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Abstract—Most of the existing packet-level simulation tools
are designed to perform experiments modeling a small to
medium scale networks. The main reason of this limitation
is the amount of available computation power and memory
in quasi mono-process simulation environment. To enable
efficient packet-level simulation for large scale scenario, we
introduce a new CPU-GPU co-simulation framework where
synchronization and experiment design are performed on
CPU and node’s processes are executed in parallel on GPU
according to the master/worker model [13]. The framework is
developed using Compute-Unified Device Architecture (CUDA)
and denoted as Cunetsim [18], CUDA network simulator.
To study the performance gain when GPU is used, we also
introduce the CPU-legacy version of Cunetsim optimized for
multi-core architecture.

In this work, we present Cunetsim architecture, design con-
cept, and features. We evaluate the performance of Cunetsim
(both versions) compared to Sinalgo and NS-3 using benchmark
scenarios [20]. Evaluation results show that Cunetsim execution
time remains stable and that it achieves significantly lower
computation time than CPU-based simulators for both static
and mobile networks with no degradation in the accuracy of the
results. We also study the impact of the hardware configuration
on the performance gain and the simulation correctness.

Cunetsim presents a proof of concept, demonstrating the
feasibility of a fully GPU-based simulation rather than GPU-
offloading or partial acceleration, through adequate architec-
ture.
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I. I NTRODUCTION

Packet-level simulators are usually based on a discrete
event paradigm where sequences of events are generated.
In general, such events represent mobility, connectivity,
channel calculation and in/out packets processing. The time
complexity and memory usage of a simulation are then
proportional to the frequency of these events for the total
number of nodes, which represent the main bottlenecks
when targeting scalability and efficiency. There exists also a
trade-off between the accuracy of the models, in particular
channel models, and time complexity that has to be taken
into account when targeting large scale simulations. This
calls for a parallel node execution environment with minimal
inter-processes communication overhead [9].

In the literature, there are three major approaches to
deal with large scale simulation: (i) CPU-based parallel &
distributed simulation, (ii) Partial acceleration using specific
Co-processor and (iii) The fully GPU approach.

In a CPU-based parallel and distributed simulation [14],
the platform may be federated and includes multiple copies
of the same or different simulators (modeling different
portions of the network) linked together either sequentially
or in parallel. Such a federated approach makes use of
the existing models and provides a rapid parallelization of
existing sequential simulators [17]. However, such approach
introduces a significant overhead due to the synchronization
among different processes and/or machines and requires
sophisticated and expensive simulation infrastructure [13].
This overhead may increase drastically in mobile environ-
ment if the network topology and machines mapping is
not dynamically managed (e.g. through nodes migration).
For the majority of CPU-based simulators, the performance
degradation happens when a combination of the limiting
factors, mobility rate, number of nodes, and traffic load
increases. For the distributed simulators, such performance
degradation happens when the inter-machines communica-
tion increases. A scalability demonstration, based on the
distributed NS-3 has carefully avoided the problem of the
interaction between nodes in different simulation machines
[11]. Even if parallel and distributed simulators have crossed
a scalability boundary, they introduce new problems such as
the cost of a simulated node, the strategy of initial nodes
distribution and their migration across different machines.

The second approach addresses the question differently,
It aims to increase the efficiency of the simulation locally
by offloading the most CPU-intensive part of the simulation
from the CPU to a dedicated co-processor. The FPGA was
widely used as an acceleration solution [8] however, in some
recent approaches, the Graphics Processing Unit (GPU) is
used to offload intensive computing tasks such as channel
modeling [5] and queuing [15] within the simulator. Recent
studies of GPUs allow us to utilize the GPU for more
general-purpose computation (GPGPU) [16], or even as a
GPU-accelerated simulation architecture when accuracy and
runtime performance are both critical [4]. Thus, the GPU has
become an increasingly attractive alternative to the expen-



sive CPU-based parallelism, with significant computational
power at a relatively low cost. With the advent of the
GeForce 8 series GPU in 2006 and the compute unified
device architecture (CUDA) [12], the control of the unified
stream processors of GPU is transparent to the programmer,
and CUDA provides an efficient and wealthy environment to
develop parallel codes in a high-level language without the
need for graphics-specific knowledge. Even if this approach
reduces significantly the computing time, the simulation
remains principally in the CPU which continues to be the
main system bottleneck in large scale scenarios. Further, a
continuous transfer between the GPU memory and the CPU
one presents a serious limitation of such approach.

The third approach aims to realize the simulation entirely
on the GPU which reduce significantly the memory transfer
compared to the second approach and decrease the syn-
chronization latency compared to classic parallel approach.
However, the GPU is not fully X86 compliant and did not
support CPU features, needs a specific software architecture
to disclose its power and did not support memory lock
mechanism. Because of these limitations, the fully GPU
simulation approach is poorly studied even if it is extremely
promising in term of raw performance. As a proof of
concept, we propose to use the GPU as a main simulation
environment and the CPU as a controller, introduced VIA a
new CPU-GPU co-simulation framework denoted as Cunet-
sim, CUDA Network Simulator. Cunetsim is an experimental
simulation platform allowing validation and experimentation
of a novel approach. As opposed to previous works, Cunet-
sim is designed to provide an independent parallel execution
environment for each simulated node. Nodes communicate
with each other only through the message passing based on
the buffer exchange, thus avoiding the usage of any global
knowledge on one hand, and increase significantly the par-
allelism level on the the other hand. Furthermore, it exploits
the master/worker model for CPU-GPU co-simulation and
provides hybrid synchronization model which maximizes the
efficiency and respects the correctness of the simulation. The
simulation exploits the large number of computing cores of
the GPU to execute nodes in parallel and the high speed
memory access to reduce nodes communication latency.

The remainder of the paper is organized as follows.
Section II presents the framework architecture and features.
Preliminary comparative results are given in section III.
Detailed study of the hardware configuration impact is sum-
marized in sectionIV and we discuss limits of our concept
in section V followed by concluding remarks and future
directions in section VI.

II. T HE CUNETSIM FRAMEWORK

Cunetsim framework is designed and implemented follow-
ing a hardware/ software co-design approach to maximize
the efficiency. The simulation distribution is based on the
master/ worker model [13] where the master controls the

simulation achieved by the workers group. Figure. 1 sum-
marizes the cunetsim components’ hierarchy through three
blocks: the master, the worker and common APIs.

Figure 1. Cunetsim Framework Architecture and Dependency

Conceptually, a worker is associated with one node and
is therefore composed of a node’s five Worker Processes
(WPs) [6]: (i) the application, (ii) the protocol stack, (iii)
the mobility, (iv) the connectivity and (v) the packet ser-
vices.Their functioning is explained in section II-A. The
master is also composed of five components: (i) The hybrid
events scheduler, (ii) The data abstraction layer, (iii) The
scenario manager, (iv) The monitoring component and (v)
The helper . The detailed implementation is explained in
section II-B. Common APIs regroup those shared by the
master and workers. It includes three components: (i) system
API, including CUDA APIs and libraries, (ii) monitoring
API, and (iii) testing API.

A. The Worker Design

The Worker implements the simulated node, modeled as
a stack of independent WPs. Nodes communicate through
messages passing. Only buffers are exchanged between
nodes to avoid global knowledge. In Cunetsim, each node
contains five ordered WPs described in the following sec-
tions.

1) Applications (APP): Cunetsim provides a packet-level
traffic generator to simulate application data based on packet
size and inter-departure time. Each instance is completelyin-
dependent, allowing the framework to support an important
load. The traffic generator tags the packet as a function of
communication type: unicast, multicast and broadcast, and
assumes that such traffic will be processed by the PROTO
and PKT WPs.

2) Protocol stack(PROTO): implements the node behav-
ior both in control and data planes, which are protocol or
algorithm specific. It may also include additional models
required by such a protocol. Cunetsim implements various
broadcasting techniques, such as probabilistic, counter-based
and location-based. Such implementations support GPU par-
allelism and provide inter-process communication througha



buffer exchange, avoiding simulation global knowledge, to
ensure the simulation scalability and efficiency.

3) Mobility (MOB): The MOB calculates a specific
movement in the defined space following a mobility model,
for each node. We define a generic mobility container,
implemented as a unique CUDA kernel which functioning
is explained in Figure.2 . We implement two mobility
models: RandomWayPoint and RandomDirection [10] and
three boundary policy models:Annulment of excess, Sliding
on the boundaries andbouncing on the boundaries.

Figure 2. MOB WP functioning

4) Connectivity (CON): The connectivity WP identifies
all neighbors of the concerned node. This problem is NPC
[7]. The complexity of the brute force approach is of the
order of O(N2). In Cunetsim design, we divided the space
into geometric cells where the radius of the cell must be
at least the double of the maximum transmission range
(2 ∗ Rmax). In this case each node will find its neighbors
in its own cell and in the neighboring cells. This approach
reduces significantly the complexity, which will be related
to the network density. We define a connectivity container,
which will call a specific connectivity model (the Unit Disk
Graph(UDG) and the Quasi Unit Disk Graph(QUDG) are
available in the first version). This kernel will be instantiated
into N GPU threads, where N is the nodes number in
the scenario. The pseudo-code of the connectivity WP is
summarized in the algorithm 1. Each node will be identified
with its tid and will be executed independently. By calling
the ParseCell function, we apply an optional optimization.
Cell is the data structure used to represent the geometric cell
and its member which name is ”member” contains the ids
of the nodes that currently belong to the cell. Using these
variables, a node is able to access to each node contained
in a particular cell in order to check their mutual distance.

5) Packets services (PKT): Packets services manage their
exchange between nodes. The notion of packet can represent
any protocol data unit (PDU), which is layer-dependent. To
simulate multiple interfaces, a node may have more than

tid=BlockDim.x*blockIdx.x+threadIdx.x;
MyCell=Node[tid].Cellid;
NeighborCell=Cell[MyCell].Neighbor;
for i of NeighborCell do

if ParseCell(Node[tid],Cell[i]) then
Continue;

end
Nnodes=Cell[i].size;
for j of Nnodes do

candidate=Cell[i].member[j];
if UDG(Node[tid],Node[Candidate]) then

Node[tid].neighbor[Node[tid].V]=candidate;
Node[tid].V++;
if(Node[tid].V==MaxNeighbor)Break;

end
end

end
Algorithm 1: The Pseudo-code of the Connectivity WP

one buffer, each of which associated with a given interface.
Packet services support both send and receive. Packet send
service allows a node to write a packet to the selected in-
buffer of the neighbor(s). The packet write operation is
an atomic operation avoiding the destination in-buffer to
be over-written, as described in section II-B2. It has to
be mentioned that the sending process adds a simulation
header with additional relevant information including the
timestamps, the sending energy, and antenna characteristics
(e.g. orientation, type), which is used at the receiver. Packet
receive service allows a node to read at most one packet from
its in-buffer at each simulation time (i.e. round). However,
the in-buffer is capable of receiving up to M packets from
other nodes at each round. The receiving service determines
which message has to be read by the node based on the
lowest timestamps and/or signal energy derived from the
simulation header.

B. The Master Design

The master ensures the simulation correctness, simplifies
the framework usability by providing high-level simulation
APIs, and guarantees the simulation reproducibility. These
features are performed via five components detailed below:

1) Hybrid Events Scheduler: Cunetsim events scheduler
(CES) implements a conservative approach for all dependent
WPs where we respect a strict order between sequential
WPs for each node. This model was developed in [19]
where the notion ofWP Pool is introduced: a WP pool,
Πi is defined incorporating same WPj for all nodes. For
a givenΠi, all Pij processes must end to assert thatΠ is
achieved. This presents a simple yet efficient implementation
of the coherence and consistency paradigm.In addition, CES
addresses two fundamental scheduling issues: independent
WPs on one hand and the events sequencing of each WP on



(a) WPs dependency: while the scheduler can
determine that WP3 threads cannot start until
finishing those of WP2 and WP5, there is no strict
order between them.

(b) Events Conflict: E113 and E121 will be
executed at the same time while the strict
synchronization prohibited

Figure 3. Scheduling Ambiguities

the other hand.
(1) Independent WPs concerns typically heterogeneous

simulation and happens when nodes are composed of differ-
ent WPs sequences. Figure. 3(a) shows a situation where we
have two kinds of nodes which implement two independent
WPs: WP2 and WP5. In such case, conservative approach
did not define a deterministic order between WP2 and WP5
pools. As Cunetsim targets to maximize the efficiency, in
such situation we use an optimistic approach, where both
of WP2 and WP5 pools can be executed in parallel on the
GPU.

(2) The sequencing of WP’s events typically happens
when the number of cores is not a multiple of the number of
nodes. Figure. 3(b) shows one WP composed of 2 events for
3 nodes and 2 cores. In this figure each event is identified
by a triple (WP id, Event id, Node id). In conservative and
optimistic approaches, the execution of the event (1,2,1)
at the same time as (1,1,3) is forbidden since a strict
order exists. However respecting this order may induce a
significant waste of resources (e.g. 25%in this example),
while executing both of them at the same time will not
impact the correctness of the simulation. In such case,
Cunetsim applies a relaxed approach within the events of
each WP’s pool. In this way, the WPs order and the events
sequencing of each node will be preserved, thus maximizing
total resource usage.

To summarize, the Cunetsim hybrid event scheduler works
as following: The conservative approach is used for se-
quential WPs as defined by the simulation model. The

optimistic approach is applied when possible, especially for
independent WPs and independent WPs sequences. Relaxed
approach is applied for event scheduling into each WP.

It has to be mentioned that the CES benefits from the GPU
hardware scheduling capabilities. Indeed, the optimisticap-
proach is achieved using the GigaThreads scheduler (i.e.
GPU hardware acceleration), the relaxed approach using the
4 wrap schedulers of each SM. The conservative approach
is implemented in software.

2) Data Abstraction Layer: Cunetsim data are modeled
based on the kernel/flow model. We define several flows
where each one presents a specific part of the simulation
data. Data is grouped by functionality. Each WP uses one
(or more) flow and each node has a specific box with R/W
rights. One node can access foreign data with read right.
Flow model is natively used by graphics application to
manage the communication between the GPU and the CPU.
We apply a flows loading-offloading mechanism between the
GPU memory (limited and non-extensible) and the principal
memory (larger and extensible). The master manages flows
transfer between the principal memory and the GPU one,
such that no WPs will be in famine situation.

The memory management component provides two ser-
vices: memory allocation abstraction (MAA) and critical
section management (CSM). MAA insures the double al-
location of each data flow in both of the RAM and the
DRAM. The synchronization of the two copies of the flow
is a manual operation which must be specified by the
user. Critical section is a recurrent challenge in case of
shared memory between several processes. Software mutual
exclusion solutions such as semaphores, mutex and locks
are commonly used in CPU context. However, GPU context
did not provide such explicit solutions. The problem arises
mainly when two nodes try at the same time to write
messages in a third node’s inbuffer, in which case we
may lose some of them. CSM provides an abstraction of
this problem based on CUDA atomic operations: thanks to
atomicInc, a node makes an atomic reservation operation
before proceeding to the writing of the message. This oper-
ation consists in atomically incrementing the writeindex, a
pointer to a box in the receiver’s buffer.

3) Scenario Management: This component ensures the
reproducibility of the simulation via a complete XML layout
incorporating five sub-categories: the system, the environ-
ment, the network topology, the application configuration
and the simulation I/O. This concept aims to simplify the
interaction between the simulation and the user. The pro-
cess applied for cunetsim reflects the same experimentation
workflow proposed on [6].

C. Common APIs

Common APIs are those shared by the master and the
worker and include system/host, Cuda, monitoring and test-
ing tool APIs and libraries. Cuda API includes the driver



and the runtime used to manage the GPU using high level
programming language such as C/C++. Cuda libraries pro-
vide an efficient hardware acceleration of common libraries
such as Math and BLAS libs. The monitoring process is
a CPU-expensive task which may reduce the efficiency of
the simulation and introduce an important overhead. Since
Cunetsim benefits from at least two computing contexts, it
could easily offload this process from one simulation context
to another depending on the load (e.g. from CPU to GPU
or vice versa, or even from one GPU to another). Cunetsim
monitoring provides three APIs as follows:

GPU Monitoring: Each WP uses, in addition to simula-
tion data flows, monitoring data flows, where WP instances
write their monitoring results (e.g. number of messages,
processing time, flags). A specific monitoring WP is im-
plemented and used to process these flows to produce final
results. In this approach, the monitoring process is included
in the simulation and thus necessarily impacts its perfor-
mances, however, the impact can be reduced using dedicated
device (second GPU). Such approach is appropriate to online
monitoring techniques since it provides results as soon as
they exist.

CPU Monitoring: The monitoring process dumps -in
asynchronous mode- the simulation data flows into the
RAM to process them and produces final monitoring results.
The asynchronous dumping operation will not impact the
simulation performance, however, the CPU process must
be able to consume these flows in the same speed (or
higher) that the simulation produces; otherwise the RAM
will be saturated. This approach is more appropriate to
offline monitoring technique since it can use saved data.

Co-GPU-CPU Monitoring: In this approach, the moni-
toring process is shared between GPU and CPU. As in the
GPU approach, WPs use monitoring data flows to write raw
information, and as in the CPU approach, the CPU process
dumps in asynchronous mode the monitoring flows. This
approach impacts moderately the simulation performance
but reduces significantly the size of transferred data, making
this approach more adequate for a large scale scenario for
both offline and online monitoring.

1) The Tester API: The tester API implements a valida-
tion component which ensures the simulation correctness,
in particular the user-specific implementation for a given
WP and its integration with the simulation framework. The
basic test consists of implementing the same algorithms,
sequentially and in parallel, for both master and worker. The
master tests the process, compares both of their results and
validates the worker group results. It has to be noted that
the testing process is only used in developing and debugging
mode when the simulation correctness is required.

D. Hardware Mapping

In this section, we detailed the hardware mapping of
the cunetsim’s software components: First we present the

hardware mapping of the fully GPU version and second we
describe the CPU-legacy one.

Figure 4. Cunetsim Hardware Mapping

1) Fully GPU version: The hardware mapping of the
software components is presented in Figure.4, further de-
tailing the CPU-GPU co-simulation. At each time, it can be
seen that each WP is mapped to a GPU core, called scalar
processor (SP) wrapped within a streaming multiprocessor
(SM), while the master processes are mapped to CPU cores.
Nodes’ WPs exploit three memory levels: registers, shared
and global memory. Registers include local variables of each
WP instance. Shared memory is used as an acceleration
cache where a prior knowledge on the data is available.
Global memory is used when WPs communicate (sending
messages / reading position) without having a prior knowl-
edge on communicating nodes. It has to be mentioned that
such mapping provides a dedicated execution environment
for each node, where inter-WP and node communication is
minimized over three memory stages. As for the Master, it
is represented by two processes: (i) the simulation core and
the Data abstraction layer representing the primary process
of the master, and (ii) monitoring process in charge of data
collection and user interface representing the secondary pro-
cess of the master. This separation maintains a strict priority
order between the primary and the secondary process.

2) CPU-legacy version: Cunetsim architecture is de-
signed for a fully GPU simulation as detailed in section
II-D1. However the GPGPU is a recent discipline and rare
are the data-centers which use the GPUs as computing Co-
Processors. On the other hand, Current and future CPUs are
also multi-core and provide interesting features, as the vector
parallelism. These reasons have convinced us to provide
a pure CPU solution. Based on the PGI unified Binary
technology [3], we generate a CPU compliant version which
parallelizes nodes through the OpenMP API using several
threads. The user can specify the number of threads in
conformity with the CPU capabilities. We note that the
software architecture and code did not change, only the
compilation procedure is different. in following, this version



will be appointed as Cunetsim-LN, where the last number
presents the threads’ number.

III. C OMPARATIVE PERFORMANCESRESULTS

To evaluate the real performance of each approach pre-
sented in section I under large scale condition regardless
of different models impact, we extend the benchmarking
methodology for network simulators presented on [20] to
support wireless and mobility conditions. In this methodol-
ogy, authors implement identical node model for all con-
sidered simulators. They demonstrate that NS-3 [2], Jist
and Omnet++ have the best performance. However, they
did not address mobility issues and ignored Sinalgo [1],
known as a stable simulator on large scale conditions. In the
following study, we choose Sinalgo as a representative CPU-
based solution while NS-3 is involved as the most optimized
public simulator, providing also a stable distributed version
over MPI. The CPU version of cunetsim, which involves 4
CPU cores is a representative case of the partial accelerated
approach while the GPU version presents the fully GPU
approach. The mobility and the connectivity algorithms
are the same as we propose for all simulators. Only a
simple flooding protocol is implemented using equivalent
algorithms. We propose two benchmark scenarios: The first
compares the performance of each simulator’s kernel re-
gardless of the efficiency of implemented models, while the
second addresses their robustness in mobile conditions. The
first scenario models a simple network, where the nodes
are arranged in a grid topology as illustrated in Figure. 5.
It includes one traffic source which generates600 uniform

Figure 5. Simple Grid Topology

packets with1 second of inter-departure time. Packet size is
fixed to 128 Bytes. All nodes -including the source- relay
unseen packets after a delay of1 second, thus flooding the
totality of the network. The delay of1 second models the
propagation. Nodes do not provide any packets management
services. Transmission and reliability are modeled on the
channel using a fixed dropping probability which is identical
on all links. The sender is the node with the lowest identity
and the receiver is the one with the highest identity. In
the second scenario, nodes are mobile. The mobility model
is the random way point with speed uniformly distributed
between 1 − 5m/s. The maximum transmission range,
Rmax, is 100 and the connectivity model is UDG. The
simulation space is a cubic free space whose dimensions
are 1600 ∗ 1600 ∗ 200 m. Each node moves before each

round and recalculates its connectivity set. Both of these
scenarios are outlying real networks and include major node
simplifications nevertheless, they have two advantages: they
guaranteed a relevant and neutral comparative since they
minimize the models’ efficiency impact and they provide
a representative estimation of the computing power needed
for such simulations.

All simulation runs were conducted using a simple PC
including an INTEL i7 940 CPU (4 cores with hyper-
threading), 6GB of DDR3 and one GPU: the GeForce
460 1GB (336 cores for GPGPU computing). 4 machines
are used for the distributed NS-3, interconnected VIA a
Gigabyte switch. The OS is Ubuntu Linux 11.10, the Java
version is 1.6 and the Nvidia driver version is 285.05.33. Our
measurements were taken using NS-3.13, Sinalgo 10.75.03
and Cunetsim prototype. To validate the model equality, we

Figure 6. End-to-End Packet Loss: Under the same conditions,all
simulators present equivalent E-TO-E loss, considered as the output

use the first scenario with all simulators where we varied
the drop probabilities in the interval[0, 1]. Figure.6 depicts
the end-to-end packet loss repossessed and normalized from
different simulators, given the dropping probability and
the network size. All studied simulators produce similar
results.We conclude that our implementations are equivalent
-in terms of output- to those of [20]. We evaluate simulators’
efficiency regarding two performance metrics: simulation
runtime and memory usage. Our results give the average
of five executions. The minimal simulation time is set to
700 seconds.

A. Simulation runtime

To evaluate the simulation runtime of the concerned
simulators, we fixed the drop probability to0.1 and we
increased the network size from4 to 102K nodes. Section
III-A1 analyzes the first scenario results while the section
III-A2 addresses the second one.

1) Static Scenario: Figure. 7 shows the average sim-
ulation runtime for each simulator. For small to medium
networks, Cunetsim-L4 is the fastest simulator up to 2000
nodes and remains faster than Sinalgo and NS-3 in all
cases. Beyond, Cunetsim (GPU) becomes the most efficient
simulator and the deviation is growing with the network
size. Function of the simulators runtime, we distinguish



Figure 7. Simulation runtime of the static network: CPU simulators are
efficient on small scale but computing power becomes critical onlarge scale

four network size intervals: small networks [2-50], medium
networks [50-200], large networks [200-2000] and the very
large networks [2000-102000].

For small scale Cunetsim-L4 and NS-3 are the most
efficient simulators. In fact, much of NS-3 components use
the very high-speed L3 cache compared with much slower
RAM while the cunetsim-L4 uses also the L3 cache and all
CPU cores. Cunetsim-GPU is outperformed for two reasons:
first the impact of data transfer between the RAM and
the GDRAM is significant, second the GPU is underused
since only few cores are active. For medium scale, both
versions of cunetsim are faster than NS-3. In fact, when
the network size increases, cunetsim uses additional GPU
cores. However,the data transfer between the RAM and the
GDRAM remains significant which allows Cunetsim-L4 to
be the fastest solution. In both intervals, distributed NS-3
suffers from the initial setup load of the MPI, relegating it
behind the classic version.

For large scale, sinalgo has successfully overcome NS-
3 thanks to its optimized nodes management. However, the
distributed version of NS-3 remains stable overcoming easily
sinalgo. On the other hand, cunetsim-L4, reaches the CPU
limit while Cunetsim-GPU remains stable in this interval. Fi-
nally, for 2000 nodes, both of Cunetsim-GPU and Cunetsim-
L4 need 0.35 second, 80 times faster than NS-3 and 26
times faster than sinalgo. For very large scale, the power of
cunetsim-GPU is revealed, the number of cores involved in
the simulation makes the difference and Cunetsim-L4 fails
to follow, even if it remains the most efficient CPU-based
simulator. For 48K nodes cunetsim needs 5.93 seconds, 3.5
times faster than cunetsim-L4,22 times faster than sinalgo
and 150 times faster than NS-3. It is interesting to compare
in such scale Cunetsim-4L and Distributed NS-3 since both
use the same computing power in theory. In fact, Cunetsim-
4L overcomes NS-3 due to two major reasons: first it uses a
shared memory synchronization (over OpenMP) while NS-
3 uses Ethernet (over MPI). Second, The events scheduling
is completely different: Cunetsim has a prior knowledge
regarding events relationship while NS-3 has only their
timestamps as a scheduling information.

From a theoretical point of view, if we suppose that a

CUDA core is, as efficient as an i7 core, we can admit that
at the same frequency, they are equivalent. As our GPU
includes224 effective CUDA cores @676Mhz and our CPU
includes4 cores @3.6Ghz(overckolecd+ turbo mode), than
the maximum theoretical gain is9.46 which is two times
higher than what we achieved. This value suggests that
there still exist some interesting optimizations to consider,
especially increasing the GPU use which did not exceed 82%
while Cunetsim-L4, NS-3 and sinalgo saturate the CPU. The
SIMD architecture of the GPU implies that we dedicated the
totality of each stream multiprocessor (SM)1 to 32 nodes
until they finished. In such a situation we allocated resources
for all nodes, including inactive ones while a sequential
execution (CPU) did not waste resources.

Figure 8. Simulation runtime of the mobile network: the complexity of
wireless mobile scenario highlights the limitation of classic approaches
under large scale conditions

2) Mobile Scenario: Figure. 8 shows the average mea-
sured simulation runtime for each simulator. The mobility
imposes the evaluation of nodes connectivity in each round.
Once again, the general behavior of the five simulators is
similar to the previous scenario. NS-3 is the fastest CPU-
based simulator up to36 nodes and cunetsim-L4 becomes
the fastest CPU-based simulator beyond. NS-3 runtime in-
creases exponentially as a function of network size while
Sinalgo and Cunetsim-L4 seem more robust. The distributed
version of NS-3 increases its leeway but did not influence the
global behavior. Thus, distributed NS-3 remains faster than
sinalgo up to 800 nodes but its computing time becomes
unstable further. Cunetsim-L4 runtime remains relatively
invariant for small to medium networks, and becomes a
function of nodes’ number nearby of 1000. Sinalgo presents
a quasi-linear runtime as a function of the network size but
cannot achieve a very large scale simulation in realistic time
(simulating 48K nodes requires 3552 seconds).

Cunetsim(GPU version) runtime is linear per segment
between4 and8000 nodes. For each segment the runtime is
almost linear. From this threshold, it becomes relative to the
network size but remains reasonable, even for100K nodes.
In all cases, Cunetsim is extremely faster than all CPU-based
simulators. For48k nodes cunetsim is up to9.2 times faster

1Fermi architecture’ SMs include 32 Cuda cores



than Cunetsim-L4 and260 times faster than sinalgo. NS-3
is unable to compete in such scale. In addition the CPU-
legacy version presents very interesting results since it is 28
times faster than Sinalgo for the same scale. As the results
of the distributed NS-3 prove, distributing the simulation
over several machines is not sufficient in itself but must be
coupled with, either a clever networking partitioning or a
specific distributed event scheduler.

The higher performance of Cunetsim (in both modes) is
due to the simultaneous action of four factors.(i)The high
parallelism degree of Cunetsim architecture allows efficient
use of the GPU computing power and all CPU cores in
the CPU-legacy mode. (ii)The connectivity algorithm was
designed and optimized to be parallel and distributed taking
advantage of the largest cores’ number. (iii)The DRAM
offers larger bandwidth than the current RAM, theoretically
10 times faster. (iv)The software scheduling task becomes
a critical process in CPU context, while its overhead is
minimized in GPU since it is achieved using dedicated
hardware. Since (iii) and (iv) are not available for the CPU-
legacy version, the difference between both versions runtime
is growing function of the network size. For a very large
network the GPU version is up to9.2 times faster than the
CPU one which proves the interest of using the GPU as a
Co-processor.

B. Memory usage

Figure 9. Memory usage vs. Drop probability

Figure. 9 shows the maximum used memory during the
simulation as a function of the dropping probability for
a fixed network size (3721). We note that both cunetsim
versions use exactly the same quantity of RAM then we
just mention cunetsim in this section. The drop probability
affects the network traffic and the number of exchanged
messages. Sinalgo presents a slight decrease of its used
memory when the traffic decreases, while NS-3 presents a
more flexible behavior and adapts its usage to the network
load. Cunetsim uses always the same memory for a fixed
network size because each simulated node has at least two
fixed buffers. Sinalgo needs between 20% and 600% more
than NS-3 while Cunetsim seems more efficient for large
traffic load. We notice, however, that NS-3 has a dynamic

memory management process while Cunetsim assigns a
fixed buffer for each node.

IV. H ARDWARE IMPACT

The performance of cunetsim is directly related to the
hardware efficiency, however, the GPU on one hand and
the CPU on the other hand affect unequally the simulation
performance. This section provides a qualitative and quanti-
tative study of their respective impacts as a function of the
number of cores and the frequency. We note that we use the
first scenario based on the grid topology(sectionIII) since
old devices did not support Curand library.

A. GPU Impact

1) Impact of total number of GPU cores: We propose
to compare four devices which differ essentially by their
number of embedded cores: The 8400GS includes 8 Cuda
cores. The FX880M is a mobile GPU including 48 Cuda
cores. The GTX 560 includes 336 Cuda cores while the
GTX 580 includes 512 one. We varied the network size
from 4 to 246K, measured the simulation runtime with each
of the four devices and reported the results in Figure. 10.
For a small network [4,81], the GPU-CPU data transfer
overhead is the bottleneck. For a middle-range network
[100, 250], the GPUs having the same architecture offer
similar performance. As for networks involving more than
250 nodes, both 8400GS and FX880M GPUs are overloaded
by the computation charge and their few cores (8, 48) are no
longer able to compete with the GTX 560 and 580 GPUs.
The difference between the latter is proportional to their
cores’ number.

Figure 10. Simulation runtime of different devices: Naturally, more cores
means higher efficiency

2) Impact of GPU frequency: For this experiment, we
use three devices (1: GTX460@715 Mhz, 2: GTX460 @763
Mhz (reference) and 3: GTX560 @810 Mhz) where the
major difference is the GPU frequency. We fixed the network
size to 246K nodes and we calculated the runtime of each
device. Results are summarized in Figure. 11. The GTX 560
is 7% faster than the reference device while its frequency
exceeds by 6.15%. The first device, is 7.5% slower than the
reference one while its frequency is lower by 6.71%. These
measurements demonstrate that the runtime is proportional



to the frequency of the GPU, however, the frequency evo-
lution is generally less significant and more expensive than
the Cores’ number.

Figure 11. Harware impact for Fully GPU version: neither the CPU
frequency nor the number of CPU-embedded cores has a significant impact

B. CPU impact

To evaluate the CPU impact, we distinguish the two
versions of cunetsim: The fully-GPU version where the CPU
manages the simulation and the CPU-legacy one where it
achieves the totality of the simulation.

1) fully GPU: To evaluate the sensibility of the fully
GPU version to the CPU capabilities, we fixed the network
size to 246K nodes. First we vary the enabled CPU cores
from 4 to 1. Second, we reduce its frequency gradually from
3.06 Ghz to 1.6 Ghz. Results are reported on fig 11 where
we can observe that the CPU impact is not proportional to
the CPU power:reducing the frequency by 45% implies only
5% of performance loss.

2) CPU-legacy version: We conduct 6 series of mea-
surement where we varied the number of threads involved
in the simulation between 1 and 8. Our CPU is a i7-920
including four cores with the hyper-threading technology.
This means that each core is able to execute two threads. We
varied the network size between4 and72k nodes. Figure.12
summarizes results. As expected, the Cunetsim-L1 runtime
is generally the slowest one, Cunetsim-L2 presents a gain
of 23 % while the Cunetsim-L4 gain is about 46%. When
the number of active threads exceeds the number of physical
cores, we observe a relative performance degradation (about
4-5%), this phenomenon is mainly due to concurrence be-
tween threads which complicates the scheduling operation.

Based on these results, we conduct 4 series of measure-
ment using the Cunetsim-L4 in the same conditions, where
we varied the CPU frequency between 1.6Ghz and 3.6Ghz.
Results are reported on Figure.13. We observe that the total
runtime is a function of the CPU frequency. In average, An
increase of 30% on the frequency, implies an increase of
20% on the performance. These results demonstrate that the
legacy version depends on the CPU computing power and
profits of the multi-core capability.

Figure 12. CPU Cores’ impact (Legacy): best performance was reached
when then number of thread is equal to the number of cores

Figure 13. CPU frequency impact (Legacy): As expected, the runtime is
linearly related to the CPU frequency

V. D ISCUSSION

In this section, we briefly discuss three limiting factors of
Cunetsim, namely event scheduler, neighborhood discover-
ing and floating point precision.

Event Scheduler: The conservative approach that we
use for WPs in Cunetsim events scheduler presents an
efficiency weakness for small network size. To reach a
reasonable efficiency ratio, the network size must be greater
than the number of GPU cores. Note that current GPU
includes up to1500 cores for mono-GPU devices. On the
other hand, this approach can induce an important waste of
resources in case of parallelization in CPU context where the
number of cores is between4 and 8 if we address a small
network. However, in large scale scenarios, the difference
between this schedulers and an optimal one will be reduced.

Neighborhood discovering: Cunetsim implements an
optimized connectivity WP which aims to minimize the
number of comparisons; the optimization is based on the
existence of Rmax. Whatever the wireless technology is, this
approach is adapted to the free space model, but remains
relevant for terrains which include obstacles and multi-path
channel. In this case, the correctness of the simulation will
be respected if these variations are taken into account for the
calculation of Rmax value. It is worth noting that it remains
possible to turn off this optimization at the expense of the
simulation runtime.

Floating Point Precision: The implementation of the
floating point on NVIDIA device is not fully IEEE com-
pliant. To analyze the difference between a GPU and CPU
implementation, we use the distance computing between two
nodes as a benchmark test and calculate this distance using



both, over 1 million of samples. The difference between each
pair of results is less than 0.01%. Depending on the scenario,
this difference might cause some simulation inaccuracy (e.g.
channel modeling).

VI. CONCLUSION

New challenges emerge when simulating large scale mo-
bile networks, especially if we consider the paradigm ofvery
large network rather thanthe network of networks. While
network simulation tools are widely used for validation
and performance evaluation, their scalability and efficiency
remain challenging. Cunetsim aims to unlock the parallel
capabilities of the state-of-the-art hardware and software
architectures to achieve simulation scalability and efficiency
with significantly lower cost. Cunetsim is the first fully GPU
based simulator which provides a CPU-GPU co-simulation
framework for large scale scenarios. In contrast with existing
GPU acceleration approach, the simulation is fully executed
over the GPU. Further, Cunetsim proposes an efficient
solution for the management of memory critical section
which presents a real challenge of the GPU programming
model.

Performance results show that the execution time could be
radically improved when GPU parallelism is used to carry
out the simulation. In particular, Cunetsim is able to achieve
up to 260 faster execution time than existing simulators,
when targeting large scale mobile networks. The results also
reveal that the existing simulators could be further improved
through multi-core parallelism.
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