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Abstract

This report presents and analyzes possible solutions for key distribution in a multicast
group. Unlike, two-party security that is a well studied field, multiparty communications
offer some interesting problems open for research. For key distribution in a multicast
group, the biggest problem we have holds in one word : scalability.

Scalable multicast protocols call for a security scheme that avoids the sharing of secret
keying material among the recipients. In the proposed model the source transmits a unique
message on the multicast tree but each recipient or sub-group of recipients uses different
keying material to get accross the protected multicast channel.

We suggest several protocols based on extensions of classical cryptographic functions.
The first one is a simple XOR scheme and the two other schemes are based respectively

on ElGamal and RSA.

Résumé

Ce rapport présente et étudie des solutions possibles pour la distribtution de clé dans un
groupe multicast. En effet, si on maitrise bien la sécurité des communications biparties, les
communications multiparties offre un certain nombre de problémes ouverts a la recherche.
Pour la distribution de clé dans un groupe multicast, le probleme principal tiens en un
mot : scalabilité.

Les protocoles multicasts offrant cette scalabilité nécessitent un shéma de sécurité
ou l'on évite de partager une unique clé entre tous les membres du groupe. Dans le
modele proposé la source transmet un message unique dans I’arbre multicast, mais chaque
récepteur ou chaque sous groupe de récepteurs utilise une clé différente pour accéder au
flot multicast.

Nous suggérons un certain nombre de protocoles basés sur des extensions de fonctions
cryptographiques classiques. Le premier est basé sur une simple opération XOR, les deux
autres sur ElGamal et RSA.
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Introduction

As “groupware”, “multicast” or other group oriented protocols get more popular,
there is a growing need to implement security in a multiparty context. This is
particularly true in open environments such as the Internet. Multiparty security
may involve confidentiality, integrity, authentication, non-repudiation and also new
specific problems. The Corporate Communication department at Eurecom is natu-
rally showing a great interest in that area which will probably be the opportunity
of great developments in modern open networks.

The original subject of this internship started as an open theme : “multiparty
security”. It was norrowed down to multicast key distribution aspects after some
interesting ideas seemed to emerge through discussions and graffiti on the drawing
board. Nevertheless partial work also arose in the more generic field of group
security as shown in Appendix.

This report is divided in three parts.

The first part reviews multiparty security in general, giving some ideas of how
different it can be from two-party security. Focus is put on group security and some
specific problems related to key distribution in multicast groups are highlighted.
Scalability issues are identified as the central problem.

The second part concentrates on the core problem statement, giving the ob-
jectives that should be fullfilled to do key distribution in a multicast group. A
partitioning model designed to cope with the scalability issues is presented. It is
highly correlated to the multicast routing tree structure.

Finally, in the third part, solutions are presented with some analyses. First a
XOR pad scheme is used. Its natural weakness motivates the study of one way
functions based on simple extensions to classical public key cryptosystems such as
ElGamal and RSA. The ElGamal scheme has the added feature of source authen-
tication while the RSA scheme offers a higher degree of security.



Part I
Background

1 Mutiparty security

Intuitively one might think that most group security protocols could just be exten-
sions of well known two-party protocols. This is not always true. First of all, in the
two-party case it’s easy to define what a session is, at the security level. It starts
when the two end users have setup their security parameters to communicate with
each other and ends when one of the two participants exits from the session. In the
multiparty case, things are different, the definition of a session depends much more
on the context. For example, a protocol may require a fixed number of participants
or a dynamic number of participants. In these two different cases, the meaning of
a session is different.

Some protocols must be redefined in the multiparty case. A good example is
group signatures. If someone signs a document electronically on behalf of a group,
should a trusted party be able to identify the signer in case of a problem our should
the protocol be absolutely anonymous even to the group members ?

Hence adapting, creating and evaluating protocols for the multiparty case offers
plenty of problems to explore.

2 Multicast groups versus ordinary groups

Multicast is now clearly in the mainstream focus. Popular computer magazines fea-
ture articles about it and as it gets a wider audience, need for security will probably
arise. In the extreme case we can imagine a multicast pay-per-view TV, which will
require the multicast stream to be protected from users that are not registered by
the broadcaster. Ideally we would like to provide confidentiality services for multi-
cast groups. There are protocols to achieve this in groups but they do not appear
to be adaptable to the multicast case.

2.1 Classical group security

Group security schemes usually come in two flavors : distributed or centralized. In
the distributed case, all users exchange messages to setup the parameters needed to
perform the security objectives. Authority-managed groups involve a trusted host
that manages the security of the group.

To offer confidentiality, the goal of such procedures is to do key distribution or
key agreement. This often means that all the users that want to do secure group
communications agree on the same key or share some common piece of information.

Key agreement. In the distributed case, members of a group generally arrange
in a “virtual ring” and pass around information needed to create a common session
key. A good example of key agreement is the extention of the Diffie-Hellman scheme
to groups described in [10] and [11].



(a) Distributed key agreement.

Adding or removing a member often means a new computation round.

Key distribution. In an authority centered model, a trusted host distributes
session keys to members wishing to communicate together.
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(b) Authority managed key distribution.

Here, if adding a member is not too much of a problem, removing one still means
redistributing a new key to all remaining members.

Related work. Appendix A describes a method to create a group public key
system. As an aside to our work we have shown how to transform the original
authority-managed scheme into a completely distributed scheme.

2.2 The characteristics of a multicast group

A good source to apprehend the specific requirements of multicast security is in [7].
We will recall some of the concepts defined there with a few remarks while focussing
on key distribution. Two other good ressources are [13] and [12].

First of all, multicast in inherently less secure than unicast, because there i1s no
control on who can subscribes to a group. Interception of traffic is made a lot easier.
Access control has been proposed in [8] extending IGMP, but this will clearly not
provide enough security in a large group, specially in terms of confidentiality. On
the other hand access control might partially prevent denial of service, by stopping
or at least reducing unwanted traffic from polluting a multicast datastream.

The second characteristic of a multicast group is its dynamism. As we previously
stated, in the unicast case, a session is clearly defined. The key used between two
users 1s generally the same from the beginning to the end of the session. The
situation is completely different in a multicast group, if users are expected to join
and leave the group at any time. In fact we can view JOIN and LEAVE operations
as a time slicing procedure of a secure multicast group.
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(c) Key change enduced time slicing.

If a user leaves a group, he should not have access to future communications.
Therefore, the key should change upon departure of a user. This is the “one affects
all” core problem of multicast key distribution. This also holds most of the time
when a user joins the group : he should not have access to past data. Hence the
keying material should change on every JOIN/LEAVE operation.

The third obvious characteristic is that the size of the multicast packets should
not grow with the size of the multicast group. In fact this means that the security
payload added to the multicast data should be independent of the group size. The
example in Appendix A is clearly not a candidate. We cannot simply encrypt the
time slice session key with each member’s public key in the group or have a key
that grows with member addition.

Trying to satisfy the requirements of a multicast group key distribution clearly
bumps on scalability issues. Using traditional group approaches is not possible.
Having the source send a new key to every user each time a user joins or leaves will
be to demanding on network and computing ressources as the group increases in
size. Instead if we choose a distributed approach, every user relies on some other
users. If one user “crashes” in the middle of the key change every one is affected.
Moreover, the key agreement procedure will have a time complexity in an order of
the group size.

Finally, one should note that the wider the group gets, the higher the chances
of key exposure. It would be interesting to lower the power of the keying material
a user has. For example, if the key changes very often, it might prove harder for
an attacker to successfully attack a host several times to keep up with the keying
material. But again this puts scalability issues back on the drawing board.



Part 11
Problem Statement

For simplicity, we will restrict the problem to a multicast group with one unique
source. The source will control the key distribution process and the membership
of the participants. The source’s functionality can probably be distributed but we
will refer to the source as if it was a single entity.

3 Objectives

This section describes the objectives of key distribution in a multicast context.

Security overhead : The security overhead added to multicast packets should
not be related to the number of effective members in the group.

Partitioning : Users should be grouped in independent sets each using a different
key. The extreme case being single user sets. The idea is that a key used in a set
should not be usable outside that set therefore giving the keying material lower
power.

The JOIN/LEAVE operations should not bear the “one affects all” scalability
issue described in section 2.2. Partitionning effectively reduces the problem to a
small set of users.

Collusion proof : Users that collude together across different sets should not be
able to discover more information than each other’s secrets, neither should they be
able to maintain membership after a LEAVE. This may be the hardest property to
prove.

Extensibility : Ideally we would like our system to provide some extra feature,
for example source authentication.

4 Model

To try to achieve the previously described goals we will consider the structure of
the multicast network. Indeed such a structure can be viewed as a virtual tree. The
source is the root, the nodes are routers and the leafs are networks with a real or
simulated multicast capability.



Source A Subnetwork

® Router/node

(d) The tree model.

The users in the same leaf - or subnet - will be considered part of the same set :
they will share the same key. This seems to be logical since the source has no power
over what happens in a local area network.

10



Part 111
Solution

The solutions we present are based on a quite simple idea : the nodes in the multicast
tree participate in the encryption process. If each node operates on the encryption
process in a different way, the keys used by the users in the leafs of the tree will be
different from one another.

We will present 3 solutions. The first one, based on the XOR operation is more
a study case than a real secure key distribution system. Nevertheless 1t demonstrate
some of the basic principles used in all the solutions we present. The two other solu-
tions are based on multiple key extentions to classical public key cryptosystems. We
will actually present the basic mathematical principles needed to fully understand
the way these two systems work.

We will assume throughout the discussion that provisions are made to secure
the unicast traffic described in the key distribution systems below. We also assume
that the security messaging used between the different agents of the systems is done
in a reliable way.

5 The XOR tree.

The first idea was to use the exclusive or operation, denoted “@”. The XOR, function
offers perfect secrecy as follows : if C'= A& B, then if A or B is random, the result
C' is also random. The XOR has also the appealing property that it’s really fast
and easy to implement. Unfortunately, as one can probably guess, it’s not secure
in respect to the objectives we established in our model.

5.1 Description

Before focussing on the setup phase, we will suppose the elements of our network
are setup correctly and we will describe how the system works.

Suppose the source S wants to send a message M to g selected terminal networks
in our broadcast tree. The tree has n routers -or nodes- which are assigned a piece
Pi<i<n. The source itself chooses the piece Fy. These pieces should have a bit
size greater or equal to the expected messages like M. The keys the end users get
are the XORed together values of the pieces used in nodes along the path from the
source to themselves. This always includes Py. In other words, if Py, Py,, Pk, ..., Ps,
represent the r + Ipieces used along the path from the source to subnetwork k&, the
key Dy, used will be:

Dy =PFPy® Pey ® Poy ® ... D P,
We can illustrate this simply:

S, Py

11



On this drawing, Dy = Py @ Py, & P, & P,

The way the system works is straightforward. The source send My = M & P.
Each router along the path uses it’s piece to XOR it over the message:

Mj+1 = Mj ©® ij =M P Pkl o) PkQ b ... Pk(j_Q) (o) Pk(j—1)

In the end the final user recovers the data by computing M = M, & Dy, because
what we essentially have is M, = M & Dy.

5.2 Setup phase.

The setup phase is simple here. Each time a node wants to attach itself to the
secured broadcast tree, it chooses a random value which is the piece P; described
above. The end user who wishes to join the group goes through a tree stage dialogue
with the source :

M 7 .
1. Source [l—]> user : once the user has subscribed to the group he starts
multicast

receiving data [M]s = M @ Py @ ..., but he doesn’t have a key to decrypt it.

JoinRequest Cq-
2. User ——————— source : the user asks for a key Dy, providing the necessary
unicast

information and credentials. He sends back the encrypted message [M], he
previously received.

JoinA
3. Source —ZM2Ph yiser ¢ the user gets Dy = [M]» & M that the source

unicast
computed from the previous message. This key should be sent in a secure

way from the source to the user.

After this, the end user can decrypt the messages that come from the source. This
setup process has the great advantage that the source does not have to be aware of
the exact topology of the network. It does not even need to know what value each
node or router has chosen.

The source still has to maintain a list of all users connected to the group. This
is a logical assumption if we want to achieve confidentiality. Each user should be
identified at least by a network address. As we will see 1t’s also a good idea to keep
track of what subnetwork or in other words in what leaf of the tree the user is. Note
that all users that identify themselves to the source from the same leaf £ should
share the same Dy,

5.3 Discussion
5.3.1 Group dynamics.

One of our objectives was that the keys should change upon JOIN/LEAVE opera-
tions. When a user joins or leaves a subnet, the source can easily send a message
asking the gateway router of the terminal network to change the key it uses. Since
1t maintains a database entry describing what users are attached to that gateway,
it can easily send the new key to the remaining members of the group.

If we want to be able to change the pieces used in a node at a higher level in
the tree, we will need to have a precise idea of the routing tree, to detect which
users need a key update. It would probably not be acceptable to let the users detect
themselves that they are not receiving data properly.

12



5.3.2 Security overhead

One nice aspect of the XOR function -in fact its greatest advantage- is that its
cost i1s very low. Resources assigned to security functions in the source, routers and
terminal networks are small.

5.3.3 Confidentiality

Direct observation of traffic by an external observer does not leak any information
about the message if the XOR pad is used only once. If it is used many times, some
form of cryptanalysis could damage the scheme. To counter this we have to make
sure that the message 1s random. This is generally true if the message is itself a
random symmetric cipher key used to encrypt data. Instead of directly distributing
data, we can use the XOR scheme to distribute the DES key used to encrypt data.
Such encrypted data doesn’t even need to travel in the same multicast stream.

On the other hand, observation of traffic flowing in and out of a router allows
someone to find out the piece used in the router. This allows someone to monitor key
change in a router and if he already is a member he can easily maintain membership
after a key change :

1. Suppose a member observes traffic in a router and collects the piece Py, used
in the router. Then from Dy he can compute Py & Py, $ Pr, ® ... B Pk(r_l) =
Dy & Pkr~

2. If the source wants the member to leave, 1t asks for a piece change in the router
which the member can deduce by observation. Py, becomes Pr;  and the
member can compute D1, = (Py@ Py, & ... @Pk(r_l)) @ Prg, , thus maintaining
membership.

5.3.4 Partitioning and collusion

The keys used by each subset even though different from each other, can be used
to forge keys anywhere in the multicast tree. To be precise, anyone that steals a
(M, Dy) pair can find the key D; used in his network.

1. The user receives M @ Py & P, & ... & P, which he can’t understand but he
stores it and steals the pair (M, Dy) from another network.

2. He computes D = (M & Py & P, & ...® P,) @ M, then he can maintain
membership if needed using the technique described in the previous paragraph.

Thus partitioning offers no security here. One can easily see that a user can help
anyone to join the group. The key generation process is transparent to members.

5.4 Conclusion for the XOR scheme.

Even though it’s not secure, the XOR tree has given a general idea of how we can
achieve our objectives. This leads us to consider functions that are more complicated
than XOR. In fact we would like to use functions that are not reversible.

6 Mathematical considerations.

Before trying to move to a more complex ciphering process, we will look at some of
the mathematics commonly used in cryptography.

13



6.1 Modular arithmetics

This is not meant to be exhaustive, for more details refer for example to [6]. We
quickly presents some fundamental properties we will use.

6.1.1 Exponentiation.

The Euler ¢ function. Let n be a positive integer, then ¢(n) is the number of
nonnegative integers less than n which are prime to n.
Moreover, the Fuler ¢ function has the following two properties :

1. If @ > 0 and b > 0 are relatively prime to each other then ¢(ab) = ¢(a)p(b).

2. If n = p, where p is prime, then p(n) = p(p®) = p* — p*~ 1.
This allows us to calculate ¢(n) for any integer n, as long as we know how to factor
n.

Residue classes. Most algorithms in public key cryptography, work in a set S
of integers modulus n, usually noted Z/nZ or Z,,. This set forms a commutative
ring with operations such as addition and multiplication, but only elements that
are relatively prime to n have a multiplicative inverse. If b is an element of S, we
naturally define modular exponentiation as :

Bmodn=1xbxbx..xbmodn
N—— ——

i times, 120

The exponents express themselves modulus ¢(n). In other words, if we work in
Zy, then the exponents take their values in Z ).

Generators. Let n be a positive integer. Let the set < g >= {gi modn, i € Z}
where g € Zy, if < g >= 7}, then g¢ is called a generator of Z,.

If n = p? where p is prime, then Z, 1s a field, and in that case, there exists at
least one generator g of Z,. In general we will work in Z,, where p is prime.

Generators are interesting when they serve as the base of an exponentiation
because the number of possible values is as big as the field in which we are working.
If the exponent serves as a key in a cryptosystem, the larger the keyspace the better
it 1s.

6.1.2 Discrete logarithms.

Let n be a positive integer - usually prime - calculating the following expression is
easy :

y =10 modn

In fact, 1t’s usually considered that the time complexity of this is something like
O(log®n). The inverse problem, is conjectured to be a hard problem. Knowing y
and b, it 1s considered computationally hard to find .

This problem also called the Diffie-Hellman assumption serves as a base for the
ElGamal cryptosystem and several others.

14



ElGamal. Let g be a generator of the finite field Z,, where p is a large prime.
The p and ¢ values are publicly known to everyone. Bob chooses a random value a
to be his private key, and publishes his public key E :

E=¢"modp

If Alice wants to send a message m to Bob she chooses a random value & and
computes :

c1 = mE* mod p = mg™ mod p

co = ¢" mod p

To recover the message Bob uses his secret a :

¢
m:—lmodp

(c2)@

We will exploit this scheme by using a greater number of exponents.

6.1.3 Composite moduli

This time, let’s pick n as the product of two large primes p and ¢. Knowing those
two primes it’s easy to compute n. On the other hand factoring n to p and ¢ is
conjectured to be a hard problem.

If n is chosen as described above, exponentiations will take place in Z,,). Sup-
pose we choose a positive integer e which is prime to ¢(n). In other words, we choose
e so 1t has a multiplicative inverse in Z”;(n). This is the foundation of the RSA pub-
lic key cryptosystem. Bob can compute an integer d where d.e = 1 mod ¢(n). He
then publishes his public key :

E = (e,n)

If Alice wants to send a message m to to Bob she computes :

c=mmodn

Bob can recover m using his private key d :

m=c%=mD modn

We will use this scheme by extending it to a number of exponents greater than
two.

6.2 Prime fields of interest

Suppose we want to do several exponentiation like the ones described in 6.1.1. Hence
we would like to build a sequence GG defined as : Gijy1 = G} mod n. But we want
to keep the order of every term in the sequence high. Ideally, we would like them
to be all generators of Z,,.

15



To make things clearer, we will take a look at Z;;. Let A € Mi(Z7;) be the
matrix defined as : A[i, k] = i* mod 11:

11 1 1 1 1 1 1 1 1

2 4 8 5 109 7 3 6 1

39 5 4 1 3 9 5 4 1

4 5 9 3 1 4 5 9 3 1

A= 5 3 4 9 1 5 3 4 9 1
16 3 7T 9 10 5 8 4 2 1

T 5 2 3 10 4 6 9 8 1

8 9 6 4 10 3 2 5 7 1

9 4 3 5 1 9 4 3 5 1

| 10 1 10 1 10 1 10 1 10 10 |

This matrix allows us to follow the sequence G through it’s different values. For
example we could have Gy = 2, G; =23 =8, G5 = 8 =10, G3 = 10> = 1 and
G4 =G5 = ... = G = 1. It 1s understandable that a value such as 1 or even 10
should be avoided to do exponentiation sequences in Z1;. In order to keep things
secure, the number of possible values ;11 we can reach from G has to remain big
enough so the discreet log remains difficult to compute. Stationary sequences are
thus not interesting.

If we take a look at A we can see that the positions in which 10 and 1 appear
are not random. Intuitively they must be a relation between this distribution and
the numbers we are using.

Hence this 1s a motivation to look more carefully at some prime fields.

6.2.1 Basic properties

Let’s first state two classical properties in finite fields [6].

Property 6.2.1.1 The elements of Z,, which have multiplicative inverses are
those which are relatively prime to m, i.e. the numbers a for which ged(a, m) = 1.

Property 6.2.1.2 If g is a generator of the finite field F,,, then g’ is also a
generator if and only if ged (¢, m—1) = 1. In particular, there are a total of ¢(m—1)
generators of IF}, .

NOTE : Finite fields have a characteristic that is always the power of a prime. In other
words, if [F,, is a field then m = p? where p > 0 is prime. Here we will focus of fields FF,,
where m = p is prime, but it might be interesting to extend the following remarks to any

fields.

6.2.2 Germain Prime fields

We call p a strong prime if p = 2¢ + 1, where ¢ is also an odd prime. Strong primes
are also called Germain primes, from the mathematician Sophie Germain.

Property 6.2.1.2 enables us to compute the number of generators of a field I,
where p is a strong prime :

dp-1=pl2n)=g-1=270

More generally, if p = 2%¢ + 1, where ¢ is an odd prime and ¢ > 1, we can
compute the number of generators in a field IF, the same way :

16



p—1-2

el —1) = p(2) =2V (g - 1) = —

Thus, the lower t is, the greater the number of generators of [F, will be.

6.2.3 Fermat primes.

A Fermat is a prime of the form 2(27) + 1. The demonstration is omitted here, but
applying the Miller-Rabin primality test to p = 2¥ 4+ 1 shows us that p can’t be
prime unless k = 2. In other words, if p = 2¥ + 1 is prime, it’s a Fermat prime.
These numbers seem to be rare.

Using property 6.2.1.2, we compute the number of generators of the field I, ,
where p=2F 41 :

1_pr—-1
pp—1)=2""=
This is even better than with strong primes. Unfortunately, such prime numbers

have certain weaknesses that moderate their use in cryptography. This is why we
will use strong primes.

6.2.4 Other primes.

We took a look at prime numbers of the form 2¥¢" 4+ 1, where (k,r) € {Z2—(0,0)}.
Any other prime number p can be written as :

n>2
p= 2t°q§1q;2. qfl" + 1 =9t H qt’

where ¢1, q»...q, are the n odd prime factors of & zto ,and 1 < to<i<,. Here we
assume n > 2 since the case where n = 0, 1 have been studied previously.
If we evaluate ¢(p — 1) we have :

elp—1) =p(2%) H"_>>12 o(qi) 1
n>2 1 t1—
= 200 DTTIZR (gl — gf1 ™)

(tim1)

Since 1 <{p<i<n , we have 1 < g, , thus we can write :

n>2
e(p—1) < 2t b H

And in turn we can write :

n>2 n>2
Plp—1) t“(qu )SQ(t”_l)qu’—l
i=1

Which enables us to compare with p :

—1
so(p—l)<pT—1
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Which brings us to a comparison with strong primes :

—3
so(p—l)<pT

Combining this result with the previous ones allows us to make further conclu-
sions.

Lemma 6.2.4.1 If p is an odd prime number, the finite field [F, has at most
p%lgenerators. Further more, this limit i1s reached if and only if p is a Fermat
prime.

Lemma 6.2.4.2 If p is a prime number and if p — 1 has at least one odd factor,
then the finite field [F, has at most ’%Sgenerators. Further more this limit is reached
if and only if p = 2¢ 4+ 1, where ¢ is an odd prime number.

6.3 Generator sequences.

We will now use the preceding results to build a sequence of generators in a field
Zp where p is a Germain prime.

6.3.1 The exponentiation subgroup.

Let H be a set defined as H = {¢ € Z4q, gcd(c, 2¢) = 1}. The elements of H are the
elements ¢ = 2i + 1, where i € {0..g — 1} that are different from ¢ (i.e. i # ).

In fact H has ¢ — 1 = ’%3 distinct elements since ¢(2¢) = ¢(2)(¢) = ¢ — 1.
Proposition 6.3.1.1 H is a subgroup of Z3,.

Proof. Wehavel € H and from property 6.2.1.1, we know that ifa € H,a™' € H.
Now suppose a,b € H. Then if ab = ¢ mod 2q, we can write a = ¢gb~tmod 2q (or
b = ga~!') which contradicts the fact that ged(a,2q) = 1. Thus if a,b € H, we have
ged(ab,2q) # ¢q. Similarly, if we have ab = 2i mod 2q, we have the same type of
contradiction, thus ged(ab, 2¢) # 2. This leads to ged(ab,2¢) =1 : abe H.

6.3.2 Consequences in cryptography.

Let g be a generator of Z; and (rk)ogkgn any sequence of numbers from H. A
sequence S defined as :

{ Sy =gmodp
Sk = (Sk—=1)"""" modp

forms a set of generators of Z7. This is just a consequence of property 6.2.1.2.
And since H has a group structure, if j > ¢ we have :

1

S; = (S;) 77+ Ti=Zi-1 modp

and in particular:

1
g= (Sj)rorl...rj_l mod p

This construction involving strong primes is interesting at the cryptographic
level for several reasons, relating to the Diffie-Hellman assumption'

1See 6.1.1.
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e Finding the discreet log of S; to the base S;_1 in Z;‘, involves ¢ — 2 possible
values if we don’t consider “1” as a candidate. This is similar in terms of
complexity to finding the discreet log in Z7.

e If n bits are required to represent the values of Z7, the number of bits needed
to represent the exponents (i.e. the log key space) is n — 1.

e Ifpislarge, then p-1 has alarge factor g which makes the discreet log problem
more secure (relatively to classical discreet log algorithms).

e All the exponents have a multiplicative inverse.

The strength of the construction of the sequence 5 in the field Zj is directly corre-
lated to ¢(p — 1) which is the number of generators of Z7.

6.3.3 Using other primes.

Ideally, we should work in Z7 where p is a Fermat prime to maximize the amount of
generators, but since p— 1 is a power of 2, it will allow someone to find the discreet
logarithm in Z using the Silver-Pollig-Hellman algorithm for example.

Prime fields Zj, where p is neither a strong or a Fermat prime, are less inter-
resting. This is a direct consequence of lemma 6.2.4.1 and 6.2.4.2.

7 The DH tree.

Now that we have enough information to build more complicated systems, we will
first look at “Diffie-Hellman” trees or “DH tree”.

Each node will perform an exponentiation in well chosen prime field Z,. The
corresponding group H as described in 6.3.1 will simply be denoted H, in the
following sections.

7.1 Description
7.1.1 The simple case

As in the XOR tree, we will suppose that there are ¢ terminal network, in a tree
with n nodes. The source wants to send a message M to the group to achieve
confidentiality services.

(¢) The DH tree setup...
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The source assigns to each router a piece F; € H, chosen at random and picks
a value Py € H, for itself. The source has a precise idea of the tree construction,
so it knows the values assigned to each node that is on the way from itself down
to the terminal set of users in a common subnetwork. If the users in the terminal
network k are separated from the source by r nodes using the pieces Py, Pi,, ...
, Pi,., we compute the decryption key Dy used in the subnet :

1

Dk =
Py x Py, X P, X ... X Py,

mod (p— 1)

Calculating the inverse is guaranteed by the fact that we have a group structure
in H,.

The source wishing to send M down to the group will choose a random value
v € H, and compute :

v Py

Yo=9¢""° modp

Z = Mg’ modp

Where ¢ is a generator that can remain secret because it isn’t needed outside
the source. Every router along the path will perform an exponentiation on Y; :

Yig1 = (Yi)P mod p

The final user will recover M using his key Dy, :

7' = (Y,)P* = gV Po Py Pry - Per)Di = ¥ ol

M=27/%"modp

To take the same example as in the XOR tree we have :

O Routers

A Subsets

L Key used here: D= (R. R, . B . P,)™"

(f) Key composition in the DH
tree.

The key used in subnetwork k will simply be Dy = mmod (p—1).
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7.1.2 Generalization

The previous case can be generalized, giving each router s 4+ 1 pieces instead of
just one. For mathematical reasons s + 1 must be an odd number to make sure?
Dy, € H,. Every router ¢ gets a set {P;o, Pi1, ..., Pi s} of elements of H,. The
source gets the corresponding {Py o, Po 1, ..., Po,s} set. The decryption key Dy, that
is used by the users in the same terminal subnetwork £ separated from the source
by r nodes is (considering Py ; = Py, ) :

-1
s r

Dy= > Py, i mod (p — 1)
i=0 \j=0
The source wishing to send a message M to the group will choose a random v

and compute

Yoo = g*Fo.0 mod p
Yo = g* P01 mod p

Yo, = g”PD’S mod p

)

Z = Mg’ modp
Each router performs exponentiation on the set {Y¥; ; |0 < j < s} :
Yit1,0 = (Yi,0)F%0 mod p
Yig11 = (Yir)Po mod p
Yi+1,s = (Yi,s)Pk”s mOdp
The end user will recover M by computing :

Dy

7' = HYM mod p
7=0

M=2/7

The trade-off of more exponents per node is the need for more ressources. But
more exponents gives a higher degree of security, as we will see.

7.2 Meeting the objectives.
7.2.1 Group dynamics

This scheme adapts to group dynamics in a straitforward way. Each time a new
subnet is connected to the multicast group, the source makes sure that all the nodes
along the path have pieces and it sends the new user(s) the appropriate key.

2To be more precise, in Hyp, where p = 2¢ 4+ 1, the only odd number that is not in Hy is g.
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A requirement was that upon the JOIN and LEAVE of a member, the key in the
group must change locally. This simply means that when a JOIN/LEAVE operation
is performed, the piece in the gateway router of the subnetwork has to be changed.
Once that 1s done, the source can send the new key to the members of the subset
that are allowed to stay in the group, using for example their individual public keys
to encrypt the key Dj.

Therefore, the JOIN/LEAVE operation avoids the “one affects all” syndrome,
limiting the affect to the subset of destinations which are in the same subnetwork.

7.2.2 Confidentiality

Someone observing traffic needs to find ¢g” to discover the content of the message.
Since v 1s secret, this is impossible. In fact, since g does not need to be public the
problem seems somewhat harder than cracking the ElGamal cryptosystem.

7.2.3 Securtity overhead

The amount of data multicast by the source is clearly independent from the number
of users in the group. On the other hand the unicast payload is proportional to
the JOIN/LEAVE frequency. This scheme does not cope well with massive JOIN
or massive LEAVE. This is not be a problem for application which tolerate some
delay in JOIN and LEAVE operations.

7.2.4 Partitioning

Each terminal network 1s separated by a different set of nodes. Since the key used
1s the product of random numbers, the chances that two keys are the same is very
low. This means that if a user in a terminal subgroup & gets his key Dy stolen, it
will be useless outside the subgroup.

7.2.5 Collusion

Users who collude together across subnets cannot infer any valuable information. In
fact in the simplest case, if n users are behind n different gateways with a common
ancestor in the router tree hierarchy :

(g) A simple case : routers with a common
ancestor

In which case the n users hold the X;<;<, following values which are obtained
by calculating the inverse of the user keys :
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X1 =PuPy
Xy = Py Py

X, = P4P,

In other words, we have n equations with n + 1 unknowns. Since the values
of P; are independent there is no way of giving another equation that would link
two values P; and P; where ¢ # j. Therefore collusion between users is apparently
fruitless.

On the other hand a router attack can prove more interesting (see 7.3 for more
details).

7.2.6 Extensibility

We can extend our protocol to add source authentication. The users will be able to
verify that the source is the originator of the multicast encrypted message M. This
is done by proving knowledge of discreet logs in a way vaguely similar as described
in [9].

Suppose the source publishes g° mod p where s is a secret value from H,. The
source give the end users the following key in a very similar way as before :

1
k:PokalekQX...kar—i—s

D mod (p— 1)

Someone receiving Dy has apparently no way to extract s from it. The source

computes w € H, a publicly known function of hash(M), for example w = 2 x
hash(M) 4+ 1 mod (p — 1), and sends :

W = ¢"* modp
Yy = ¢“F mod p

Z = MgV modp
The Y; follow a similar destiny as described before. The final user recovers M

by computing :

= (W « Yr)Dk = gw(PDPklPk2...Pkr+s)Dk modp

Z
M= 7 mod p
The receiver can verify that the source of the M is the same that distributed
Dy by computing w and verifying that :
W =(g°)" modp

Of course, authentication can be done using DSS or ElGamal native signatures.
Another alternative could be to use signature proofs of knowledge as described in
[3]. But those solutions will require an extra cost in terms of computing ressources.
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7.3 Attacks

As we have seen, stealing a user’s key has a limited impact. The stolen key will
only be valid in a little portion of the multicast tree. But there still is another
possible attack that can allow a member to remain in the group after a LEAVE
operation. To achieve such an attack, a member will need to take control of the
router to monitor the values selected by the source for exponentiation in the router.
Suppose the following scenario in a subset of user {A, B, ('} :

1. A malicious user A takes control the router. Therefore if his user key 1s D4 he
knows Dg = (PR)™'mod (p — 1) where R is the exponent used in the router.

2. The source decides A should not be a member of the group anymore, therefore
it changes R to R/ in the router and sends users B and C' the new key :
Dig = Dic = (PR)™'mod (p — 1).

3. The user A can forge his own Diy = (PR)™! x R x (R)"tmod (p — 1)

This attack can be made harder by using several exponents in the router as described
in 7.1.2. If a router does m exponentiations, using m different exponents it will take
m interceptions of router key change to discover enough information to allow a user
to maintain membership after the (m+1)** router key change. This is true provided
no parent router in the hierarchy changes its key in the mean time.

To illustrate this we will take a triple exponentiation as a working example. We
will omit the moduli here since they are clearly “mod (p — 1)”. We suppose A a
malicious user uses the key Da1 = (P1Ri1 + PaRis + P3Ri3)~! where the P;
values come from the parent router in the hierarchy and the R;; are the jt set of
exponents used in the router. Well if A views 3 different key changes, he has to
solve the following system of three unknowns (Py, P2, Ps5) :

Dyt =(PiRi1+ PyRi s+ PsRy3)™!
Dyo=(PiRo1+ PyRos+ P3Ros)™?
Dys=(PiRs1+ PyRs s+ PsRss3)™?

Solving such a system is not difficult. The result will be omitted here since it’s
a rather complex expression. Nevertheless now that A knows {P;, P, Ps} he can
forge DA74 = (P1R471 + P2R472 + P3R473) intercepting {R471, R472, R473}.

All in all this shows that besides the source of course the routers are the weak
point of the system in regard of membership enforcement. Correcting this is the

base of the RSA tree idea.

8 The RSA tree.

The RSA tree 1s based on the same basic mathematical structures used in RSA. In
fact a similar idea is used in [5] to manage large groups.

8.1 Description

Let n be the product of two large primes p and ¢q. Let (G, the group of elements of
Zy(ny that are relatively prime to ¢(n) = [(p—1)(g — 1)], i.e. the elements of Z )
that have an inverse. Now suppose a similar setting as in the DH tree except for
a change in the mathematical structures. We take Py in the source and all the P;
values in the routers as elements of GG;,. The Dy key distributed to users in terminal
networks is calculated using the same writing conventions as in the DH tree :
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1

Dy= -
¥ = PP, Pr,.. Dy,

mod p(n)

The source willing to send a message M has even less work to do than in the
DH tree. It simply sends :

Yo = M modn

Routers along the path down to the user subset & use their pieces to participate
in the encryption :

Yig1 = (E)sz mod n

The final user recovers M by computing :

M (Yr)Dk mod n

8.2 Objectives

This scheme which is quite similar to the DH scheme fullfills the same objectives.
Moreover it is stronger than the previous scheme in respect to the router attacks
we described. Even if a malicious user takes control of the exponentiation values
used in the routers, he will not be able to make calculations with them because
he cannot find ¢(n). Thus he has no idea of the mathematical structure used for
exponents.

Even better : there is no reason why the source could not send the pieces
belonging to the routers in clear text over the network, as long as the original Py
remains secret.

8.3 Attacks

Giving many ciphertexts of the same message might make some form of cryptanal-
ysis easier. It is not clear if several ciphertexts of M could allow an easier way to
factor n thus breaking the encryption. Note however that the common modulus
attack on RSA described for example in [1] does not apply here since Py is secret.
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9 Future work.

9.1 Implementation issues

We have concentrated on the theoretical aspects of the DH and RSA trees but some
aspects will probably need some work before an implementation can be done.

Some might not like the idea of putting the functionalities we have described in
routers. Because of the complexity of some of the operations, 1t’s true this might
not be appropriate. It would probably mean that all the multicast routers should
be changed. But one should note that the real strategic points in our multicast tree
is the source and the gateway routers of the terminal networks. It can be considered
realistic that special multicast gateway routers will be build and used for companies
that need security. After all some gateway routers have firewall functions included
in them.

One should also note that while we used the terms router and node interchang-
erably, the nodes don’t have to be in fact routers. We could use what the author
of [7] call agents. The source would broadcast to a specified group to which agents
only would respond. These agents would apply the transformations we described
in our tree models and rebroadcast the data to another multicast address. This
can go on recursively to finally form a tree structure similar to what we have done
with routers. This would have the added advantage to allow a more distributed
control and also allow the agents to take care of reliability issues needed in our
secure multicast key distribution.

Another issue is the added delay of the security operations. The exponentiation
needed in RSA and DH are slow compared to most operation that would be expected
to be done on network data. They are considered to be of order O(n?) bit operations
relatively to the length n in bits of the keys. There are two things to consider that
makes this less of a problem.

First we don’t need to perform our operations on every message. Actually the
source can encrypt the data it sends with a performant bloc cipher such as DES
or IDEA and distribute the key with the algorithms we have described. This can
be seen as some kind of indirection. Moreover in some cases, the data sent does
not need to be completely encrypted. For example some satelite TV broadcastings
only encrypt the horizontal synchronization descriptors in the picture. Hence the
bandwith used by such satellite video traffic is wide but the decryption needed
remains reasonable.

Secondly the key distribution process can often be done ahead in time. A user
that is going to join a group can receive his key minutes before it becomes valid.
Everything depends on the time slicing policy of the source.

Besides one should note that the key distribution data and the effective data
itself don’t need to use the same multicast group address if we use indirection.

9.2 Possible directions

Tamperproof hardware Making the routers more secure in the DH tree algo-
rithm might be better achieved using tamperproof hardware. The idea would be
to protect the exponent and exponentiation operation from external evesdropping.
This could be done by hiding the random generator of the exponent and the expo-
nentiation in some form of tamperproof hardware.

Super large multicast groups Another problem is related to really large groups
similar to groups you can expect doing multicast pay TV. In all the previous dis-
cussions, the assumption was that the user had a minimum interest in keeping the
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information he receives secret. If that isn’t the case a member can quite simply
rebroadcast the data to other users without encryption.

To counter this, tamper proothardware might provide some kind of protection.
But in the end it might prove impossible to stop “rebroadcasting”. It will be
interesting to look at way to detect this type of behavior on open networks, the
same way TV broadcasting authorities detect fraudulent TV broadcasters.
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Conclusion

This report has shown three algorithms to do key distribution in a multicast tree.
The first one is based on the XOR binary operation while the two others are based on
two classical public key algorithms that have been extended to use multiple pieces.
The key idea was to let the routers -or more generally the nodes in the network-
contribute to the encryption. This allows a partitioning of all the members of a
multicast group and in turn it also allows to give a possible solution to the key
change scalability issue.

The XOR, scheme demonstrated the basic principles that can be used to achieve
key distribution in a multicast context but also suffered from some clear weaknesses.

The second scheme, based on ElGamal has the added possibility to do source
authentication. It partially looses 1t’s security if the gateway nodes are corrupted.
In such a case, members can maintain membership fraudulently.

The third scheme, based on RSA allows less trust in the participating nodes of
the tree model, because the exponentiation values don’t need to be hidden from the
public. On the other hand, the mathematic structures should probably go through
a deeper study to make sure the RSA model doesn’t become weaker with so many
users working with the same modulus.

The schemes described may also be usefull in ordinary groups with a large
number of users and membership dynamics.
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Part IV
Appendix

A Shared polynomials

This section, though not part of the core subject of this report came as an aside
from the work done on group communications.

In an unpublished paper [2], Yi Mu, Vijay Varadharan and Khan Quac Nguyen
build an interesting group public key scheme based on exponentiated polynomials.
Basically, users in a group each choose a secret number and send it to a trusted host.
This host then computes a polynomial with those secrets as roots. This polynomial
is then used to create a group public key, which can be used for encryption. The
mathematical construction behind this scheme will be exposed first, then we will
demonstate a way to extend the scheme to distribute the construction of the public
key. This new scheme as the main advantage of eliminating the need to send the
secret keys over the network to a trusted host or any other host.

A.1 A group public key cryptosystem
A.1.1 The setup phase

Let p be a carefully chosen prime number and g a publicly known generator of Z,.
Each member ¢ of the group of n users chooses a number »; € Z, and send it to a
trusted host. The host then computes :

P(r) ==z I:I(x —r) = Zplxl (modp)

Where z is a constant that is thrown away after the computation. The host then
computes f; = gP* modp. The set K = {3;, 71 € 1 ... n}is the group public key.

This key has the specific property that for any r; root of the polynomial, we
have :

Hﬁfrj)l = gP(x) = lmodp
i=0

A.1.2 Encryption and decryption

If Alice wishes to encrypt a message m to send it to the members of the group, she
chooses a random value £ and computes :

c1 = {gkﬁga Bfa cee 65} (mOdp)

co =mg®  (modp)

The ciphertext is the pair {ci, ¢a}. To decrypt the message any group member
can use his root r; and compute :
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¢ =gt T, B
n k(r;)"
=4 (Hi:oﬁi( ) )
(H?:o gkpz(rj)’)
= g"g"") = g" modp
m =cyfe; = (mgk) /9" modp

This scheme enables a group of users to share a public key, while still having a
different decryption key for each user.

It is also probably possible to do group signatures using this public key. As in
most group public key systems this scheme requires the users to send their secret to
a trusted group manager. This can be a drawback, since in might not be desirable
to let the secret leave the host that uses it. In the next section, we will show a
simple way to compute the public key in a distributed way without revealing any
secrets from the hosts.

A.2 A distributed approach
A.2.1 Constructing a shared polynomial.

First, let’s forget about exponentiation and take a general look at polynomials.

Adding a root to a polynomial in Z[z]. Let P(x) be a polynomial with &
roots in Z. We can write :

P(z) ==z 1:[(1‘ —a;) = Zpﬂ:l

Where z is a constant, the a; values are roots of the polynomial and the p; values
are the coefficients of the expanded expression of the polynomial. Now, suppose we
want to create a polynomial @(z) from P(x), with the & previous roots, plus a new
one we will call b. We have Q(#) = P(x)(x — b). Thus, from the expanded form of
P(z) we can compute Q(z) :

Qr) = qor® + et 4+ .+ (]k+1l‘k+1
= (x —b) (pox°® + przt + ... + pr¥)
= —bpoz® — bprat — ... — bpga® + poal + pra? + ... + pp2f Tl

So if we only represent Q(z) by its coefficients in the expanded form, one can
verify that :

qo = —bpo
¢ = —bp; +pi—1 forl <ie<k
dk+1 = Pk

Knowing the coefficients of a polynomial P(z) of degree k in Z, allows someone
to easily create a new polynomial of degree k& + 1 with the same roots as P(x)
plus a new one that can be chosen at random. This scheme can be extended to
polynomials with coefficients in an exponentiated field.
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Extension to a exponentiated field. Let m be a prime number and ¢ a gener-
ator of the cyclic group of order® m—1 . We can create a represention of gF'(®)where
P(z) is defined similarly as above, except for the fact that P(z) isin Z/(m— 1)Z[x].
Using the coefficients of P(xz), we define :

Bi = g?* (modm)

In such a case ¢g¥ @) will be represented in Z,, by the set By, = {Bo, B, -, Br}-
If r is a root of P(z) then we have :

ﬁgu X ﬁ{l X ... X ﬁ,’;k = gp”TD X gp”“1 X ...X gp”k = ¢""modm = 1 modm

Now, suppose we want to create a new set Bgy1 = {0,901, ..., 0k41} representing
g9@) where Q(z) = P(x)(x — b) in Zp,_1[x]. From above we have :

b= g7 = (Bo) ™"
§ = gmtritrion = (8" x By, forl1 <i<k
dpy1 = gP* = B

So, adding a root b to a system with % coefficients requires the computation in
Zopm of k 4+ 1 exponentiations and k products.

A.2.2 A group public key agreement.

This can be used as the base of a group public key agreement. An “initiator”
chooses a polynomial of degree 1 of the form z(z — @), where a is the root of the
polynomial - the initiator’s private key - and z a random value that is thrown away
after the computation. The initiator then computes {5y, 51 }where 5y = ¢ (modm)
and 8, = ¢ (mod m), then it sends them to the next member of the group. In
turn the next member computes a set of 3 values and passes it along. This goes on
until the last member has done his computation. After that, the public key can be
published and the group members can eventually verify individually that they are
in the group.

As one might guess, some questions have been voluntarily eluded here, for time
and space reasons. The setup phase described above needs to be secured in a
way or another. This is a similar problem as in the Diffie-Hellman key agreement
procedure. Another problem is key certification : since it’s so easy to add a user to
a group, provisions should be made for key certification...

Drawbacks. There are a few drawbacks in this scheme. The first one is that if
we use it for signatures, there is no central authority to verify the signature in case
of a disagreement. More precisely, there is no practical way of finding who signed
a document on behalf of the group. A hybrid scheme could probably be used as
suggested in [4] : we would share a secret with a authority that would be capable
of “opening” the signature in case of a problem and the hosts would also keep an
individual secret, possibly similar to the polynomial roots described above.

The second problem is that removing a user is not simple. Mathematically, it’s
possible but 1t requires cooperation from the user who leaves the group. So the
only safe way to do it is to recompute the public key from the start, excluding the
leaving user from the new key agreement.

The third and biggest problem is scalability. As we can see, the computation
and the key size of the group is proportional to the group size. This is often the case

3this can probably be generalized to a non prime m with little modification
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in group public key schemes but ideally we would like to have fixed size keys and
computation amounts. For example, Camermish[3] has proposed such a scheme,
but it requires a very strong hash function.
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