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Abstract—The unsupervised learning of spectro-temporal pat-
terns within speech signals is of interest in a broad range of
applications. Where patterns are non-negative and convolutive
in nature, relevant learning algorithms include convolutive non-
negative matrix factorization (CNMF) and its sparse alternative,
convolutive non-negative sparse coding (CNSC). Both algorithms,
however, place unrealistic demands on computing power and
memory which prohibit their application in large scale tasks.
This paper proposes a new online implementation of CNMF
and CNSC which processes input data piece-by-piece and up-
dates learned patterns gradually with accumulated statistics.
The proposed approach facilitates pattern learning with huge
volumes of training data that are beyond the capability of existing
alternatives. We show that, with unlimited data and computing
resources, the new online learning algorithm almost surely
converges to a local minimum of the objective cost function.
In more realistic situations, where the amount of data is large
and computing power is limited, online learning tends to obtain
lower empirical cost than conventional batch learning.

Index Terms—Non-negative matrix factorization, convolutive
NMF, online pattern learning, sparse coding, speech processing,
speech recognition

I. INTRODUCTION

Many signals exhibit clear spectro-temporal patterns; the
discovery and learning of such patterns with automatic ap-
proaches is often needed for signal interpretation and for
the design of suitable algorithms in practical applications.
In speech signals, for instance, patterns of interest might
be related to the speaker identity or the phonetic content.
Whilst some of these patterns might be readily defined and
learned with supervised approaches, e.g. neural networks,
more complex patterns are difficult to pre-define and annotate,
particularly when they involve large datasets, hence the need
for unsupervised approaches.

Various unsupervised learning techniques have been devel-
oped for automatic pattern discovery. The general idea behind
such learning approaches involves the search for a number of
patterns which can be used to reconstruct a set of training
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signals according to a certain cost function, e.g. minimum
reconstruction loss, and an appropriate set of constraints. This
can be written formally as:

W̃ = arg min
W
{min
H

`(X, X̃(W,H))} s.t. {gi(W,H)} (1)

where X represents a set of training signals and X̃ their
reconstructed approximations. `(·, ·) represents the objective
function and {gi(W,H)} represents the set of constraints. The
reconstruction usually takes a linear form:

X̃(W,H) = W ×H

where H represents the projection of X̃ onto a set of patterns
W . Pattern learning is thus closely related to matrix factoriza-
tion, a field that has been studied extensively in mathematics
and statistics. In signal processing and pattern learning, W is
referred to as a dictionary whereas in statistics, W is referred
to as a basis. The coefficient matrix H is known as a factor
matrix or a code matrix in some literature. In this paper we
refer to W and H as ‘patterns’ and ‘coefficients’ respectively.

Different cost functions and constraints lead to different
learning techniques. An l-2 reconstruction loss or Kullback-
Leibler divergence cost function and a non-negative constraint
applied to both patterns and coefficients leads to non-negative
matrix factorization (NMF) [1]–[6]. In contrast to other pattern
learning approaches NMF is capable of learning partial pat-
terns and has thus proved to be popular in applications such as
data analysis, speech processing, image processing and pattern
recognition [7]–[11].

A number of extensions have been introduced to improve
the basic NMF approach, e.g. [12]–[23]. Convolutive NMF
(CNMF) [24], [25] and sparse NMF [26]–[28] are among
the most significant. Patterns learned with convolutive NMF
span a number of consecutive frames and thus capture spectro-
temporal features. With sparse NMF, sparsity constraints im-
posed on both patterns and coefficients generally lead to
improved representation and noise robustness. The two exten-
sions can be combined, resulting in a more powerful learning
approach referred to as convolutive non-negative sparse coding
(CNSC) [29]–[32].

While promising results have been demonstrated in some
tasks, such as speech enhancement [33] and source separation
[34], NMF and its variants such as CNMF and CNSC place
high demands on both computing resources and memory when
the training database is large. The original form of the multi-
plicative update procedure [4] requires all the signals to be read
into memory and processed in each iteration; this is prohibitive
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in large scale applications such as large vocabulary speech
recognition which usually involves thousands of gigabytes
of training data. This problem is more pronounced for both
CNMF, where patterns cover a greater number of signal frames
and so are usually large, and CNSC, which not only involves
larger patterns but also a greater number of patterns. In some
cases their number might even be larger than the signal dimen-
sion (sometimes referred to as ‘over-complete patterns’). Most
related publications in speech processing accordingly focus on
small databases, e.g. TIDIGITS or TIMIT and learning is often
based on even smaller subsets or random samples [35], [36].
Such ad-hoc learning schemes are clearly unacceptable for
complex tasks.

To address this problem, we propose in this article a
novel on-line learning approach for CNMF and CNSC, which
processes input signals piece-by-piece and updates learned
patterns gradually using accumulated statistics. With this ap-
proach, only a limited segment of the input signal is processed
at a time. This approach resolves the problem of memory usage
and computing cost from which conventional NMF suffers,
thereby facilitating learning from large databases. As is the
case for batch learning, we prove that the proposed online
approach almost surely converges to a local minimum of the
objective cost function when the amount of data and compu-
tational resources are unlimited. We furthermore demonstrate
that the new online approach tends to obtain lower empirical
cost than batch learning in practical applications.

In the following section, we first formulate the learning
task and present the online CNSC algorithm (CNMF can
be regarded as a special case of CNSC with zero sparsity).
Section III presents a complexity analysis and convergence
study. Experimental results are reported in Section IV. Our
conclusions are presented in Section V with ideas for further
work.

II. ONLINE CONVOLUTIVE PATTERN LEARNING

A. Problem formulation

CNSC can be formulated according to different cost func-
tions [31], [37]. We adopt the formulation in [31] which de-
fines the learning problem as the minimization of the following
cost function:

f(W,H) = `(X, X̃(W,H)) s.t. Wi,j,k, Hi,j ≥ 0 (2)

where X ∈ RM×N0,+ represents the original signal of length N
in M -dimensional space1 and X̃ is its reconstructed approx-
imation. It is obtained from a pattern matrix W ∈ RM×R×P0,+

with R patterns of convolution range P and a coefficient
matrix H ∈ RR×N0,+ according to:

X̃(W,H) =

P−1∑
p=0

W (p)
p→
H s.t. Hi,j ≥ 0 (3)

1The term “signal” here denotes any sequential data which may be non-
negative in its natural form. In general, however, they are alternative or
transformed non-negative representations of the original signal, such as power
spectra.

where
p→
H shifts H by p columns to the right and where

W (p) ∈ RM×R0,+ is the pattern matrix corresponding to
p→
H .

Finally, the cost function is the sparse-regularized least square
distance given by:

`(X, X̃) = ||X − X̃||22 + λ||H||l (4)

where || . ||l denotes the element-wise l-norm, which is
equivalent to the sum of squares of the matrix elements when
l = 2 or the sum of their absolute values when l = 1. The
factor λ is introduced to control the sparsity of H . To avoid
a nullified H , patterns in the pattern matrix W are forced to
be unity, i.e., ||W (p)||2 = 1 for any p.

Note that in the optimization problem (2), both patterns W
and coefficients H are free variables and need to be optimized
simultaneously, even if patterns W are the primary target. This
co-optimization problem is not convex and it is difficult to find
a globally optimal solution. A multiplicative update approach
is presented in [31] to search for a local minimum solution
by extending the procedure presented in the seminal NMF
paper [4]. This is formulated as follows:

H ← H � [W (p)]T
←p
X

[W (p)]T
←p
X̃ +λΞ

(5)

W (p)←W (p)� X
p→
H

T

X̃
p→
H

T
(6)

where � is the element-wise product and where the division is
also element-wise. Ξ is a matrix whose elements are all equal
to 1. Note that the update of H is different for different p and
so, in practice, H is averaged over all p to obtain the updated
coefficients.

The above equations show that most of the computation
is involved in calculating the reconstruction X̃ , which has a
complexity of O(M ×N ×R×P ). This is highly demanding
for large pattern sets (large R) and large databases (large
N ). More importantly, since all signals must be loaded into
memory and processed together, both the memory and com-
putational requirements become prohibitive when the training
corpus is large.

B. Online CNSC

In order to extend the application of CNSC to large scale
tasks which involve large volumes of training data and com-
plex patterns, we present an online learning approach which
reads in and processes only a part of the training data at a
time and updates patterns gradually until the whole training
corpus is processed. The online approach has been presented
previously to train probabilistic models in machine learning
(e.g., [38], [39]), however it has seldom been studied in a
multiplicative update setting such as in CNSC. A recent contri-
bution presented by Mairal et al. is online dictionary learning
(ODL) [40]. ODL reads in and decomposes signals frame-
by-frame and updates patterns as each frame is processed.
The authors show that such ‘partial learning’ almost surely
converges to a stationary point of the objective function, given
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unlimited training data and a few reasonable assumptions.
Similar research can be found in [41], [42].

In this paper we present an alternative online learning
approach which is based on the simple NMF-style multiplica-
tive update rule, and employ this approach to learn temporal
patterns based on CNSC. Note that, while ODL supports NMF
or sparse NMF by enforcing the non-negativity constraint on
both patterns and coefficients, our work is the first to couple
online and convolutive learning.

We start by designing a partial learning formulation which
retains the temporal information within training data. We
define a signal piece as a number of neighboring frames
within which the signal is correlated, while different pieces are
assumed to be independent. Temporal patterns can be learned
by processing pieces sequentially and separately. Through a
simple re-arrangement, the pattern update rule (6) can be re-
written as follows:

W (p)←W (p)�
∑
u Ḃ(p, u)∑

qW (q)
∑
u Ȧ(q, p, u)

(7)

where u is the piece index and

Ȧ(q, p, u) =
q→
Hu

p→
Hu

T

Ḃ(p, u) = Xu

p→
Hu

T

are the statistics contributed by piece u. The contribution of
the first u pieces can then be ‘memorized’ in two auxiliary
variables defined as follows:

A(q, p;u) =

u∑
t=1

Ȧ(q, p, t)

and

B(p;u) =

u∑
t=1

Ḃ(p, t).

The most significant difference between rules (6) and (7)
is that the training data are broken into small pieces and
processed sequentially. The application of rule (7) is thus more
suitable in applications involving live, streamed data and the
adaptive learning of new patterns in time-variant data. Second,
through rule (7) the contribution of processed signals is stored
in two auxiliary variables. Their size is independent of training
data quantities which thus reduces memory and computational
demands and hence enables the learning of complex patterns
from large corpora. Finally, piece-wise learning allows the
updating of patterns with each new signal piece. This leads
to ‘early learning’ which significantly increases convergence
speed as presented in Sections III and IV.

This leads to online CNSC which is presented in Algo-
rithm 1. The flag variable activeW defines two different
learning schemes: if activeW = True, both patterns and
coefficients are updated K times iteratively when processing
each piece; if activeW = False, only coefficients are itera-
tively updated. The former approach is referred to as active
learning whereas the second approach is referred to as inertial
learning. Note that, in both cases, patterns are nonetheless
learned actively with the first piece to ensure reasonable

Algorithm 1 Online CNSC learning
1: U: number of pieces
2: K: iteration
3: A(i, j) ∈ RR×R, 0 < i, j < P
4: B(i) ∈ RM×R, 0 < i < P
5: A(i, j)← 0, ∀i, j
6: B(i)← 0, ∀i
7: for u := 0 to U-1 do
8: randomize(H)
9: for k := 0 to K-1 do

10: if (activeW=true) or (k = 0) then
11: W = updateW (A,B,Xu,W,H)
12: end if
13: H = updateH(X,W,H)(Eq.5)
14: end for
15: [Ȧ, Ḃ,W ] = updateW (A,B,Xu,W,H)
16: A(i, j)← A(i, j) + Ȧ(i, j)
17: B(i)← B(i) + Ḃ(i)
18: end for

Algorithm 2 CNSC pattern update

Require: A,B,X,W,H
1: Ȧ ∈ RR×R, 0 < i, j < P
2: Ḃ ∈ RM×R, 0 < i < P

3: Ȧ(i, j) =
i→
H
j→
H
T

∀i, j

4: Ḃ(i) = X
i→
H
T

∀i
5: A = A+ Ȧ
6: B = B + Ḃ
7: for p :=0 to P-1 do
8: F ← 0
9: for q :=0 to P-1 do

10: F = F +WqA(q, p)
11: end for
12: Ẇp = Wp � B(p)

F
13: end for
14: Wp =

Ẇp

||Ẇp||22
∀p s.t. Wp ∈ RM×R0,+

15: return [Ȧ, Ḃ,W ]

initialization of the pattern matrix. In general, active learning
converges with fewer iterations than inertial learning but places
a greater demand on computing resources. We address this
point further in Sections III and IV. Algorithm 2 illustrates the
pattern update process (7). Matlab code for these algorithms
is available online2.

We note that the online CNSC algorithm emphasizes pattern
learning and thus coefficients obtained for each signal piece
might be sub-optimal as a result of early learning. This is in
contrast to batch learning where patterns and coefficients are
optimized simultaneously with respect to the objective cost
function. With the learned patterns, however, the coefficients
can be optimized easily either by iteratively applying (5) or
by more efficient techniques such as quadratic optimization;
both are amenable to parallel computation. Finally we note

2http://audio.eurecom.fr/software
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that the choice of segmenting signals into pieces is a trade-off
between intra-piece correlation and inter-piece independence.
For speech signals, a segmentation according to sentence
boundaries avoids the splitting of voiced patterns and is thus
a natural choice.

III. COMPLEXITY AND CONVERGENCE ANALYSIS

In this section we analyze the computational complexity
and convergence of the online CNSC algorithm. We show
that online learning requires comparable (for active learning)
or less (for inertial learning) computation than batch learning
but still converges to a local minimum of the objective cost
function with probability 1, or almost surely. In practice, with
the same computational load, online learning tends to obtain
lower empirical cost than batch learning.

A. Computational complexity

The computing demand for both conventional batch learning
and online learning consists of updating the coefficient matrix
H and the pattern matrix W . We start the analysis with the
computation required for one iteration.

Firstly, for the coefficient update rule (5) which is shared
by both batch and online learning, one update requires (2M+
PM + 2)RN multiplications and RN divisions. Considering
updates for various shifts p, the computational complexity is
in the order of O(M ×N × R × P ) for one iteration and is
identical for both batch and online learning. In addition, rule
(6) shows that one pattern update iteration for batch learning
requires (3N + 1)MRP multiplications and MRP divisions,
while one online pattern update iteration (7) requires

(N +M)R2P 2 + (N + 1)MRP

multiplications and MRP divisions. If the signals are seg-
mented into U pieces and the length of the uth piece is Nu,
the computing demand to process the entire signals amounts
to

U−1∑
u=0

(Nu +M)R2P 2 + (Nu + 1)MRP

or
NR2P 2 +NMRP + UMR2P 2 + UMRP

multiplications and UMRP divisions. In the case where
N is dominant, batch learning and online learning require
approximately 3MRPN and (RP+M)RPN multiplications
respectively.

A simple calculation shows that online learning is more ef-
ficient if 2M > RP . This implies that, with high dimensional
features and when learning a small number of patterns with
a small convolution range, online learning update rule (7) is
more efficient than batch learning update rule (6). For example,
in speech processing we usually choose M = 128 for power
spectra, and the convolution range is often chosen to be small,
e.g., P = 4. If we learn a modest number of patterns, i.e.,
R < 64, then the online algorithm is more efficient than the
batch algorithm. For sparse coding where the pattern matrix
is over-complete e.g., R > M , then online learning is slower

than batch learning. The compensation, however, is that a
greater volume of training data can be handled.

We consider computing complexity for multiple iterations.
To simplify the comparison, we assume that both online and
batch learning use update rule (7) and therefore have the same
complexity for a single update. For batch learning, K iterations
require K times the computation required for one iteration.
For online learning, without considering the special treatment
for the first piece, active learning invokes K iterations for
coefficient update and K+1 iterations for pattern update, while
inertial learning invokes K iterations for coefficient update
and 1 iteration for pattern update. Thus active learning always
requires more computation than batch learning, while inertial
learning is always more efficient than batch learning. As we
discuss in the next section, both active and inertial learning
converge almost surely and the greater computational demand
for active learning is compensated for by faster convergence.

B. Convergence analysis

We here study the convergence behavior of the online CNSC
algorithm. As in ODL, we define the learning task as an
optimization problem which aims to minimize an objective
cost function fu(W ) with respect to the pattern matrix W ,
where fu(W ) is defined as follows:

fu(W ) ≡ 1

u

u∑
t=1

`Xt
(W )

where
`X(W ) = min

H

1

|X|
`(X, X̃(W,H))

is the cost of signal X and |X| denotes the number of frames
of X . The limit of the objective cost function is defined as the
expected cost function, denoted by f(W ) given as follows:

f(W ) ≡ EX [`X(W )]

= lim
u→∞

fu(W )

where EX represents expectation over X .
Note the definitions of fu(W ) and f(W ) are independent of

the specific learning process. In order to study the convergence
of the proposed CNSC online learning algorithm, we define
Wt as the pattern matrix learned at the tth step, and Ht as
the coefficient matrix of the tth signal obtained in learning.
An empirical cost function is defined as follows to evaluate
quality of the learning process:

ḟu(W ) =
1

u

u∑
t=1

`Xt
(W,Ht) (8)

where
`X(W,H) =

1

|X|
`(X, X̃(W,H))

is the empirical cost of signal X . Note that the coefficients
Ht are ‘imperfect’ in general, which means the multiplicative
update does not converge for each piece of signal, usually
due to limitations on computing resources. We therefore
refer to ḟu(W ) as the imperfect empirical cost function, and
`Xt

(W,Ht) as the imperfect cost of Xt.
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If the computing resources are unlimited and the learning is
‘perfect’, the coefficient matrix Ht is optimized and explicitly
denoted by:

Ĥt = arg min
H

`(Xt, X̃(Wt, H)

or

Ĥt = arg min
H

`(Xt, X̃(Wt−1, H)

with active and inertial learning respectively. The correspond-
ing empirical cost function is referred to as the perfect
empirical cost function and is explicitly denoted by f̂ :

f̂u(W ) =
1

u

u∑
t=1

`Xt
(W, Ĥt) (9)

where `Xt
(W, Ĥt) is referred to as the perfect cost of Xt.

With a few straightforward assumptions it can be proved
that the empirical cost f̂u(Wu) of perfect learning converges
to a local minimum of the expected cost function f(W ) when
u approaches infinity. With imperfect learning, the empirical
cost ḟ(Wu) converges to a stationary point of a cost function
in the form g(W ) = f(W ) + ε(W ) where ε(W ) is an error
function related to the learning ‘imperfection’. The proof can
be found in Appendix A.

C. Batch learning and online learning

The convergence analysis in the previous section shows that
both batch and online learning converge to a stationary point
of the expected cost function f(W ) with unlimited data and
unlimited computing resources. This situation is only valid
in theory. For small scale tasks where data are limited, but
computing resources are unlimited, batch learning converges
to a stationary point of the cost function fu(W ) while online
learning fails to converge, resulting in suboptimal patterns. For
large scale tasks, the more common situation is where training
data are abundant but computing resources are limited. In this
situation, due to its early learning property, online learning
tends to obtain lower empirical cost than batch learning, as
demonstrated by the experimental results presented in the next
section.

IV. EXPERIMENTS

We present two experiments which demonstrate the charac-
teristics and benefits of the proposed online CNSC approach.
The first experiment is a small-scale speech separation task
which aims to compare the behavior of the two online learning
approaches and batch learning; the second experiment involves
a noise cancelation task for large-scale speech recognition as
defined by the CHiME challenge3. It aims to demonstrate the
power of online learning in real applications.

3http://spandh.dcs.shef.ac.uk/projects/chime/challenge.html
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Fig. 1: An example of patterns learned with active learning.

A. Speech separation

In this experiment, we study the behavior of the proposed
online pattern learning algorithm using a toy experiment
proposed by Smaragdis4 in a study of CNMF [24]. The
task is to learn two sets of patterns from individual speech
signals of a male and female speaker respectively, and then
to use the corresponding patterns to separate the two voices
from a segment of mixed speech. Smaragdis showed that
speaker specific patterns can be learned using CNMF and
then employed to separate the speech signal according to the
constituent speakers. It has also been shown in [34] that sparse
coding can deliver improved performance in a similar signal
separation task.

The two individual speech segments used for pattern learn-
ing are in the order of 30 seconds in length, are sampled
at 16kHz and are mixed together by simple addition with
appropriate zero-padding being applied to the shorter speech
recording. Signals are windowed into frames of 32ms with a
frame shift of 16ms, thereby resulting in a frame rate of 62.5
frames per second. The discrete Fourier transform is applied
to each frame and the magnitude spectrum is used as a non-
negative representation which is suitable for processing with
NMF and CNSC. All experiments reported here are based on
fixed parameters of R = 20, P = 4 and λ = 0.01 which are all
chosen heuristically. Finally, all experiments were conducted
on a desktop machine with two dual-core 2.60GHz CPUs and
memory of 4GB.

Before presenting the separation task, we investigate several
factors which impact on the convergence behavior of online
learning. The recording of male speech is used to conduct
pattern learning and signal reconstruction; learning quality is
measured using the value of the cost function (4). Fig. 1
illustrates example patterns learned for the male speaker.

1) Convergence and computing resources:: The first factor
which impacts on convergence is the number of multiplica-
tive update iterations, which is directly related to computing
resources. The male speech signals are divided into 10 pieces

4http://www.cs.illinois.edu/∼paris/demos/
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Fig. 2: Value of the cost function for the first 100 iterations
with online and batch learning.
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Fig. 3: Average run-time for the first 100 iterations with online
and batch learning.

to conduct online learning. Batch learning is implemented as
active online learning with the number of pieces set to 1.

Fig. 2 presents the cost values obtained with various learn-
ing approaches for the first 100 iterations. We observe that
active online learning converges in the first 5 iterations while
inertial online learning requires 10 iterations to converge. An
interesting observation is that the cost obtained with the two
online learning approaches increases with a higher number
of iterations, indicating some over-fitting to the first few
signal pieces. Upon comparison of the two online learning ap-
proaches, we see that active learning leads to lower cost. This
is expected considering the more aggressive early learning.

Batch learning converges much more slowly than online
learning: it requires 15 and 30 iterations to reach the same
cost obtained with inertial and active learning respectively, and
requires more than 80 iterations to converge itself. In spite of
slow convergence, batch learning delivers lower cost if the
number of iterations is sufficiently large, thereby demonstrat-
ing its advantage in small scale tasks. These observations are
consistent with the convergence analysis presented in Section
III-B.

Fig. 3 shows the corresponding average run-time for the first
100 iterations of the three learning approaches. We see that in-
ertial online learning is the most efficient while active learning
is the most expensive. This observation is consistent with the
computational complexity analysis presented in Section III-A.

2) Convergence and piece length:: The second factor which
impacts on the convergence of online learning is the manner
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Fig. 4: Value of the cost function for U = 1 to 10 pieces and
after 10 iterations for active and inertial online learning.

in which signals are split into pieces. Generally speaking, the
splitting of signals into more pieces leads to more frequent
pattern updates and hence more aggressive early learning; we
therefore expect lower cost with smaller pieces for online
learning, subject to the assumption of independence among
pieces being held.

To test this conjecture, the signals of the male speaker are
split into U pieces, and then the patterns are learned by setting
the number of multiplicative iterations to 10. The cost of the
two online learning approaches is shown in Fig. 4 for U = 1
to 10. Note that active learning with U = 1 is equivalent to
batch learning. As expected, we observe that the two online
learning approaches obtain substantially lower cost than batch
learning (U = 1) and that smaller pieces lead to lower cost.
Note that, with increasing number of pieces, the cost function
exhibits some variation. This can be attributed to the boundary
effect stemming from signal segmentation.

The corresponding average run-time is shown in Fig. 5. We
first observe that active learning requires more computational
resources as the training data are split into more pieces, due
to the increased number of pattern updates. Inertial learning
exhibits different behavior: the computational demand first
decreases when the data are split into a small number of
pieces; with increasing number of pieces, the computational
requirements increase steadily by a small factor. This is be-
cause the initial pattern update for the first piece (Algorithm 1)
is less costly when the data are split into smaller pieces. As
the number of pieces increases, the computational saving with
the initial pattern update becomes marginal while the cost
associated with pattern update for each piece increases.

3) Convergence and data volume:: In the third experiment,
we study the impact of the amount of training data, for which
the male speech signals are duplicated and concatenated to
simulate increasing data volume. This simulation certainly
cannot fully represent practical scenarios with large amounts
of data, however it does approximate a stationary compact
distribution.

We first study the case of perfect learning. From Fig. 2 we
see that, with 100 iterations, both online and batch learning can
be regarded as converged. We therefore set up an experiment
where the number of iterations is fixed to 100 and the amount
of training data is increased by data duplication. Results are
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Fig. 5: Average run-time for between U = 1 to 10 pieces and
after 10 iterations for active and inertial online learning.
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Fig. 6: Value of the cost function with the multiplicative update
fixed to 100 iterations and the speech data duplicated up to 50
times.

shown in Fig. 6 where the x-axis denotes the number of du-
plications and the y-axis is the cost. We see that, with limited
data, batch learning obtains significantly lower cost than the
two online learning algorithms; with more and more data,
however, the cost obtained with online learning approaches
that obtained with batch learning. Although not reported in
the figure, when the duplication number increases to over
500, the three learning approaches obtain very similar cost,
thus supporting the convergence theory presented in Section
III-B. Note that for batch learning, the cost profile exhibits
some fluctuation which can be attributed to the boundary effect
between duplications.

In another experiment we study the case of imperfect learn-
ing. To simulate this situation, the number of multiplicative
updates is set to 10 and the training data are again increasingly
duplicated. Results are shown in Fig. 7. We observe that
online learning obtains significantly lower cost than batch
learning and that the two online learning approaches converge
to the same cost. When compared to the results in the case of
perfect learning (Fig. 6), we find that the costs obtained with
perfect and imperfect learning are comparable when empirical
convergence is reached. This suggests that a few iterations
might be sufficient for online learning on large scale tasks, as
we will see in the noise cancelation experiment presented in
Section IV-B.
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Fig. 7: Value of the cost function with the multiplicative update
fixed to 10 iterations and the speech data duplicated 50 times.

0 20 40 60 80 100
−1

0

1

2

3

4

5

6

7

Iteration

S
D

R
 

 

Batch
Online: Active
Online: Inertial

Fig. 8: SDR of speech separation.

4) Speech separation:: In the speech separation task, both
the male and female speech utterances are split into 30 pieces,
which has been shown to be effective for online learning.
The male and female patterns are learned using corresponding
training speech by applying either online or batch learning
approach. The spectrum of the mixed speech signal is then
projected independently onto the two sets of patterns and the
reconstruction cost of the resulting magnitude spectrum is
computed for the individual male and female speech signals
respectively5.

The separation performance is evaluated in terms of the
signal-to-distortion ratio (SDR), defined as follows:

SDR =
1

2

∑
i∈{male,female}

10log10
||sidist||2

||eiinterf + einoise + eartif ||2

where i denotes channels (female or male), sdist is the
original speech signal, einterf , enoise and eartif denote in-
terference among channels, noise and artifacts introduced by
separation [43]. The BSS Eval tool was used to conduct the
evaluation6. Results are shown in Fig. 8 where the x-axis rep-
resents the number of multiplicative iterations and the y-axis
represents SDR. It can be observed that, with a small number

5The original and reconstructed speech waveforms in this experiment are
available at http://audio.eurecom.fr/software/ol

6http://bass-db.gforge.inria.fr/bss eval.
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of iterations, the two online learning algorithms result in better
separation than batch learning. With an increasing number of
iterations, inertial learning converges to an approximate SDR
of 4.5 while batch and active learning give an approximate
SDR of 6.0, though batch learning ultimately outperforms
active learning. Note that this does not mean online learning
is less important: with a large amount of data, batch learning
simply runs out of memory whereas online learning requires
far less resources. In this case, online learning is thus the only
viable choice.

B. Denoising for speech recognition

In the second experiment we apply the online learning ap-
proach to suppress multi-source noise from speech signals for
improved automatic speech recognition (ASR). The basic idea
is to learn the patterns of clean speech and background noise.
Clean speech representations are then obtained by distributing
the signal energy among the speech and noise patterns and by
discarding that attributed to noise. The procedure is described
in [24].

1) Experimental setup: Our experiments are set up within
the framework of the CHiME challenge [44], where the task
is to recognize the speech utterances in a home environment
with various kinds of background noise under six different
signal-to-noise ratio (SNR) conditions. The background noise
comprises voices, television sounds, music, noise from home
appliances and a host of other ambient noises typically ob-
served in a home environment. All audio signals were recorded
with a binaural microphone array. The location of the target
speaker is specified to be 2 meters directly in-front of the
microphone array, while the type of noise sources and their
locations are unknown and variable.

The database contains recordings from 34 speakers and a
set of 84 recordings of ambient noise, each of which is 5
minutes in duration. The training set comprises 500 utterances
per speaker amounting to approximately 15.3 minutes of audio
per speaker. The test set comprises 600 utterances under each
of the following SNR conditions: −6dB, −3dB, 0dB, 3dB,
6dB and 9dB. All utterances follow a simple grammar that
involves digits and letters; only the hypotheses for the letter
and digit are scored to evaluate recognition performance.

As the first step, the two channels were mixed with zero de-
lay to obtain a mono-channel audio signal for further process-
ing. We used the standard ASR setup provided for the CHiME
challenge. The setup uses speaker dependent acoustic models
trained on Mel frequency cepstral coefficients (MFCC) with
energy plus the first and second order derivatives. Cepstral
mean normalization (CMN) is applied to improve robustness
to additive noise. The language model is a simple lattice that
covers all possible sequences in the grammar mentioned above
and the utterances are decoded using HTK [45].

Spectral representations are extracted using a window size
of 25ms and an overlap of 10ms. Speaker patterns were
learnt from the training set available for each speaker using a
convolutional span of 4 frames. This is equivalent to capturing
prominent spectro-temporal patterns that span about 70ms, i.e.
subphone patterns. For each speaker, a pattern matrix is learnt
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Fig. 9: Average run-time for 10 iterations with online and batch
learning.

using batch learning [46]. Its dimension was empirically set
to 100.

The learning of noise patterns is more complex. Since the
noise is highly diverse and variable, we would ideally like
to learn as many patterns as possible from the 7 hours of
noise recordings provided in the development set. However,
the memory and computational requirements to store and
process such large amounts of data are very demanding and the
classical batch learning approach simply fails. This problem
can be avoided through incomplete training [35], [36], or
through online learning as proposed in this work.

2) Incomplete noise pattern learning:: In this experiment,
we choose a subset of the background training data to learn
the noise patterns. On the one hand this avoids the prohibitive
computing and memory demands with batch learning and, on
the other hand, provides an opportunity to compare batch
learning and online learning in a real application. In our
experiment, a single 10 second audio segment from each of
the 5 minute waveforms are randomly sampled to obtain 840
seconds of background noise.

With this data, patterns of size 50, 75 and 100 were learnt
using the batch, active online and inertial online learning
approaches. Each of the 10 seconds of audio segments acts
as a piece in online learning. Similar to the experiments in
Section IV-A, experiments were conducted with a single dual
core 2.6GHz processor with 4GB memory.

The time taken for pattern learning with 10 iterations using
the three learning methods is shown in Fig. 9. As in the exper-
iments of Section IV-A, the values presented in the figure are
averaged over 100 runs to avoid computational fluctuations.
Results confirm that active online learning takes longer than
batch learning while inertial online learning outperforms batch
mode in terms of computational time, as discussed in Section
III-A. ASR performance on the evaluation data is shown in
Fig. 10. We observe considerable improvement in accuracies
for low SNR conditions and a marginal improvement over the
baseline for high SNR conditions with all the three learning
approaches. An interesting trend that can be observed in
Fig. 10 is that, at lower SNR conditions, active online learning
outperforms the other two approaches, while at high SNR
conditions and in particular, with higher number of noise
patterns, active learning tends to give the worst performance.
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Fig. 10: ASR accuracies with CNSC-based noise cancelation
where the background noise patterns are learnt on a set of
randomly sampled background audio segments with batch,
active online and inertial online learning.

This might be explained by the quick convergence to partial
patterns with active learning as a result of which the speech
energy may be incorrectly attributed to the noise patterns. This
problem is more severe in high SNR conditions where the
noise is low while the number of noise patterns is large. This
leads to the incorrect attribution of speech energy.

3) Complete noise pattern learning:: Methods employing
random sampling techniques are not desirable in practice since
a large proportion of the training data remains unused. In
order to learn noise patterns from the entire training data,
we apply the proposed online pattern learning algorithm.
The background training data are provided in segments of 5
minutes each. We use the same partition structure as pieces
in the online training algorithm. We learn background bases
with 100, 150 and 200 dimensions respectively, all with a
convolutional span of 4 frames.

ASR accuracies on the evaluation data with noise cancela-
tion using background patterns learnt with active and inertial
online learning algorithms are presented in Fig. 11. We observe
that pattern-based denoising significantly improves ASR per-
formance with both active and inertial online learning. Again,
active learning is more effective in low SNR conditions than
inertial learning; it however does not show much advantage
at high SNRs. Simply increasing the number of patterns does
not result in significant gains.

Fig. 12 presents a comparison between incomplete and
complete learning. We see that the patterns learned from the
entire background noise data provide improved accuracies over
those learned with random sampling in the case of active
learning; for inertial learning, the advantage of using the entire
data is not evident, indicating that the training data does not fit
a stationary distribution and thus slow inertial learning cannot
reach empirical convergence with the use of additional data.
Nevertheless, these results clearly demonstrate the capability
of online learning in real, large-scale applications.
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Fig. 11: Accuracies with CNSC-based noise cancelation where
the background noise patterns are learnt using active and
inertial online CNSC.
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Fig. 12: Accuracy with online CNSC-based noise cancelation
where the 100 background noise patterns are learnt based on
random or entire data respectively. Results using both active
and inertial learning are presented.

V. CONCLUSION

This paper presents a new online CNSC algorithm to learn
convolutive non-negative patterns with sparse coding. Com-
pared to conventional batch learning, the proposed approach
is able to learn complex patterns from large volumes of
training data and is thus suited to large-scale applications. The
theoretical analysis shows that the online algorithm almost
surely converges to a stationary point of the cost function
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with unlimited computational resources and training data. In
real applications where the computational resources are limited
and the training data volume is large, online approach tends to
gain lower empirical cost than batch learning. This analysis is
confirmed by the results we obtained with a toy experiment in
speech separation. A noise cancelation task for a large-scale
speech recognition system we constructed within the CHiME
challenge framework demonstrates that the online learning
approach is efficient in learning complex patterns from large
corpora in real applications.

Future work includes the study of incremental patterns with
online learning. Another direction is to extend the online
CNSC approach to other unsupervised learning techniques
such as sparse PCA.

APPENDIX A
CONVERGENCE PROOF

A. Convergence of perfect learning

This section proves convergence of the perfect empirical
cost f̂u(Wu). The proof is inspired by the convergence proof
for ODL [40] and is adapted to the CNSC algorithm. Before
presenting the proof, the following assumptions are made:
(A) The training signals follow a time-invariant distribu-

tion supported by a compact set. This assumption is
reasonable for many signals such as audio and video due
to the acquisition process.

(B) The update rules (5) and (6) are well-defined so that
the multiplicative update converges to local minima
with unlimited iterations. Theoretically the convergence
with this simple rule is not guaranteed, but it has little
impact in practice. In addition, with a simple modification,
the convergence can be enforced [6], [10]. We do not
consider such complexity in this work, and just assume
convergence. Reasonable initialization for the update pro-
cess and a bounded denominator matrix in the update
rules help to respect this assumption.

(C) The empirical cost function f̂u is strictly convex
with lower-bounded Hessians. This assumption can be
guaranteed with a threshold on the smallest eigenvalue of
the accumulated statistics 1

uA(u) [40]7.
(D) The existence of a unique solution for the coefficient

matrix is satisfied for signal pieces. For CNMF, this
means the rank of the pattern matrix is not larger than the
feature dimension; for CNSC, this means a unique sparse
code exists and can be found by l-1 optimization [47].

First notice that assumption (B) implies batch learning
converges to a local minimum of the cost function (4).
Convergence proof for online learning is not straightforward
and involves several lemmas regarding the convergence of
variation and the Lipschitz property of the objective and
empirical cost functions. Due to space limitations, we simply
cite the results; readers can find the proof in [48].

7Precisely, A(u) =
∑u

t=1
Ȧ(t)
|Xt|

following the utterance-averaged cost
function (9). This is different from the statistics in Algorithm 1 where the
cost function is frame-averaged. The use of utterance-averaged costs in the
proof simplifies notation; the proof presented here can be applied similarly to
the frame-averaged cost function.

Lemma A.1: Given assumptions (A)-(D), the following
convergence properties hold for the objective cost:

(1) |fu+1(W )− fu(W )| = O( 1
u )

(2) |fu+1(Wu+1)− fu(Wu)| = O( 1
u )

Lemma A.2: Given assumptions (A)-(D), if the update pro-
cess converges for each signal piece, then f̂u+1 − f̂u is
Lipschitz with a factor k = O( 1

u )
With these results, the following property holds for online

learning (again, the full proof is given in [48] and we simply
cite the results).

Lemma A.3: Given assumptions (A)-(D), if the update pro-
cess converges for each signal piece, then inertial online
learning ensures that:

f̂u(Wu+1)− f̂u(Wu) = O(
1

u
)

and active learning ensures that:

f̂u(Wu+1)− f̂u(Wu) = O(
1

u2
).

Another useful proposition states that the empirical cost
variation is O( 1

u ) with both active and inertial learning [48]:
Proposition A.4: Given assumptions (A)-(D), if the multi-

plicative update converges for each signal piece, the following
property holds with both active and inertial online learning:

f̂u+1(Wu+1)− f̂u(Wu) = O(
1

u
).

The convergence of online learning can be proved with these
results. As Proposition (3) in [40], the following proof applies
Theorem B.1 from [49], which states that if the sum of the
positive variations of a sequence vu is bounded, then vu is
quasi-martingale, which converges with probability one (see
Theorem B.1). The following proposition states the conver-
gence of active learning.

Proposition A.5: Given assumptions (A)-(D), if the multi-
plicative update converges for each signal piece, the empirical
cost converges to the objective cost almost surely with active
online learning, i.e.,

lim
u→∞

f̂u(Wu) = lim
u→∞

fu(Wu) a.s.

Proof:
Defining vu ≡ f̂u(Wu), we have:

vu+1 − vu = f̂u+1(Wu+1)− f̂u(Wu)

≤ u(f̂u(Wu+1)− f̂u(Wu))

u+ 1

+
`Xu+1

(Wu)− fu(Wu)

u+ 1

+
fu(Wu)− f̂u(Wu)

u+ 1
(10)

where we have applied

`Xu+1
(Wu+1) < `Xu+1

(Wu).

To use Theorem B.1, define the filter of the past information
as Fu. Considering the causal nature of Fu and applying the
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fact that fu − f̂u ≤ 0, we have

E[vu+1 − vu|Fu] ≤ u(f̂u(Wu+1)− f̂u(Wu))

u+ 1

+
E[`Xu+1(Wu)]− fu(u)

u+ 1

=
u(f̂u(Wu+1)− f̂u(Wu))

u+ 1

+
f(Wu)− fu(Wu)

u+ 1

≤ u(f̂u(Wu)− f̂u(Wu))

u+ 1

+
||f − fu||∞
u+ 1

where
||f − fu||∞ = sup

W
|f(W )− fu(W )|.

According to Lemma A.3,

f̂u(Wu+1)− f̂u(Wu) = O(
1

u2
)

and according to Lemma B.2 from [50] (see in Appendix),

E[||f − fu||∞] = O(
1√
u

).

We therefore have:

E[E[vu+1 − vu|Fu]+] = O(
1

u
3
2

).

Thus the expected positive variance of the process v is
bounded, so Theorem B.1 can be applied to prove v = f̂u(Wu)
converges with probability one, and that

∞∑
u=1

|E[vu+1 − vu|Fu]| < +∞ a.s.

This further implies that:
∞∑
u=1

E[vu+1 − vu|Fu] > −∞ a.s.

Returning to (10) and by summing over all variations on the
two sides, we can prove that:

∞∑
u=1

f̂u(Wu)− fu(Wu)

u+ 1
< +∞. a.s.

Let au = f̂u(Wu)− fu(Wu) and bu = 1
u+1 , we have:

|au+1 − au| ≤ (f̂u+1(Wu+1)− f̂u(Wu)) +

|fu+1(Wu+1)− fu(Wu)|.

According to Proposition A.4 and Lemma A.1, the two items
on the right side are O( 1

u ), and so |au+1 − au| = O( 1
u ).

Applying Lemma B.3, we obtain

lim
u→∞

au = lim
u→∞

f̂u(Wu)− lim
u→∞

fu(Wu) = 0 a.s.

This proves that, with unlimited data, the empirical cost with
active online learning converges to the objective cost almost
surely.

It can be further proved that the objective cost function fu
converges to the expected objective cost function, i.e.,

||fu − f ||∞ →u→∞ 0

and therefore

lim
u→∞

f̂u(Wu)− lim
u→∞

f(Wu) = 0 a.s.

This result shows that with unlimited data, the empirical cost
f̂(Wu) converges to the expected cost f(Wu) almost surely.
Since Wu is a stationary point of f̂u with active learning, it can
be proved that the distance of Wu and the set of stationary
points of the expected cost function f converges to 0. The
proof for this stronger result is similar to Proposition 4 in ODL
[40]. Finally, the same approach can be applied with minor
modification to prove convergence of the inertial learning. The
reader can find the full proof in [48].

B. Convergence of imperfect learning

Here we prove the convergence of the imperfect empirical
cost function ḟu(Wu). This corresponds to ‘imperfect learn-
ing’ where the multiplicative update does not converge for
each signal piece. This is generally the case in practice due to
limited computing resources.

First define δu(W ) as the bias of the imperfect empirical
cost shifted away from the perfect empirical cost of the uth

piece of signal, i.e.,

δu(W ) = `Xu
(W,Hu)− `Xu

(W, Ĥu).

The following proposition states that online learning converges
with imperfect coefficients.

Proposition A.6: Suppose online learning does not con-
verge for each signal piece due to limited computational
resources, and that the bias δu(W ) has the same expectation
in spite of u, i.e.,

EX,H [δu(W )] = ε(W ) ∀ u (11)

where the expectation is taken on both signals X and coef-
ficients H . Given assumptions (A)-(D), online learning con-
verges almost surely and that:

lim
u→∞

ḟu(Wu) = lim
u→∞

f̂u(Wu) + ε(Wu) a.s.

The proof again can be found in [48]. Theoretically, the perfect
empirical cost f̂u(Wu) does not necessarily converge, but if we
assume that the update on Wu in each step improves f̂u(Wu),
then it can be verified that f̂u(Wu) converges indeed and

lim
u→∞

ḟu(Wu) = lim
u→∞

f(Wu) + ε(Wu) a.s. (12)

This means that online learning converges to a stationary
point of a new function g(W ) = f(W ) + ε(W ), which is
obviously suboptimal for our task which intends to mini-
mize the expected cost f(W ). If the multiplicative update
approaches to convergence, ε(W ) approaches to 0 and the
learning process converges to f(W ), which is just the form
of a perfect learning.

Note that the above analysis relies on strong assumptions.
First the identical expected bias assumption (11) is not always
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respected, although some support can be found from the
random coefficient initialization and identical number of multi-
plicative iterations. Second, the assumption of improvement on
f̂u(Wu) can be simply false if the coefficients of each piece of
signal are highly imperfect. This suggests that the convergence
property with imperfect learning is not guaranteed in practice,
and may highly task-dependent.

Some interesting results can be obtained from the empirical
convergence proposition. First, notice that under the proposed
assumptions, both active learning and inertial learning con-
verge to local minima of cost functions in the same form
g(w) = f(W ) + ε(W ), which means the two learning
strategies may obtain similar empirical cost. Second, since `
is an utterance-based average cost, the convergence behavior
is not impacted by the length of signal pieces, and involving
pieces of variable lengths does not impact the convergence
property.

APPENDIX B
THEOREMS USED IN THE PAPER

In this section, we cite some theorems that are used for the
convergence proof in this paper. These theorem are mostly
reproduced from [40] for convenience of readers.

Theorem B.1: [Sufficient condition of convergence for a
stochastic process. See [49], [51], [52]]

Let (Q,F, P ) be a measurable probability space, ut, for
t ≥ 0, be the realization of a stochastic process and Ft be the
filtration determined by the past information at time t. Let

δt =

{
1 if E[ut+1 − ut|Ft] > 0,
0 otherwise.

If for all t, ut ≥ 0 and
∑∞
t=1 E[δt(ut+1 − ut) < ∞, then ut

is a quasi-martingale and converges almost surely. Moreover,
∞∑
t=1

|E[ut+1 − ut|Ft]| < +∞ a.s.

Lemma B.2: [A corollary of Donsker theorem for O( 1√
n

)

of |fn − f |. See [50], chap. 19.]
Let F = {fθ : χ → R, θ ∈ Θ} be a set of measurable

functions indexed by a bounded subset Θ of Rd. Suppose that
there exists a constant K such that

|fθ1 − fθ2 | ≤ K||θ1 − θ2||2
for every θ1 and θ2 in Θ and x in χ. Then F is P-Donsker.
For any f in F , define Pnf , Pf and Gnf as

Pnf =
1

n

n∑
i=1

f(Xi),Pf = EX [f(X)],Gnf =
√
n(Pnf−Pf).

Further suppose for all f , Pf2 < δ2 and ||f ||∞ < M and that
the random elements Xi are Borel-measurable. Then we have

EP ||Gn||F = O(1),

where ||Gn||F = supf∈F |Gnf |.
Lemma B.3: [A lemma on positive converging sums. See

[53], prop 1.2.4.]
Let an, bn be two real sequences such that for all n, an ≥

0 and bn ≥ 0,
∑∞
n=1 an = ∞,

∑∞
n=1 anbn < ∞, ∃K >

0 s.t. |bn+1 − bn| < Kan. Then limn→+∞ bn = 0.
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