“seed” peer in our control to receive an initial set of
peers to contact; subsequently, using breadth first search,
it queries known peers to discover new peers to contact.
Once the crawl terminates, results (i.e., mainly log files)
are written to disk.

4 MEASUREMENT RESULTS

We now study the KAD publishing procedure by ob-
serving the traffic generated due to publish messages.
First, we observe — for a period covering 24 hours — the
traffic in a set of eight-bit zones with Mistral (Sect.4.1).
We then analyze in detail the outcome of the candidate
list building process in Sect.4.2. Since KAD publishes ten
copies for each reference, we analyze in Sect.4.3 where
these replicas are placed, and in Sect.4.4 we show how
the traffic varies over time.

4.1 Analysis of the Traffic

Given a reference, KAD publishes it on peers whose
KAD ID shares at least the first eight bits with the
KAD ID of the reference (tolerance zone). Spying on the
entire KAD ID space would be impractical. Nevertheless,
the different tolerance zones are independent, and it is
sufficient to focus on some sample zones to gain some
insights into KAD.

Hence, our measurements focus on 20 different eight-
bit zones of the KAD ID space, and cover a 24 hours
period. During this time, on average, 4.3 million publish
messages, 350,000 search messages and 8.7 million route
messages were recorded. The publish messages con-
tained 26,500 different keywords per zone, most of them
in Latin letters, and 315,000 distinct sources, i.e., 315,000
distinct files. Among the 65,356 Sybils we introduced, on
the average 62,000 were hit by search or publish requests.

The hash values of the sources and of the keywords are
uniformly distributed over the KAD ID space. Similarly,
we know from our earlier measurements with Blizzard
[7] that the peer IDs are roughly uniformly distributed
across the KAD ID space.

This property allows us to estimate the total number
S of sources (files) in the system by simply counting the
number of sources in a zone. Let Sp4;+ be the number of
sources counted in an eight-bit zone, and S = 256 Spart
the estimate for the total number of sources in the KAD
system. Using Chernoff bounds (see [32] Chapter 4) we
tightly bound the estimation error. Indeed, Prob(|S—S8| <
45000) > 0.99, which means that our estimate S has most
likely an error of less than 3% for a total number of at
least 80 million sources.

The most important result that we observed is that,
independently from the zone, our measurements see
ten times more publish messages than search messages.
This result is confirmed by recent measurements using
an instrumented aMule client (see Sect.4.4). Moreover
a publish message is ten times bigger than a search
message, since it contains not only a keyword but also
metadata describing the published content. This is true
also with the current version of KAD, since the message
format has not been changed.

Next, we focus on two particular zones. Fig. 1 shows,
the number of times a keyword publication is observed
versus the ranking of the keyword for the two eight-bit
zones Oxe3 and 0x8e, where Rank 1 is the most popular
keyword. If each curve were a straight line, the popu-
larity of keywords would follow a Zipf-like distribution
(i.e., the probability of seeing a publication message for
the i’th most popular keyword is proportional to 1/i%).
We estimate o = —1.63, which is equal for all zones.

The zone 0xe3 contains the keyword “the” whereas
the zone 0x8e contains less popular keywords. The
keyword “the” in zone Oxe3 accounts for 30% of the
total load in the zone. In total 1,518,717 publish requests
with the keyword “the” hit our Sybils in 24 hours.
In contrast, in zone 0x8e, the most popular keyword



accounts only for 5% of the load. In this zone keywords
are nearly equally popular. In Appendix A.3 we show
similar results for the searching process.

——zone 0xe3
Ls ——2zone 0x8e
— o168

#publications

rank

Fig. 1. The number of publications per keyword for two
different zones.

4.2 Accuracy of the Candidate List

We have shown that popular keywords account for most
of the load in KAD. For this reason, we need to further
investigate how KAD handles popular objects: thus, we
now consider the basic mechanism used for both content
publishing and search, i.e., how the candidate list is
created.

The candidate list represents a snapshot of the cur-
rent peers around a target that the publishing (or the
searching) peer builds with the help of other nodes.
In XAD, the building process stops (i.e., the candidate
list is considered stable) when the peers do not receive
any contact closer than the top « (a« = 3 by default)
candidates for three consecutive seconds. This means
that peers focus on the top positions of the candidate
list, while the other positions may not be accurate.

Let £ be the list of peers whose KAD IDs share the
first 8 bits with the KAD ID of a given target; £ is sorted
according to the XOR distance to the target, closest
first. Let £’ be the candidate list built by the Lookup
procedure. The list £’ is a (ordered) subset of L. For
simplicity, instead of the elements itself, £’ contains the
rank order of the elements as they appear in L.

In order to evaluate the accuracy of £’ with respect
to £, we set up a measurement campaign using Bliz-
zard. We place a content in the shared folder of an
instrumented aMule client: this triggers the publishing
process, whose related messages (requests and replies)
we register. In the meantime, we crawl with Blizzard
the KAD ID zone corresponding to the keywords and
source of the content. The publishing process and the
crawling process last for two minutes, making the ef-
fect of churn negligible. With the output of the crawl
we build £, while with the logs of our instrumented
client we build £'. We repeat this process several times,
for different keywords and sources, in order to gain
statistical confidence. The detailed results are shown in
Appendix A.4. Here we report some examples of the
outcome of the experiment in order to explain some
interesting observations — see Table 1 (basic Lookup). In

the first row, the peers returned by the basic lookup for
ID A are in increasing distance from A: the closest, 2nd
closest, 4-th closest, etc. peer.

TABLE 1
Examples of £'.

ID rank order for basic Lookup

1 2 4 5 6 21 3 95 187 310
10 12 15 58 84 134 456 1232
2 6 13 14 39 40 43 77 8 716
ID rank order for 3-Lookup

3 6 9 10 11 12 15 20 27

E |1 2 4 6 7 8 9 10 11 13

1 4 6 7 8 10 13 14 17 19

[s¢}
_
(O8]

While the first few positions contain peers that are
very close to the target ID, the following peers are far
from being among the ten closest ones.

Note that the authors in [17] impute this inaccuracy on
the routing management, while our experiments indicate
that the main issue lies in the Lookup procedure. To
support this claim, we report here our experience during
the tests, in which we have modified the values of some
constants in the Lookup procedure to understand their
role in the lookup process. During the Lookup procedure
the peer asks for 8 closer contacts contained in the
routing tables of other peers. By increasing the value of
B, it should be possible to increase the accuracy of the
candidate list. For instance, we set 8 = 16 and obtained
the results labeled as “g-Lookup” in Table1 (see also
Fig.9 in Appendix A.4), noticing an increased accuracy
in the last positions!.

4.3 Load Distribution

In Sect.4.1 we have shown the measurements of the
publishing and search traffic in an entire zone. It is
interesting to understand how this traffic is distributed
within a zone. Since the publishing traffic represents the
majority of the traffic, we focus on it, and we consider
some representative zones with popular keywords. For
this experiment, we will not use the Sybils, since we
study the impact of popular keywords on real peers.

The experimental methodology is as follows. Given an
eight-bit zone, with the help of Blizzard we obtain the list
of all the peers that are alive (stale contacts are removed).
We send a publish message to all peers, obtaining as
a response the load from each of them. The collection
of all the replies gives us a snapshot of the current
load distribution. We consider two types of popular
keywords: keywords whose popularity may change over
time, such as “adele,” and static popular keywords, i.e.,
keywords that are usually present in the file names, such
as “the” or “mp3.”

1. The modification of the parameter 5 has been done to test if it is
possible to increase the accuracy, therefore we have not evaluated the
impact of 8 on the traffic generated by the application; in our opinion,
the Lookup procedure would need a complete redesign, which is out
of the scope of this paper.



Fig.2 shows the results for two popular keywords
(“dvdrip” and “adele”). We tested these and other key-
words on different days and hours, obtaining similar
results. The x-axis contains the number of bits that the
different peers have in common with the target. We send
a publish message and obtain a response from all peers
that are alive in the 8-bit zone: since the KAD ID are
approximately uniformly distributed over the KAD ID
space, the peers with b bits in common with the target are
twice the peers with b+1 bits in common with the target.
Given a number of bits b in common with the target,
we order the peers according to their XOR-distance to
the target; for clarity of presentation, each bar in the
figure represents the load of approximately 8-10 peers
(the value is the mean load of the peers).
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Fig. 2. Load distribution for two popular keywords.

For very popular keywords, not only the peers closest
to the target are overloaded, but there are many peers
far from the target that has a significant load. This is due
to the inaccurate candidate list explained in Sect.4.2.

As an example of a keyword with low popularity,
in Fig.3 we show the distribution of the load of the
keyword “dexter,” where the replicas are roughly con-
centrated around the target — number of bits in common
with the target is greater than or equal to 16. Neverthe-
less, some replicas are published on peers with KAD IDs
that share only 13 or 12 bits with the target.
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Fig. 3. Load distribution for the slightly popular keyword.

4.4 Diversity

As discussed above, for popular keywords (i) a consid-
erable number of references are scattered over the 8-bit
zone, and (ii) the closest peers to the target are over-
loaded. The first problem is related to the inaccuracy of
the candidate list. We now focus on the second problem,
i.e. the impact of overloaded peers. The references a peer

can hold for a given keyword is limited to a maximum
value (50,000): what happens when this limit is reached?
A host peer that has reached its maximum number of
references, replies positively but actually discards the
reference. Therefore, all the following publishing traffic
represents a waste of resources (download and upload
bandwidth, processing power).

To understand how fast the limit can be reached, we
show the traffic recorded by an instrumented aMule
client placed close to two popular keywords. Fig.4 pro-
vides the load (ratio between the number of references
and 50,000, times 100) and the frequency of the pub-
lishing requests over time. Note that a single publishing
message may contain multiple publishing requests, since
a keyword may be associated with many files.
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Fig. 4. Load (left) and publishing frequency (right) over
time registered by our instrumented client.

Our measurements show that the host peers located
close to a popular keyword saturate in only a few
minutes after joining the system; upon saturation, all the
publishing messages are wasted traffic. In particular, the
traffic amounts to 3.5 publishing messages per second,
and 0.3 searching messages per second. Note that this
result confirms the main finding of Sect. 4.1, i.e., there are
ten times more publish messages than search messages.
The corresponding average incoming traffic is approxi-
mately equal to 30 kbit/s.

In case of very popular keys, there is also a problem in
the search phase, which we refer to as lack of diversity.
The peer that searches will start querying the top-ranked
peers in its candidate list. If it obtains in return at least
300 references, the search stops. For popular objects, the
first peer in the candidate list will already have more
that 300 references. Therefore, even if the references are
replicated ten times, the search peers will contact only
the top ranked candidate. This implies that all the peers
that did not succeed to publish on the peer closest to the
target will later not be contacted and therefore will not
contribute their resources for the download of the these
popular objects.

4.5 Summary of the Issues

Our measurements show that there are ten times more
publish messages than search messages: since most of
the traffic is due to popular content, we should focus on
the management of the references to popular objects. For
such references, our analysis has highlighted different



issues on the current KAD procedures related to content
publishing. In particular, in case of popular objects,

o some peers residing in a hot spot must sustain a
high publish and search traffic;

o references are lost when they are published on
overloaded peers that discard them;

o the search phase considers mainly the peer closest to
the target, without considering that references may
be published on other peers.

KAD has been designed without considering skewed
content popularity. Note that a naive solution in which
we increase the maximum number of stored references
on peers would not solve the above mentioned issues.
As a general guideline, the design of the publish process
should consider its counterpart, the search process. Only
a joint design will allow to address aspects such as
diversity or dynamic load balancing.

5 SOLUTIONS

Keyword popularity occurs for two reasons: Either the
object (the name of which contains the keyword) is
popular, or the keyword itself is a common keyword
that can be found in different objects. Examples of the
latter case are the keywords “the” or “mp3”: most of
the files contain these keywords, but such keywords do
not characterize or describe the content of the files. If the
system avoids publishing common keywords, the search
procedure is marginally affected. In Sect. 5.1 we show the
straightforward solution for the common keywords is to
use stopwords. While stopwords have been known for
decades in the indexing and retrieval community, they
have never been used for filtering search in KAD.

In Sects. 5.2 and 5.3 we focus on file popularity, which
may be variable over time. Despite the many works on
load balancing in P2P systems, this is the first adaptive
load balancing scheme targeted to KAD.

5.1

The simplest solution for dealing with the common
keywords is to ignore them. This approach requires the
identification of the so called stopwords, i.e., words that
can be filtered out with no impact on the usability of
the system. Examples of such words are: “avi,” “mp3,”
“the” or “video.” A more exhaustive list can be found
in Appendix A.5, Table 2.

We propose to treat all the keywords contained in
Table 2 as stopwords. The eight-bit zones that contain the
KAD ID of these stopwords will see a decreased traffic.
For instance, zone Oxe3 contains the keyword “the” that
account for 30% of the total traffic (cf. Sect.4.1), therefore,
with the introduction of stopwords, the zone will see a
30% decrease in the publishing traffic.

From the implementation point of view, the solution
is simple: as described in Sect.2.2, when a Publish or
Search is performed, KAD creates a thread for each key-
word. KAD should check if the keyword is a stopword

Common Keywords

before launching the thread. The list of stopwords should
be sufficiently stable so they can be included in the
source code. Alternatively, the stopword list could be
dynamically updated as it happens for the bootstrap
nodes, where websites maintain the list that can be used
by new clients to find nodes from which to bootstrap the
connectivity.

5.2 Adaptive Content Publishing

In this section, we consider objects with a time-varying
popularity, and show how the system should manage the
references in order to avoid the problems summarized
in Sect.4.5. We assume that stopwords are managed as
discussed in the previous section, therefore the popular-
ity of a reference is only due to the popularity of the
object the reference points to.

In Sect.4.2 we have analyzed the accuracy of the
Lookup procedure. Even if the inaccuracy of the can-
didate list may seem a problem, this apparent draw-
back can be exploited to perform load balancing: the
probability that two publishing peers have the same
candidate list at the same time is low, thus they publish
their replicas on different peers. However, this is true
only starting from the third or fourth candidate position
onward, while usually the first three or four positions
are mostly identical for the different publishing peers.

Considering the basic KAD scheme, we have shown
that the accuracy of the last positions in the candidate
list is extremely low (the tenth candidate corresponds to
the thousandth peer from the target). Instead, with the
B-Lookup procedure we have a candidate list that is still
inaccurate, but with a better accuracy with respect to the
basic KAD. Since it is simpler to manage the system with
a candidate list that is inaccurate, but the inaccuracy is
limited, we assume the use of the §-Lookup procedure.

We then focus on the publishing and the search pro-
cedures to perform an adaptive load balancing based
on object popularity. We call our proposed schemes
LA-Publish (load-aware publish) and LA-Search
(load-aware search) respectively. We modify only the
algorithms, without introducing new messages or modi-
fying the existing ones, so that our solution is completely
backward compatible with the current KAD protocol. In
any case, the LA-Publish procedure does not add any
additional overhead with respect to the current KAD
Publish procedure. Moreover, for non-popular objects,
the LA-Publish procedure behaves exactly as the cur-
rent KAD Publish procedure.

Given the candidate list produced by the Lookup
procedure, the publishing procedure tries to publish
ten replicas of the reference. The basic idea in the
LA-Publish procedure is as follows: we use the value
of the load (which is returned by a peer as a response
to a publish) as an indication of popularity, and we
drive the selection of the candidates according to it. In
case of popular objects, instead of trying to publish the
references on the host peers closest to the target, the



Procedure IA-Publish
Data: [ist: candidates /x peers ordered by their

distance to target */
Data: int: curr /» current candidate x/
Data: bool: direction /» used to decide how to
iterate through the candidates */
Data: [ist: thresholds /* for deciding if an
object is popular or not */
Data: int: maxLoad
1 Initialization:
2 curr = 9;
3 direction = backward;
4 maxLoad = 80;
5
6 fori<+ 0to 9 do
7 contact < candidates.get(curr);
8 load « publish(contact);
9 if curr < 10 and load > thresholds.get(curr) then
10 direction = forward;
11 curr = 9;
12 if curr > 10 and load > maxLoad then
13 | curr + = 10;
14 if direction == forward then
15 | curr++;
16 else
17 | curr——;

publishing peer should choose candidates progressively
further from the best target.

In order to know the load of a host peer, the publishing
peer needs to publish the content on that host: since
we want to avoid the risk to overload the closest host
node, instead of publishing starting from the first peer
in the candidate list, the publishing process should start
from the tenth candidate peer. If the load is below a
certain threshold, the publishing peer publishes the next
replica on the ninth candidate, and so on. Otherwise it
considers the candidates with a rank higher than the
tenth candidate peer.

As input of the LA-Publish procedure, we provide
a vector of thresholds used to identify if the object is
popular. Such thresholds are set only for the first ten
positions, and they increase as we move towards the
top ranked candidates. In particular, let Dyax and Dpin
the thresholds for the first and the tenth candidates,
respectively. For simplicity we assume that the threshold
increases linearly with the rank of the candidates, i.e.,
the threshold for the ith candidate, D;, i = 0,1,...,9, is
given by D; = Dyax — (Dmax — Dimin)/9.

If the publishing peer finds a candidate with a load
greater than the threshold, then it publishes the remain-
ing replicas starting from the eleventh node onward.
Note that, if the load is above the threshold at the begin-
ning of the publishing process, the object is considered
very popular, and all the remaining replicas will be more
scattered (since the publishing node will consider up to
the 19th candidate). If the threshold is never exceeded,
the publishing node publishes on the top ten ranked
peers, as in the current KAD implementation.

If the object is extremely popular, then the candidates

that usually occupy the 11th position up to the 19th
position may become overloaded, too. In this case, we
have introduced a maximum value of the load, equal to
80: if this value is reached, the LA-Publish procedure
considers the candidates from the 20th position up to
the 29th, and so forth. In this way, as the number of
publishers increases, we add more and more peers for
storing their references.

We would like to stress the fact that the LA-Publish
procedure represents a modification of an existing (and
widely deployed) system: therefore we cannot introduce
a set of mechanisms or messages that would facilitate the
load balancing process — for instance, we may introduce
a message for knowing the load of a host peer without
the need to publish on it. Our contribution lies in the
design of a load balancing scheme the is backward
compatible since it used only the existing KAD messages.

5.3 Load Aware Content Search

In the current KAD implementation, when a peer is
looking for references to an object, it stops the search
process as soon as it receives at least 300 references.
A single reply may contain 300 references, therefore a
single query may be sufficient. In case of popular objects,
it is possible to find peers that hold more than 300
references even if they are not close to the KAD ID of
the target. Such peers are rarely used, with a consequent
decrease in diversity.

The simplest solution to overcome this limitation is
to introduce some randomness in the search process.
Given the candidate list, instead of considering the first
candidate, the searching node should pick randomly one
of the first ten candidates. If the answer contains 300
references, the process stops. Otherwise, the searching
node needs to pick another candidate. If it does not
receive enough references, it falls back to the basic KAD
Search scheme, i.e., it starts from the first candidate.

For a detailed description of the load-aware search
procedure (LA-Search procedure) please refer to Ap-
pendix A.6.

5.4 Discussion

For additional comments on different aspects related to
the proposed LA-Publish and LA-Search procedures,
including security considerations, parameter settings,
and peer churn, please refer to Appendix A.7.

6 NUMERICAL RESULTS

In order to assess the effectiveness of the load-aware
scheme, we take a simulation approach: an evaluation
based on modified real peers is not possible since it
does not allow to control some of the key parameters
of our experiment: For instance, the generation of the
publishing traffic for a popular keyword requires a high
peer arrival rate, each of them with a different KAD
ID and a differentiated candidate list building process;



such a process needs different initial neighbor set, since
starting from the same set of neighbors may result in
correlated candidate lists, which in turn affects the pub-
lishing and the searching process. Therefore we decided
to implement a custom event-driven simulator [33].

Our simulator has two main characteristics: (i) the
peer dynamics (arrival and departure) are realistic, since
they follow the publicly available traces collected over
six months from the KAD network [34]; (ii) the candi-
date list has the same accuracy as in the current KAD
implementation, since we have used the results of the
measurements presented in Sect. 4.2 to design this aspect
of the simulator.

The interested reader will find the details of the sim-
ulator we developed and the settings in Appendix A.8.

We validate our simulator by reproducing the basic
KAD scheme, and taking snapshots of the system at
different times, for different popularity of the keywords.
In particular, we consider a publishing rate with mean
equal to 50, 5 and 0.5 publishing requests per second
for objects with high, medium and low popularity, re-
spectively?. Fig.5 shows the results for the three cases.
Thanks to the high number of peers in the used traces, all
the simulations have always shown the same qualitative
behavior. The high and low popularity results match the
corresponding ones obtained with our measurements (cf.
Figs.2 and 3).
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Fig. 5. Load distribution with the basic KAD scheme.

The simulator also tracks the amount of wasted mes-
sages for a given interval, set to 24 hours, i.e., equal to
the period of validity of the references. The percentage
of references lost with respect to the total number of
published messages is equal to 35.8% in case of objects
with high popularity (no publishing requests have been
lost in the other cases). Even if these results cannot be
compared with the real measurements (where we had a
single, always online, peer tracking the messages), they
can be used in comparison to the wasted messages in
case of adoption of the LA-Publish procedure.

2. The publishing rate is a random variable uniformly distributed
between £70% of the mean, as derived from measurements shown in
Sect.4.4.

With the same settings used in the basic KAD scheme,
we have tested our LA-Publish procedure. Fig. 6 shows
the results for the same keyword popularities used in
Fig.5. For objects with high and medium popularity, the
LA-Publish scheme is able to spread the references
on a higher number of peers with respect to the basic
scheme. Moreover, no publishing message has been dis-
carded, therefore, compared to the basic KAD scheme,
the LA-Publish scheme is able to improve the diversity
of the references.

For non-popular objects, the LA-Publish proce-
dure behaves similarly to the basic KAD scheme: the
LA-Publish procedure is able to adapt to the popu-
larity conditions and spread the load accordingly.
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Fig. 6. Load distribution with our load balancing scheme.

Figs. 5 and 6 can be analyzed also under a different
perspective: consider an object whose popularity varies
over time, from low to high, due to a sudden increase of
interest in such an object. The three different popularities
may represent a snapshot of the evolution of the system.
In this case, we can see that the LA-Publish scheme is
able to involve increasingly more host nodes, balancing
at the same time the load among them, without losing
any reference. Instead, the basic KAD scheme, even if it
actually uses more host peers, shows a strong imbalance
among them, which results in lost references. If the
popularity variation goes from high to low, the fact that
references have an expiration time (after which they are
removed from the host peers) ensures that the load on
host peers far from the target will decrease.

We have also evaluated the performance of the search-
ing phase: the results shows that the LA-Search scheme
is able to obtain 300 references with slight increase
in the average number of queried peers. The detailed
description of the results can be found in Appendix A.9.

7 CONCLUSION

The popularity distribution of objects in a P2P network
is highly skewed. We developed Mistral, a content spy to
gain an overview of the content published and searched
in KAD. We have reported our findings from an extensive



measurement campaign on KAD, one of the largest DHT
currently deployed. Our observations show that the
publication process in KAD accounts for more than 90%
of the total network control traffic. Moreover we note
that the load is highly unbalanced among the peers. The
peaks of load are due to very popular keywords: among
them, meaningless stopwords can simply be excluded to
improve the overall system performance. For keywords
with popularity tied to the popularity of files, which may
vary over time, load balancing is necessary to ensure a
fair use of the available resources in the network. We
have proposed a solution that dynamically adjusts the
criteria used to select the number and the location of
peers responsible for storing the references, based on
their popularity. Working with KAD introduces a number
of constraints, for example, backward compatibility. As
such, our mechanism operates at the algorithm-level and
does modify the KAD protocol and the messages.

Our simulation results show that we can avoid the
loss of object references due to node overload, which
increases the diversity of the resources. Furthermore,
we evaluated an enhanced search procedure, based on
randomization, to exploit the increased diversity.

There are a number of possible future research direc-
tions stemming from our work. The Lookup procedure
can be re-implemented to increase the accuracy of the
candidate list produced by KAD clients. Additionally, our
load balancing mechanism can be improved if we allow
protocol modifications, so as to eliminate “redundant”
publish messages to infer load information.
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APPENDIX A
A.1 Two-level publishing scheme

KAD implements a two-level publishing scheme: a refer-
ence to an object comprises a source and W keywords. In
Fig.7 we show an example where the file (“the matrix”)
has to keywords.

Peer 11111

File the matrix
Source 00111
Keyword the 00010
Keyword |matrix 11000

Peer 00001 Peer 11001

Peer 00110

00010 keyword
the

11000 keyword
matrix

~y| 00111 source

source 00111 |- Y source 00111

peer 11111

Fig. 7. Sketch of the 2-level publishing scheme

The source, whose KAD ID is obtained by hashing the
content of the object (e.g., the file “the matrix” in the
figure), contains information about the object and the
pointer to the publishing node (e.g., peer 11111 in the
figure).

The keywords, whose KAD IDs are obtained by hash-
ing the individual keywords of the object name (e.g.
the keywords “the” and “matrix” in the figure), contain
(some) information about the object and the pointer to
the source.

A.2 Details on Mistral

Mistral introduces many “fake” peers, all controlled by
us and executed on a the same machine. The fact that
all Sybils are executed on the same machine has the
advantage that data collection is much easier.

Mistral creates a large number of Sybil peers in the
KAD network and propagates information about them
in order to “poison” the routing tables of the legitimate
peers. To do so, we first crawl KAD using Blizzard to
learn about the peers in the network. Next, Mistral sends
hello messages to the peers we have learned about. A
hello message is 120 bit long and includes the KAD ID
of the sender which can be arbitrarily chosen. Mistral
chooses at random the first 24 bit of the sender KAD ID
put in a hello message, while the 96 remaining bits are
always the same, thereby creating 2%* Sybils.

The routing queries that reach a Sybil node are always
answered with the KAD IDs of other Sybils. These KAD
IDs are closer to the target than the receiver of the query,
giving the querying peer the impression of approaching
the target. Once the requester gets close enough to the

target, it will stop looking for closer peer and will query
a Sybil for the content itself. Our Sybil will store the
search request and return a fake source entry that points
to our machine. As a consequence, when the real peer
tries to start to download it will not succeed.

With our tool, we retrieve routing and search requests
together with publish request messages. Publish requests
are especially interesting since they are much more
frequent than search requests. Whereas search requests
can only be issued by a human, publish requests are
automatically and regularly launched by the KAD clients.
Also, the publish information is richer than the search
requests: it includes the full file name, the KAD ID of the
source and a significant amount of metadata on the file.
The filename is tokenized and published on the part of
the DHT corresponding to the hash of each of its tokens
(that is, its keywords). The reply to a publish request
contains the load of the host peer. The Sybils will always
answer with a very low load to keep attracting more and
more publish requests.

An eight-bit zone contains the peers with KAD IDs
that agree in the first eight bits, thus each zone can the-
oretically contain 2'?° hash values. We actually observe
between 12,000 and 25,000 peers per zone. The entire
KAD network contains 256 eight-bit zones and between
3 and 5 million peers. It is possible to spy on one zone of
the KAD network by restricting the returned KAD IDs to a
certain prefix. We insert 65,356 (= 21°) distinct Sybils into
a zone by varying the bits 9-24 of the KAD ID to make
sure to catch at least one of the ten publish messages
for a keyword or a source and at least one of the three
search messages that are sent per user-initiated search.

The approach adopted by Mistral was possible until
May 2008. Starting with eMule version 0.49a and aMule
version 2.2.1, launching a Sybil attack is more difficult:
A peer will ignore multiple KAD IDs pointing to the
same IP address. Moreover, other mechanisms have been
proposed in [35] to limit the Sybil attack. Therefore, the
only way to perform today a measurement with Mistral
is to use a pool of different machines: for example, using
a subset of the Planetlab machines can be effective in
staging a Sybil attack [36]. In Sect.4.4 we perform a set
of simple tests, using the current version of eMule and
aMule, which show that the main results obtained with
Mistral are still valid.

A.3 Search Traffic

Fig.8 shows the number of queries that hit our ten
most loaded Sybils in the two zones 0Oxe3 and Ox8e.
The popular keyword “the” in zone Oxe3 is mainly
responsible for the high load on these Sybils. The Sybils
with a lower rank have the same load in both zones.

A.4 Additional Results on the Accuracy of the Can-
didate List

Fig.9 shows the mean rank values of the peers in £/,
along with the 95% confidence interval (obtained with
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Fig. 8. The number of queries received by the Sybils for
two different zones.

approximately 30 independent experiments). The figure
shows also the ideal situation, where £’ contains the
ten closest peers. The graph shows that the Lookup
procedure, except for the first few peers, returns peer
far from being among the ten closest ones.
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Fig. 9. Mean rank values of the elements in £’ (3 = 16).

Note the results labeled as “g-Lookup”, where the
accuracy of the list in the last positions is increased;
in particular the last few elements are approximately
within two or three times the best possible candidates.

A.5 List of stopwords

Table 2 (first column) shows specific stopwords for KAD
file names which complement the set used in by popular
Internet search engines (Table 2 fourth column) [37]. The
number of peers on which a stopword is published
(second and fifth column), as well as the number of files
containing the stopword (third and sixth column), have
been determined by first crawling the peers around the
stopword with Blizzard and then by querying all those
peers for the stopword.

A.6 Load Aware Content Search

In the current KAD implementation, when a peer is
looking for references to an object, it stops the search
process as soon as it receives at least 300 references.
A single reply may contain 300 references, therefore a
single query may be sufficient. In case of popular objects,
it is possible to find peers that hold more than 300
references even if they are not close to the KAD ID of
the target. Such peers are rarely used, with a consequent
decrease in diversity.

The stopwords for KAD || The Google stopwords

stopword # peers | #files || stopword | # peers | # files
avi 491 8101 about 513 7608
xvid 479 13683 are 330 7282
192kbps 437 8005 com 463 11550
dvdscreener 413 12343 for 549 12303
screener 433 7377 from 399 8345
iPg 456 10529 how 542 8282
pro 303 8378 that 423 9148
mp3 482 12019 the 487 14502
ac3 424 8045 this 452 8510
video 468 10478 what 394 7710
music 335 8558 when 294 7241
rmvb 454 13643 where 431 9445
dvd 450 10194 who 302 7742
dvdrip 560 13235 will 458 7976
english 388 7849 with 338 8543
french 377 9468 WWW 391 11203
dreirad 28 30 and 577 13706
TABLE 2

The KAD and Google stopwords with more than two
letters, the number of peers storing them and the number
of files containing them. For comparison the rare
keyword “dreirad” is shown.

Procedure LA-Search

Data: list: candidates /+ peers ordered by their
distance to target */

Data: [ist: references /x obtained refs x/

Data: int: maxRandomTentatives

Data: int: maxIndex

Initialization:
maxRandomTentatives = 2;
maxIndex = 10;

references = {0};

while references.size() < 300 and candidates not empty do
if maxRandomTentatives > 0 then

contact < candidates.getRandom(maxIndex);
references.add(search(contact));
maxRandomTentatives——;

1 else

12 L contact < candidates.getFirst();

13

references.add(search(contact));
14 | candidates.remove(contact);

The LA-Search procedure introduces some random-
ness in the search process. Given the candidate list,
instead of considering the first candidate, the searching
node picks randomly one of the first ten candidates. If
the answer contains 300 references, the process stops.
Otherwise, the searching node needs to pick another
candidate.

In the LA-Search procedure, we use the following
heuristic: the searching node tries twice with a random
candidate; if it does not receive enough references, it falls
back to the basic KAD Search scheme, i.e., it starts from
the first candidate. This heuristic derives from the fact
that, if a candidate has less than 300 references, there



could be two reasons: either the object is not popular, or
the candidate has just arrived, and it had little time to
record the references. In case of a non-popular object, this
process results in an overhead. We believe that, thanks
to the gain in terms of diversity and load balancing in
case of popular objects, such an overhead is a fair price
that can be paid: measurement studies [38] have shown
that a few popular files (approximately 200) account for
80% of the requests, therefore the impact on non-popular
objects should be acceptable.

The LA-Search procedure works also in case of
adoption of LA-Publish procedure: the references to
popular objects will be scattered around the target, and
a random search scheme will be able to easily find them.

A.7 Additional Discussion Related to the Proposed
Solution

We now consider different aspects related to the pro-
posed LA-Publish and LA-Search procedures, in-
cluding security considerations, parameter settings, and
peer churn. We do not discuss the introduction of new
messages, which would simplify the load balancing,
since, as we stated before, we aim at proposing a solution
that does not modify the KAD protocol.

Accuracy of the candidate list: In our measurement
campaign, when we have evaluated the accuracy of the
candidate list, we have shown the results up to the
tenth position. The LA-Publish procedure considers
the positions with a lower rank. In case of S-Lookup
procedure we have assumed that the accuracy remains
the same up to the 20th position, thanks to the high
number of peers in the candidate list. Preliminary tests
with a prototype implementation of the LA-Publish
procedure in a instrumented aMule client have shown
that this assumption is reasonable.

Improving accuracy: The LA-Publish and LA-Search
procedures rely on the fact that the candidate list is
accurate in the first few positions and then becomes
progressively inaccurate in the other positions. This is
specific to the implementation of the Lookup proce-
dure in KAD (both in the basic implementation and
in the g-Lookup). One may ask what would happen
in case of a completely new Lookup procedure, such
that it provides an extremely accurate candidate list.
The solution would be straightforward: it is sufficient
to reproduce the inaccuracy of the current S-Lookup
procedure. By adopting this approach, The LA-Publish
and LA-Search procedures remain sufficiently general,
yet maintaining their simplicity.

Keeping the history: For each published reference, there
is an expiration time associated to it, after which the
reference is republished. A publishing peer can maintain
information about the popularity of an object. It may
be a simple flag that indicates that in the previous
publishing process the object was popular, in order to
influence the peer candidate choice. We will evaluate this
enhancement in future work.

Parameter setting: The LA-Publish procedure has a set
of parameters, namely the thresholds used to discrimi-
nate between popular and non-popular object. Changing
such thresholds has an impact of the effectiveness of
the proposed solution: low thresholds may spread too
much the references, while high thresholds may detect
a popular object too late. Unfortunately there is no a
simple distributed solution to this problem: a centralized
solution — e.g., a server that keeps track of object popu-
larity — is impractical and subject to security problems; a
solution based on gossiping increases the overhead and
may not assure that the information is available when it
is needed. In both cases, the designer would introduce
new messages, changing the KAD protocol. The use of
thresholds is the simplest solution that does not require
significant modifications to KAD. In our case, we have
used the measurements shown in Sect.4.3 to set the
thresholds. As for the LA-Search procedure, there are
two parameters: the number of random attempts and the
maximum rank in the candidate list. In Sect. 6 we study
them in a synthetic environment. As future work, we
plan to perform a measurement campaign to evaluate
their impact in real environments.

Security considerations: Here we consider attacks
specifically related to the LA-Publish procedure. A
malicious peer could return a load of 100 even if the
object is not popular, or a load of 0 even if the object is
popular. If the peer is very close to the reference KAD
ID, in both cases the effect would be minimal. If the
malicious peer is far from the reference KAD ID (i.e., it
tries to be in the ninth or tenth position of the candidate
list), the inaccuracy of the candidate list would limit
the impact of such malicious behavior. In order to be
effective, a malicious peer should perform these types
of attacks in conjunction with a Sybil attack: therefore,
any solution that prevents a Sybil attack [39] is sufficient
to weaken the attacks to the LA-Publish procedure. As
for the eclipse attack, since the LA-Publish procedure
tends to scatter in a wider zone the references of popular
objects, we have as a by-product a countermeasure to
such a malicious behavior.

Churn: Considering a specific target KAD ID, the peers
around such target change over time. The candidate list
of a publishing peer may contain newly arrived peers
(but the candidate list does not contain stale contacts,
since the Lookup procedure eliminates them): during
the publishing process, a newly arrived peer has a low
load, thus the publishing peer may consider the object
not popular. The impact of this aspect is minimal, since
eventually the candidate list should contain a peer with
the load above the threshold. In any case, publishing on
newly arrived peers is not a big problem since they have
a low load.

A.8 Simulator Description and Settings

For the evaluation of the load balancing scheme (i.e., the
LA-Publish procedure), we need two key ingredients:



(i) the peer dynamics (arrival and departure) should be
realistic, and (ii) the candidate list should have the same
accuracy as in the current KAD implementation. We must
have full control of these two aspects in a simulator:
we have considered the few available KAD simulators
[40][41], and none of them provides such control. For
this reason we decided to implement a custom event-
driven simulator [33].

The peer arrivals and departures follow the publicly
available traces collected over six months from the KAD
network [34]: the simulator takes as input the availability
matrix of all the peers seen in a specific zone and gen-
erates the corresponding arrival and departure events,
reproducing the dynamics of real peers measured over
a six month period.

Given the set of peers that are online at a given instant,
and given a target KAD ID, we are able to build an
accurate list £. Starting from £, we build the candidate
list £" following the procedure explained in Sect.5.4
(paragraph “Improving Accuracy”) with the help of the
measurements presented in Sect.4.2. For the basic KAD
scheme and the LA-Pub1lish scheme, we have used the
results shown in Fig.9, labeled as “basic scheme” and
“B-Lookup,” respectively.

Besides the peer availability matrix, the inputs to the
simulator are (i) the target KAD ID, (ii) the starting
publishing instant, (iii) the observation time, and (iv)
the publishing rate. The target KAD ID can be set to
check if there is a bias in the KAD ID space — which
we actually never observed, so any KAD ID can be
used. With the parameter “starting publishing instant”
we can choose when the publishing process starts (the
publishing process continues for an interval equal to
“observation time”). The publishing rate defines the
number of publishing attempts per second, and can be
tuned to reproduce the desired keyword popularity.

We tested different input parameters — target KAD ID,
the starting publishing instant, and the observation time
— obtaining similar results, therefore in the following we
will not explicitly state the values of such parameters.

Once published, a reference has a validity of 24 hours,
after which it is removed from the host peer. The output
of the tool is represented by the peer load. We have
also recorded the number of the wasted messages due
to saturation.

For the LA-Publish scheme, we need to set the
thresholds used to identify popular keywords. Looking
at the load measurements, we see that the tenth replica
is usually published on peers with a limited load (10%-
20%). For this reason, we set D, and Dy.x to 15
and 60, respectively. We performed tests with limited
variations on such thresholds (+20% on both D,,;, and
Dinax, results not shown for space constraints), obtaining
similar results.

Note that we consider an eight-bit zone with a single
popular object: thanks to the KAD hash function, it is
very unlikely that the KAD IDs of two popular objects
are close enough to influence each other [7].

A.9 Load Aware Content Search Results

The evaluation of the load balancing scheme needs to
consider the performance of the searching phase as well.
Every 30 minutes we simulate a search, i.e.,, we use
the same candidate list building process and we send
a search request following the basic KAD scheme (i.e.,
starting from the first candidate) and our LA-Search
scheme. For each search, we record the number of
peers that has been queried in order to obtain at least
300 references. Tab.3 shows the performance (over 300
searches, with 95% confidence intervals not reported
since they are all smaller than 1% of the measured
value), in case of the basic KAD publishing scheme
and the LA-Search scheme. Note that if peers publish
with the load balancing scheme, they will perform the
LA-Search procedure, therefore the basic search is not
shown in this case.

TABLE 3
Mean number of peers queried during a search.

High popularity Low popularity
basic basic
search | LA-Search | search | LA-Search
basic KAD publ. 1.02 1.04 1.12 1.39
LA-Publish n.a. 1.07 n.a. 1.23

We note that the LA-Search scheme is able to provide
300 references with a small penalty in the number of
queried peers: in practice, in the worst case, 27% of the
time the searching peers need to query two candidates,
which are randomly chosen among the first ten. As the
LA-Search scheme is able to improve diversity, since
it may retrieve references that have not been published
on the top ranked peers (due to overload), such a slight
increase in the average number of queried peers seems
to be a reasonable price to pay.



