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ABSTRACT

Accurate Mobile Geographic Information System (GIS) is a
major building block of many applications, particularly in
Intelligent Transportation Systems (ITS). In this context,
GPS provides position information of each vehicle, while
immediate surrounding information is gathered through the
exchange of beacons. Yet, the ITS environment is character-
ized by frequent losses of GPS signal and beacons. Estima-
tion/tracking based on Kalman or Particle filters could be
an alternative to support the precision of the Mobile GIS,
but both approaches are equally sensitive to missing and
unreliable data. In this paper, we propose GSF, a Glow-
worm Swarm Optimization to particle filters, adding the
bio-inspired capabilities of Glowworms to converge to mul-
tiple potential estimates, when unreliable mobile GIS lack
precise updates. We first analyze the performance of GSF by
considering perfect conditions. Second by considering GPS
signal loss, packet loss and positioning errors. Simulation
results show that our approach achieves its design goal of
improving the precision of the mobile GIS. GSF performs
better than standard particle filter scheme in terms of po-
sition accuracy, and this at a reduced complexity and fair
convergence time.

Categories and Subject Descriptors: H.2.8 [Informa-
tion Systems]: Database Management: Database applica-
tions: Spatial databases and GIS;

G.3 [Mathematics of Computing]: Probability and Statis-
tics: Probabilistic algorithms (including Monte Carlo);
C.2.1 [Computer-Communication Networks]: Network Ar-
chitecture and Design- Wireless Communication;

1.6.6 [Simulation and Modeling]: Simulation Output Analy-
sis.

Keywords: Mobile GIS, GPS, Particle Filter, Swarm In-
telligence, ITS.

>kEURECOM industrial members: BMW Group, Cisco, Monaco Tele-
com, Orange, SAP, SFR, STEricsson, Swisscom, Symantec, Thales.
The authors would further acknowledge the support of the French
DGCIS/OSEO for the FOT Project SCOREF.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ACM SIGSPATIAL MobiGIS ’12, November 6, 2012, Redondo Beach, CA,
USA.

Copyright 2012 ACM 978-1-4503-1691-0/12/11 ...$15.00.

1. INTRODUCTION

Mobile Geographical Information System (GIS) is an emerg-
ing technology combining GIS and the capabilities of mobile
communication to access, retrieve, fusion and alter remotely
stored data. Geographic data can be obtained not only by
means of traditional GIS methods such as acquisition from
GPS, digital road maps and local databases, but also via
data coming from wireless technologies. This first allows re-
mote access to large size databases, but also enables data
collection and storage from mobile GIS applications to re-
mote databases.

In ITS, GPS data and beacon messages represent the ma-
jor sources of geographic information for the mobile GIS.
GPS provides local position information of each vehicle,
while geographic information of the surrounding environ-
ment (called commonly “awareness” is collected from the
beacons exchanged between nodes. A high GIS precision is
strongly required by many applications, notably ITS traffic
safety. For instance, in case of collision avoidance applica-
tion, accurate geographic information of each vehicle and
their neighbors has to be provided by the mobile GIS in or-
der to efficiently evaluate the risk of collision with potential
vehicles. Yet, GPS signals and wireless communication are
known to be unreliable and uncertain. Beacon losses due
to high fading and interferences may occur frequently, and
GPS signals may be missed or received with large errors. In
such cases, extrapolating unreliable or missing data using
position tracking represents a solution for the Mobile GIS.

Tracking has been studied extensively in the last decades
and several tracking approaches have been proposed. Bayesian
filters i.e. Kalman filters[2] and particle filters [8] are the
most known ones. The limitations in these approaches are
that they rely on reliable and constant position updates ei-
ther from GPS or from beacons, as well as on assumptions
that future motions not varying much from the previous
ones. Yet, the unreliable characteristics of the wireless chan-
nel and GPS signals, as well as unexpected sudden motion
changes typically found in vehicular motions, make those fil-
ters lose the precise location of estimated vehicles. Observ-
ing that vehicular mobility is jointly governed by physical
and social laws, e.g. clusters are formed on the road as a
result of social needs and behaviors, and depicts comparable
patterns to swarm behaviors, we suggest to rely on artificial
swarm intelligence to enhance tracking algorithms.

In this work, we propose glow-worm swarm filter (GSF),
a swarm-based SIR particle filtering based on multiple hy-
potheses tracking. The proposed solution is to consider not
only a single potential future location but also to consider



various other potential locations modeling the eventual loss
of GPS signal or packets in addition to the unpredictable
motion changes. A glow-worm swarm optimization (GSO)
algorithm has been used because of its capabilities to find
multiple local optima and to cluster the search space into
various multiple hypotheses. This might implicitly improve
the functionality of particle filter by augmenting the diver-
sity of particles and avoiding the degeneracy problem. Our
approach can be applied in several GIS domain but in this
paper we investigate the case study of ITS. We evaluate the
performance of GSF with a basic SIR particle filter (later re-
ferred as PF) scheme in terms of precision and convergence
speed. Using the iTETRIS [1] simulation platform and cal-
ibrated realistic vehicular scenarios, we illustrate how GSF
provides better tracking accuracy requiring a lower number
of particles compared to the standard PF. Moreover, GSF
showed to achieve its design goal to ensure a trade-off be-
tween high tracking precision and fast convergence.

The rest of this paper is structured as follows. Section 2
analyses the tracking problem of unreliable GIS: the stan-
dard particle filter is discussed with its challenging problems
then we introduce our tracking approach GSF. Afterwards,
in Section 3, a simulation study is performed evaluating the
performance of GSF compared to the basic PF. In Section
4, we provide related works of position tracking. Finally,
Section 5 reports the conclusions and provides directions for
further research.

2. TRACKING UNRELIABLE GIS
2.1 Assumptions

In the scope of this work, we assume that each node (later
referred as ego node) manages and maintains a GIS includ-
ing the self location information gathered from Global Po-
sitioning System (GPS). GPS has become one of the most
important data resources of GIS. It provides 3-dimensional
position information [x, y, z], velocity vector [Vx, Vy] and
time information in real time. In ITS and related coopera-
tive applications, an up-to-date knowledge of the surround-
ing context is required as well. Therefore, each node handles
a GIS for other neighboring nodes. This is obtained by the
exchange of periodic beacons, i.e. broadcast messages sent
at fixed or variable rate over a single hop, and including
location and mobility data e.g. geographic position, speed
and direction.

2.2 Problem statement

Accurate location information is becoming increasingly
important for many applications. In particular, ITS cooper-
ative safety applications require precise and up-to-date GIS,
i.e. provided by local GPS data. Moreover, an accurate
context-aware knowledge, i.e. GIS of neighboring nodes, is
needed. These two kind of information are unfortunately
exposed to frequent loss of precision. In some specific zones
in the road, the GPS reception might be obstructed leading
to a wrong estimation of the self state. Moreover, due to the
high fading of wireless channel in the vehicular environment,
beacon messages sent from neighboring nodes are highly in-
fluenced by channel losses. These unreliable characteristics
suggest position tracking to support and to enhance the pre-
cision of the GIS.

Various estimators have been proposed over the past years.
Bayesian filters i.e. Kalman filters[2] and particle filters [8]

are the most popular ones. The common idea is to create a
posterior distribution of the inner motion state considering
all collected data i.e. from GPS or beacons. Kalman Fil-
ters have been widely used for tracking in several research
fields. Their key drawback comes from their implicitly as-
sumption that vehicular motions follow a linear model, and
that collected data is subject to Gaussian noise. Extended
Kalman filters (EKF) represent a possible alternative for the
estimation of nonlinear systems, although the posterior dis-
tribution remains approximated by a Gaussian distribution.
When dealing with the challenging environment of a mobile
GIS, both Gaussian approximations and motion lineariza-
tions are not accurate assumptions and might yield to low
tracking performance. Particle filters instead do not make
any assumptions in the motion or the posterior distributions,
and have been shown to fit well in GIS. They approximate
the posterior distribution by a set of weighted particles cor-
responding to potential estimates of the unknown state.

Conceptually speaking, in a Bayesian framework, the track-
ing problem is composed of three main blocks:

1. Internal Motion Model - the internal representation of
the evolution of the position. It is described by a mo-
bility model, which is supposed to match closely the
movement of the target vehicles. Mathematically, it is
represented as p(x¢|Ti—1)

2. Estimation Model - the estimation of the internal model
from observations (gathered from GPS or beacon mes-
sages). Particle filters could be employed to solve the
likelihood function p(z¢|z:).

3. Decision Making Model - the output of the tracking.
The posterior probability conditioned to the observa-
tions obtained by the decision model. Mathemati-
cally, it is represented as p(z¢|zt, 2¢—1...20), and solved
by functions such as Maximum Mean Square Error
(MMSE) or Root Mean Square Error (RMSE).

The effectiveness of position tracking depends extremely on
two basic elements. First, the accessibility of the external
observation (coming from beacons) is required for the good
performance of the tracking system. When a GPS signal is
missing or when packet exchanged between nodes are lost
due to bad channel conditions, a sudden large deviation is
expected to occur. Mathematically, if z; are missed for sev-
eral t values, then the likelihood function and the posterior
function cannot be evaluated properly. Second, the reliabil-
ity of the internal motion model. If it is known, predefined
and well controlled (as the case of most of the Bayesian
tracking approaches), the tracking problem is not complex.
Unfortunately, highly dynamic environment is characterized
by frequent and sudden changes in dynamic patterns. Ac-
cordingly, the evolution of the position p(z:|x+) deviates sig-
nificantly from the real state. Both aspects are regularly
experienced in mobile GIS for ITS environments. In this
work, our main focus is to improve the accuracy of the GIS
and provide an efficient estimation of the state of the ego
vehicle and other moving neighboring nodes under such cir-
cumstances. We address in details the first major problem
consisting of missing or erroneous GPS signals, or losing
packets exchanged between nodes due to a bad channel con-
ditions. We discuss partially as well the second issue of
motion model which is subject to sudden and unexpected
movement changes.



2.3 Particle Filtering

Particle filters approximate the posterior distribution, de-
scribing the state of the system, by a finite set of weighted
samples (or particles) {(x\”, w{"): i=1..n}. Recursive
Monte Carlo sampling is performed guided by a dynamic
motion model. Several implementations have been proposed
for Particle Filtering. Their main differences lie in the used
resampling method and/or importance distribution. Sam-
pling importance resampling (SIR) PF [8] is the most used
implementation in tracking systems. In order to avoid the
problem of degeneracy of the PF algorithm where all but
one of the importance weights are close to zero, resampling
is used at each time step. The posterior distribution is ap-

proximated by the importance weights W,Ei) as follows:
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w = w§i)1 x (
where the importance distribution 7(z¢|zo.t—1,y1:¢) is ap-
proximated as p(x¢|zi—1).

Algorithm 1 gives an overview of the SIR particle filter
operation. Mainly, SIR consists in three steps, the state
prediction where the posterior probability is given based on
the probabilistic system transition model p(x¢|x¢—1). The
second step is the update which is performed based on the
likelihood p(zt|z§?1). The particles are then resampled to
generate an unweighted particle set. Resampling is per-
formed by drawing n particles from the current set with
probabilities proportional to their weights and then assign-
ing to them equal weights 1/n.

Algorithm 1 Pseudo-code of the SIR particle filter

1: Initialization: )
Draw N particles x\" ~ po(x:|x;_1) with equal weights

2: State prediction:
x” ~ p(ifxi1)

3: Weights update:
For each particle: Calculate ng) = p(zt|x§i>)

4: Normalization:
For each particle: Calculate wi” = w!” / Z;;l(wii))

5: Resampling

Figure 1 depicts a detailed graphical representation of the
evolution of particles of the SIR algorithm with only n =9
samples. First, particles are initialized or distributed ac-
cording to the probability distribution p(x¢|x¢—1). At the
reception of a new observation, weights are computed for
the different samples according to the likelihood of the ob-
servation given the current state p(zt\xgi)). Normalization
and resampling are then performed to generate new particles
according to their weights with more particles in areas with
high weights and fewer particles in areas with low weights.
The state transition generates new particles states given the
current states and the algorithm is restarted.
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Figure 1: A representation of the evolution of the particles
following the SIR algorithm.

A weak point of particle filters is particles degeneracy.
Even with a high number of particles, it may happen that
the set of particles loses its diversity and deviates from the
real state. This is emphasized by the lack of external ob-
servations due to GPS signals or packets losses and/or to
the unexpected and sudden change in motion patterns, as
mentioned in Section 2.2. As depicted in Figure 1, in such
situations, the regions of likelihood are far away from the
prior distribution. Thus, most of the particles are gener-
ated with low weights. The reason behind this degeneracy
problem is that PF maintains one single hypothesis which is
strongly connected to the motion model’s assumptions. An
example of a vehicular scenario is illustrated in Figure 2,
based on this unique hypothesis, PF fails to track accurately
the neighboring vehicle after an update loss. The particles
lose the diversity yielding to severe divergence from the real
position.

Ego Vehicle:

Where the tracked Missed
vehicle could go?

Awareness
messagel

Predicted Real
Position (Major Position

‘ hypothesis) éi

Figure 2: An illustration of a tracking scenario where the
dots illustrate the generated PF particles. The tracked ve-
hicle is estimated by the PF of the ego vehicle to be in the
major hypothesis. After missing the beacon, PF fails to
predict properly the real position.

.

The proposed solution we describe next section is not only
to consider a single potential future location (illustrated as
Magor Hypothesis) but also to consider various other even-
tual locations due to the loss of GPS signals or observations
(illustrated as Minor Hypothesis), and/or to unpredictable
motion changes.



2.4 Glow-worm Swarm Filter (GSF)

Following observed human behaviors, when we lack clues
on where something disappeared, we look in various “po-
tential” locations as function of the context. Our filtering
proposal follows the same approach. Consequently, typical
situations resulting from GPS signals or packets losses, or
sudden change in mobility are modeled as alternative hy-
potheses apart from the expected single major hypothesis.
Maintaining multiple hypotheses allows the filter to handle
sudden changes and recover from temporary diversions. The
idea is to cluster the set of particles into sub-groups repre-
senting each a potential hypothesis. Therefore, we extend
the SIR PF with the bio-inspired pattern, namely the Glow-
worm Swarm Optimization algorithm (GSO) [5]. Before the
resampling phase, the GSO algorithm is applied. Accord-
ingly, the PF particles are mapped onto the glow-worms of
the GSO. The algorithm is able to divide the particles into
clusters that can converge simultaneously to multiple op-
tima. The set of particles is enriched with not only high but
also low probable hypotheses. The glow-worms behavior ap-
plies well to the idea of having multiple tracking hypotheses.

Figure 3 reproduces the same scenario of Figure 2 but this
time GSF is applied, particles are sub-divided into 3 groups,
one major hypothesis and two minor hypotheses. Consid-
ering these different hypotheses, the filter, consequently, is
able to manage the loss of the beacon and maintain effi-
ciently the tracking process stable.

Ego Vehicle:
Where the tracked Missed
vehicle could go? Awareness
messagel

Escape
Predicted (Minor hypothesis2)
Position (Major
hypothesis)

Real Position
(Minor hypothesis 1)

Cruising
(Major hypothesis)

Figure 3: An illustration of a tracking scenario. The dots in
the figure represent the particles corresponding to the posi-
tion estimate of the vehicle. The tracked vehicle is estimated
by GSF to be in the minor hypothesis. Considering unex-
pected beacons losses, GSF is able to ensure good tracking
performance.

2.4.1 Glow-worm swarm optimization (GSO)

In this section, we give more details about the GSO algo-
rithm. Basically, Glow-worm swarm optimization (GSO) [5]
is a swarm intelligence based algorithm inspired by the be-
havior of the glow-worms in nature where the female glows
to attract a male for mating. In the algorithm, a probabilis-
tic approach is used to select neighbors with brighter glow.
A luciferin value proportional to the intensity of the glow

Algorithm 2 Pseudo-code of the GSO

1: Parameters: n, lo, ro, v, p, B, S, I's, ¢
2: Deploy N glow-worms randomly with equal luciferin 1;
0) =1o

3: while t<itermax do

4 fori=1— N do

5: Update phase

6 Li(t) = (1-p)Li(t-1) + v J(xa(t))

7 end for

8 fori=1— N do

9: Movement phase

10: Determine the list of neighbors for glow-worm i

11: for j=1— N do

12: Calculate moving probability

13: end for

14: Select Glow-worm j according to the probability:
Py = (1,(t) - L(t) / (X5, (1n(t) — L(1)))

15: Move Glow-worm i toward j: x; (t+1) = x(t) +
S50 (1) - i (1)) / (I () - xa(6) 1)

16: Update neighborhood range: ry (t41) = min (rs,
masx (0, 1, (£)+A(n: - IN:(t)])))

17:  end for

18: end while

is associated with each agent. GSO starts with a random
deployment of an initial population of glow-worms in the
search space with equal quantity of luciferin 1o and with the
same neighborhood decision rg. Each iteration consists of a
luciferin update phase followed by a movement phase based
on a transition rule. The luciferin value is updated based
on previous luciferin value and a function J(z) that evalu-
ates the fitness of the previous position of the glow-worms.
The particularity of GSO is its decentralized decision mak-
ing aspect. The movement phase depends on the position of
neighbor where the glow-worm will move. The algorithm of
GSO is further explained in Algorithm 2.

2.4.2 GSF algorithm

In GSF, as shown in Algorithm 3, GSO is applied to par-
ticles before the resampling phase. Particles, considered
as glow-worms, move towards neighbors with high weights.
This results in a creation of several sub-groups with vari-
ous weights in the solution space. The particles resampling
is then performed for each sub-group. Only particles with
highest weights in each sub-group will survive.

Figure 4 depicts a representation of an example of the evo-
lution of particles according to GSF algorithm. The GSO
algorithm is performed before resampling phase. Particles
move towards neighbors with high weights. Accordingly, dif-
ferent groups are built corresponding to multiple hypotheses.
The resampling process is then applied to each group with
more particles in areas with high weights and less particles
in areas with low weights. The state transition predicts new
particle states given the current particle states and the al-
gorithm is restarted.

3. EVALUATIONS

In this section, we evaluate the performance of our new
tracking system aiming at enhancing the GIS accuracy. We
attempt to examine the effectiveness of our GSF algorithm
to track efficiently the state of both the ego vehicle and the
moving neighboring nodes considering the two cases with
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Figure 4: A representation of the evolution of particles ac-
cording to GSF algorithm.

Algorithm 3 Pseudo-code of the GSF

: Initialization: Deploy particles randomly

: State update: Apply mobility model

: Weights update

Normalization

: Move particles according to GSO algorithm

: Resampling taking into account the several sub-groups
created by GSO

DU W N

and without GPS (or packets) losses and under dynamic con-
straints. Moreover, GPS positioning errors resulting from
the precision of the navigation system are considered.

We perform a comparison of GSF with the standard par-
ticle filter scheme. We consider vehicular environment as
a case study to model dynamic systems. In the following,
we introduce the simulation setup and the configuration of
mobility and network scenarios. We present then the set
of performance metrics we have measured, and finally the
results of our experiments.

3.1 Simulation setup

We have carried out a set of simulations to examine the
performance of our proposed system under various realis-
tic conditions. We have used iTETRIS [1], the integrated
ITS simulation platform. iTETRIS enables the simulation
of V2X communications and the modeling of vehicular mo-
bility patterns and traffic conditions.

Simulations have been carried out on the basis of one ego
vehicle that runs GSF and the basic PF to compare both fil-
ters performances. Accordingly, simulations of GPS signals
and beacons losses are performed using the same scenario.
In the first case, by considering the scenario as self track-
ing of the ego vehicle. In the second case, by running the
same algorithm of the neighboring node on the ego node.
To simulate the loss, we proceed by suppressing the beacons
transmissions in some given time steps. We apply three dif-
ferent schemes of beacon update loss (or GPS signal loss):
one loss out of ten updates per second, two successive losses
and three successive losses.

3.1.1 Mobility scenarios

We have considered both urban and highway traffic en-
vironments. The former models the unpredictable and the
uncertain mobility due to the brutal change that can occur

in the vehicle trajectory in such environment. The latter
represents the high dynamic aspect of vehicular environ-
ment. The simulation experiments are based on four sce-
narios. We have used two calibrated realistic scenarios from
the city of “Bologna”. Furthermore, two artificial scenarios:
urban and highway have been designed. The first realistic
scenario called “Acosta Pasubio joined” models an urban en-
vironment composed of multiple intersections. The second
one, consists in a highway. The Figures 5 and 6 illustrate
the “Acosta Pasubio joined” and the highway iTETRIS sce-
narios. The configuration parameters of our simulations are
shown in Table 1.

10S.
Figure 6: iTETRIS Highway mobility scenarios.

Scenario Size Mean Max Max Max
Speed Speed Accel Deccel
[m/s] [m/s] [m/s2] [m/s2]

Artificial- x:2000m | 12.2 13.5 1 4.5

Urban y:100m

Artificial- x:10000m| 18.47 36 1 4.5

Highway y:0m

iTETRIS- x:2126m | 8.01 13.89 3 4.5

Urban y:2117m

iTETRIS- x:69000m| 11.31 36.11 3 4.5

Highway y:53000m

Table 1: Configuration parameters of the mobility scenarios.

3.1.2 Network scenario

In our communication scenario, we consider that beacons
are sent at the network layer periodically. Table 2 gives an



Parameter Value

802.11p Channel CCH Control channel

Simulation Time 100s for each run

Number of simulation runs 5 times for each scenario

Propagation model Logarithmic Distance

Transmission power 20 dBm

V2V transmission range 400m

Table 2: Configuration parameters of the network scenario.

overview of the configuration parameters for the communi-
cation scenario.

Regarding the configuration of the GSO algorithm, the
parameters’ values resulting from [5] have been used. They
are illustrated in Table 3.

p 0% B e s lo
04(06|008| 5 [003]|5

Table 3: Configuration parameters of the GSO algorithm.

3.1.3 Performance metrics

Performances of GSF and the basic particle filter have
been examined in terms of:

1. Error distance (ED) which is defined as the Cartesian
distance between the estimate obtained from filtering
algorithms and the real position: ED = /(D2) + (D2)
where D? and D; denote respectively the error on X
and Y position. This metric represents a measure of
the level of accuracy of the filters.

2. Convergence time that denotes the filter run-time re-

flecting its real-time capability and its convergence speed.

3.2 GSF performance evaluation

In this section, we aim to evaluate the performance of our
GSF algorithm and compare it with the generic particle fil-
ter scheme considering several traffic environments. Mainly,
we examine in this section the level of accuracy of the fil-
ters in urban and highway scenarios. As a first step, we
assess the performance of both filters in loss free channel.
Then, we consider beacon messages or GPS signals losses
with various ratios. Finally, the impact of positioning errors
on both tracking schemes is studied. Moreover, the results
of the convergence time for both schemes are represented.
Error distance and convergence time are considered as the
evaluation metrics.

3.2.1 Tracking Precision

Urban Scenario.

Table 4 shows the average error distance obtained for both
GSF and the basic PF in case of both realistic iTETRIS and
artificial urban scenarios. We deduce that the performance
of both filters is enhanced when increasing the number of
particles. For urban traffic scenarios, GSF gives better esti-
mation results less than 1.6 m. However, the basic particle
filter exceeds 2 m of position error. An improvement on the

Scenario 10 100 500

GSF(A-Urban) 153m 149m 155m
PF(A-Urban) 273m 244m 224m
GSF(iTETRIS-Urban) 1.36 m 1.31m 1.27m
PF({TETRIS-Urban) 242m 1.79m 1.69m

Table 4: Error distance of GSF and the basic PF in case of
urban scenarios for different particles’ numbers.

Scenario 10 100 500

GSF(A-Highway) 210m 211m 210m
PF(A-Highway) 268m 252m 219m
GSF(iTETRIS-Highway) 141m 1.39m 1.35m
PF(iTETRIS-Highway) 214m 158m 1.60m

Table 5: Error distance of GSF and the basic PF in case of
highway scenarios.

tracking error (54% than the basic PF) is provided by GSF
in case of urban traffic. A slight decrease in the distance
error is observed for realistic iTETRIS scenario which can
be explained by the fact that the average speed is more im-
portant for artificial scenario. We conclude that the speed
is an influencing factor on the tracking model which will be
more shown in next section.

Highway Scenario.

The first observation that can be taken from Table 5 is
that the distance error increases when the velocity of the
vehicle becomes important. As expected, when the num-
ber of particles grows, the accuracy of both filters is en-
hanced. Moreover, GSF outperforms the standard particle
filter scheme which even with 500 particles can not perform
the same way as GSF with 10 particles. GSF is capable of
enhancing the tracking error of 12% only with 10 particles
compared to 500 particles for PF.

3.2.2  Impact of packet/GPS loss

ITS environment is constrained to high fading channels
and congested network which lead to a serious problem of
packet loss. Moreover, it may be common in ITS environ-
ment to miss GPS signals. The impact of this aspect on
tracking algorithms is worthy to investigate. In the follow-
ing, we study this aspect in both urban and highway traffic
environments.

Urban Scenario.

From Table 6, we observe that in all the cases the dis-
tance error from real position information grows when the
packet loss ratio increases. The distance error does not ex-
ceed around 2.5 m for GSF scheme however it goes up to
4.7 m in case of the basic PF. The particles in the basic PF
lose their importance. However, in GSF they are spread in
all possible directions to augment the space search.

Highway Scenario.

Table 7 shows the behavior of both tracking algorithms
in high speed environments. From the first sight, we can
deduce that for both filters the distance error increases com-



# Packet Tx 1/1 1/2 1/3 1/4
GSF 1.53m 1.69m 1.88m 2.50m
PF 273m 323m 426m 4.72m

Table 6: Impact of packet loss on the error distance of GSF
and the basic PF in case of urban scenario.

# Packet Tx 1/1 1/2 1/3  1/4
GSF 210 m 2.82m 3.68m 4.64m
PF 268m 399m 4.94m 5.78 m

Table 7: Impact of packet loss on the error distance of GSF
and the basic PF for highway traffic scenario.

pared to urban scenario. Moreover, when increasing the up-
date loss ratio the error becomes more and more important.

Figure 7 depicts the evolution of the distance error in ur-
ban scenario during simulation time. Both results with and
without updates loss (first scheme) are plotted. We can ob-
serve that the distance error increases in case of update loss
for the basic PF and the GSF. Moreover, we distinguish two
zones in the curve, the former where both filters perform
approximately the same way. The latter is the zone where
the basic particle filter deviates from the real position and
gives more than 2m of position error which is due to the
augmentation of vehicle speed. In contrast to particle filter,
the performance of GSF remains almost stable when vary-
ing the vehicle velocity. This is due to the intelligence in our
tracking scheme and its reliability to provide the highest po-
sition accuracy. Regarding highway scenario illustrated in
Figure 8, three zones can be defined. The first corresponds
to an equivalent performance for both filters. It is worthy
to note that the performance of our tracking model can be
shown in the second zone where GSF outperforms PF and
the last one, corresponding to high velocity, where both fil-
ters deviate from the real position.
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Figure 7: The evolution of the Error distance of GSF and
PF with packet loss ratio (1/1) in case of urban scenario.

3.2.3 Impact of sudden changes in motion model
Sudden and unexpected movement changes influences dra-

matically the performance of the tracking scheme. It is the

subject of investigation of this section. Figure 9 depicts a
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Figure 8: The evolution of the Error distance of GSF and
PF with packet loss ratio (1/1) in case of highway scenario.

tracking case taken from iTETRIS Acosta scenario where
the vehicle starts moving from second 32. At seconds 40
and 42 the position of the vehicle deviates abruptly due to
two successive lane changes. This leads to a severe devia-
tion of the particle filter where the position error reaches
4m. However, GSF succeed to track well the vehicle giving
an average position error of around 1.3m.
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Figure 9: Tracking error of GSF and PF in case of lane
change.

3.2.4  Effect of positioning errors on tracking perfor-
mance

A part from GPS signal loss, another source of error more
related to the precision of the navigation system can be in-
troduced to the positioning information. In this section, we
examine this aspect and we evaluate the behavior of GSF
and the basic SIR PF when we consider the error of posi-
tioning devices that can be introduced to the real position.
Table 8 summarizes the obtained results for all of the differ-
ent traffic scenarios. We can conclude that the performance
of GSF remains stable however a degradation of PF perfor-
mance can be observed. For instance the position error goes
from 2.14m to 3.26 in case of realistic highway scenario.

The obtained simulation results reveal that GSF achieves
its design goal of providing a good and sufficient level of ac-
curacy for position as compared to the basic particle filter
scheme. GPS signals and awareness updates losses as well
as errors on positioning have shown to be important and
influencing factors for the precision of filters. In the next



Scenario PF GSF

Artificial-Urban 3.08m 1.58 m
Artificial-Highway 3.18 m  2.08 m
iTETRIS-Urban 231m 1.38m
iTETRIS-Highway 3.26 m 1.44 m

Table 8: Impact of positioning error on the error distance
for PF and GSF and considering 10 particles.

Scenario 10 100 500
GSF(A-Highway) 1.6s 40.7s 17154
PF(A-Highway) 0.6s 82s 158.7s

GSF(A-Urban) 1.3s 33.7s 9346s
PF(A-Urban) 06s 82s 1582s

Table 9: Convergence time of GSF compared to the basic
PF.

section, we study the performance of the filters in terms of
convergence time.

3.2.5 Convergence time

In order to evaluate the real-time performance of the track-
ing algorithms, the execution time has been measured for
different numbers of particles. Table 9 illustrates the real
execution time in seconds of 100s of simulation in ns-3 for
some scenarios. The basic PF ensures the lowest run time
compared to GSF for the different scenarios which is due
to the extra computation that GSF algorithm introduces.
However, in order to respect real-time requirements of ITS
active safety applications and at the same time preserve a
high level of accuracy, a trade-off between fast convergence
and high precision must be taken into account. The per-
formance of GSF with 10 particles showed to ensure this
trade-off.

4. RELATED WORKS

Tracking has been extensively studied in many research
domains. Several mechanisms have been proposed to en-
hance the accuracy of the state estimation. The most rele-
vant techniques of mobility prediction that we found in the
literature can be classified in two categories: Bayesian filters
such as Kalman [2] and particle filter [8][4], and heuristic ap-
proaches based on neural networks [3][7] and genetic algo-
rithms [9]. Generally, the issue with heuristic schemes is the
memory usage. For instance, genetic algorithm is character-
ized by a long processing time and there is no guarantee for
convergence. The performance of neural networks depends
on the learning phase which is inappropriate for dynamic
environments.

Kalman filter is an optimal Bayesian filtering approach
whose advantage is its simplicity in implementation and
computation. Nevertheless, it has been designed mostly to
suit linear and Gaussian problems considering simplistic as-
sumptions. This does not cope with the dynamic nature of
ITS systems. Particle filters, on the other hand, consider
non-linear and non-Gaussian systems but also does not re-
quire very complex computation resources. In spite of these

advantages, particle filters have the drawback of particles
degeneracy. Even with a high number of particles, it may
happen that the set of particles loses its diversity and de-
viates from the real state. Many optimization algorithms
have been proposed to tackle this limitation. For instance,
the authors in [6] propose to introduce genetic algorithm in
the basic particle filter approach. As mentioned above, this
may reduce the convergence rate due to the heavy compu-
tation time that genetic algorithms require.

S. CONCLUSIONS AND FUTURE WORKS

In this work, we proposed to improve mobile Geographic
Information Systems (GIS) for uncertain and unreliable en-
vironments by integrating an swarm-inspired tracking mech-
anism. We have presented GSF (Glow-worm Swarm Filter),
an improved particle filter designed to deal with unreliable
wireless channel resulting in beacon messages and GPS sig-
nal loss on the one hand, and with the unpredictable inter-
nal dynamic models on the other hand. The main feature of
GSF is the glow-worm abilities to track multiple hypothe-
ses (i.e. potential location estimates), typically required
when the previously described challenges add a large un-
known on the location estimates. Simulation results show
that GSF outperforms the basic particle filter and ensures
a good trade-of between high precision in position estimate
and fast convergence. In future works, we plan to improve
our tracking system and particularly the decision making
model. We believe that it could be the key to further reduce
the error to fall below that of the GPS precision require-
ments in ITS (1.5m).
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