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Abstract— Fear of security breaches has been a major reason for
the business world’s reluctance to embrace the Internet as a viable
means of communication. A widely adopted solution consists of
physically separating private networks from the rest of Internet
using firewalls. This paper discusses the current cryptographic
security measures available for the Internet infrastructure as an
alternative to physical segregation. First the IPsec architecture
including security protocols in the Internet Layer and the related
key management proposals are introduced. The transport layer
security protocol and security issues in the network control and
management are then presented. The paper is addressed to readers
with a basic understanding of common security mechanisms
including encryption, authentication and key exchange techniques.

I. INTRODUCTION

Apart from increased connectivity and a broad range of new
services, the Internet has also given technically advanced
intruders the opportunity to carry out a variety of attacks,
thereby threatening the integrity of its infrastructure and
violating the privacy of its users. Despite the current enthusiasm
that supersedes the initial reluctance of business and
government users, fear of security breaches on the Internet is
forcing most organizations to resort to radical solutions based
on physical separation between protected private networks - or
intranets - and the public Internet. The resulting segmentation is
a major impediment to the accomplishment of the concept of a
global Internet. Cryptographic security offers a viable
alternative to segmentation by preserving a strongly connected
global network. The Internet Engineering Task Force (IETF)
recently made significant progress in introducing cryptographic
security mechanisms at various layers of the Internet Protocol
Suite. These mechanisms allow for the logical protection of
information units during their transfer over the global network
and eliminate the need for physical segregation of legitimate
traffic from potentially harmful network portions. It is hoped
that cryptographic security measures will balance the ease and
simplicity of solutions based on physical segmentation and
provide a practical means of secure communication over the
global network for individual users. Nonetheless, segmentation
using firewalls and physically separate intranets will probably
remain as the only radical solution for globally protecting
enterprise networks against malicious traffic.

This article describes the cryptographic security mechanisms
of the current Internet architecture in the area of network
infrastructure, including Internet and transport layer protocols,
routing, directory, and network management functions. Figure 1
presents the new security components and existing components
enhanced with new security features with respect to the layers
of the Internet architecture. Section II presents the security
architecture for the Internet Protocol, including a detailed
description of the two security protocols, IP Authentication
Header and IP Encapsulating Payload, a summary of secure
hashing techniques adopted by this architecture, and the
concept of security associations. The interplay between security
protocols and their relationship to security associations are
illustrated in a set of typical scenarios pulling together the basic
components of the architecture. Section III describes the
transport layer security protocol and its basic components: the
record layer that provides basic security services for the
applications and the handshake protocol which assures key
exchange and the negotiation of the security functions used by
the record layer. Section IV presents current proposals for key
management in the Internet infrastructure. The Internet Security
Association and Key Management Protocol and its companion
Oakley key exchange protocol are the proposals most likely to
become formal standards.

Furthermore, secure data transfer on behalf of users and
applications relies on the security of the network control and
management protocols that maintain the global connectivity and
availability of the network. Among these protocols, the Domain
Name System of Internet enjoys the most complete set of
security enhancements as presented in section V, whereas the
other two major functions of the network infrastructure totally
lack or only partially enjoy a comprehensive security design.
Section VI discusses the isolated security mechanisms existing
in routing protocols and section VII summarizes the status of
network management security.

II. IP SECURITY

The security architecture of the Internet Protocol known as IP
Security (IPsec) [1][4] is the most advanced effort in the
standardization of Internet security. As the common vehicle for
various higher layer protocols, the Internet Protocol (IP) is
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vulnerable to several attacks threatening either the security of
the application payload carried by higher layer protocols like
the Transmission Control Protocol (TCP) or the behavior of the
network itself through the subversion of network control
protocols like the Internet Control Message Protocol (ICMP) or
the Border Gateway Protocol (BGP). IPsec covers both the new
generation of IP (IPv6) and the current version of IP (IPv4)
thanks to the retrofitting of IPv6 security mechanisms into IPv4.

IPsec can be used to protect an IP layer path between a pair
of end-systems or hosts, between a pair of intermediate-systems
- called security gateways -, or between a host and a security
gateway. A security gateway provides the packet forwarding
function at the IP layer and thus can be a router, a firewall or a
host with IP forwarding capability. IPsec provides the following
security functions in the IP layer: data origin authentication,
data integrity, replay detection, data confidentiality, limited
traffic confidentiality and access control.   In addition to the
individual security mechanisms that implement these services,
IPsec also provides management facilities for the negotiation of
services and service parameters between communicating
parties, as well as for the exchange of cryptographic keys
required by the basic security mechanisms. IPsec mechanisms

are designed to be algorithm-independent, in order to
accommodate changes in the event of possible evolution of
cryptographic algorithms. Nevertheless default algorithms are
defined for each service to facilitate interoperability.

IPsec was initially defined in a set of RFC’s [1][2][3]. A
substantially revised version was published in a series of
Internet drafts [4][5][6]. Even though the fundamental features
of IPsec persisted over the revision, the current IPsec
architecture based on the Internet drafts differs significantly
from the initial version in several respects. The initial version of
IPsec as defined by the RFC’s provided a framework that would
be completed with possible security mechanisms defined in
other documents whereas the current version is a self-contained
piece of architecture including a framework and a set  of
security transforms. Thus message fields previously defined in
accompanying documents are now part of the base specification
for IPsec. For example, security mechanisms like replay
detection, message sequence integrity are now an integral part
of the base specification and not a security transform defined in
other documents.

The current version of IPsec consists of the following
components:

- two security protocols: the IP Authentication Header (IP
AH)[5] and the IP Encapsulating Security Payload (IP ESP)[6]
that provide the basic security mechanisms within IP;

- security associations (SA) that represent the set of security
services and parameters negotiated on each secure IP path;

- algorithms for authentication and encryption.
IP AH and IP ESP may be applied alone or in combination

with each other. Each protocol can operate in one of two modes:
transport mode or tunnel mode. In transport mode, the security
mechanisms of the protocol are applied only to the upper layer
data and the information pertaining to IP layer operation as
contained in the IP header is left unprotected. In tunnel mode,
both the upper layer protocol data and the IP header of the IP
packet are protected or “tunneled” through encapsulation.

A crucial function closely related to the above mentioned
IPsec components is the automatic management of
cryptographic keying material and SA’s. The Internet Security
Association and Key Management Protocol that provides such
automatic management functions to security components at the
IP layer and above is described in section IV.

II.A.  IP Authentication Header

The first security protocol in IPsec, IP Authentication Header
(IP AH), provides data origin authentication and data integrity
for IP datagrams. Replay detection may be selected as an
optional service with IP AH. As depicted in Fig. 2, the main
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fields of IP AH are:

• Security Parameter Index (SPI): a random value used in
combination with the destination IP address to identify the
Security Association for this datagram

• Sequence Number: counter value used to detect replayed IP
datagrams in order to assure message sequence integrity

• Authentication Data: integrity check value (ICV) obtained
as the result of the secure hash function applied to the integ-
rity protected fields of the original IP datagram.

The AH may be used in two operational modes: transport
mode or tunnel mode. In transport mode, the only change in the
original IP datagram is the inclusion of the AH field. However,
in tunnel mode, in addition to AH, a new IP header is included
before the original IP header.

The transport mode is intended for end-to-end protection that
can be implemented only by the source and destination hosts of
the original IP datagram. Conversely in tunnel mode, source and
destination addresses in the new IP header may be different
from the ones in the original IP header. Thus, in tunnel mode,
the secure path protected by IP AH may be a fraction of the end-
to-end path between the source and destination hosts of the
original IP header. Hence, the source and destination nodes
implementing IP AH on the secure path may either be end-
systems (hosts) or intermediate systems (security gateways).
The source and destination systems implementing IP AH in
either mode are connected through the security association.

 The positioning of the AH within the IP packet in transport
mode varies depending on the version of the IP as illustrated in
Fig. 3. In IPv4, the AH appears after the original IP header and
before the upper layer protocol header (TCP). In IPv6, the AH
is considered an end-to-end field and thus appears after all the
IP header fields required for intermediate node processing (hop-
by-hop extension fields) and before the first end-to-end field
(end-to-end extension field).

In tunnel mode, both in IPv4 and IPv6, the AH field is placed
after the new IP header and before the original IP header as
located in the original IP datagram (Fig. 4).

 An IP datagram protected by IP AH is processed by the
source and destination systems that negotiated a security
association prior to the transmission of protected IP datagrams.
The outbound processing of an IP AH consists of the generation
of the authentication data field. This is performed by calculating
a secure hash function (see section II.C) on the IP datagram.

The inbound processing consists of the verification of the
authentication data field contained in the IP AH with respect to
the secure hash value computed by the recipient. If the
authentication data field is valid, the integrity of the IP datagram
is proved based on the security of the secure hash function. In
addition, data origin authentication is assured with respect to
the sender since only the sender and recipient of the security
association have access to the secure hash function. An attacker
can perpetrate a replay attack by sending to the recipient of a
security association an IP datagram that has previously been
transmitted between the two entities of the security association.
If the optional replay detection service is selected by the
recipient, then replayed datagrams can be detected based on the
sequence number field of the AH.

 Some fields of an IP datagram like TTL (time to live) are
subject to legitimate modification due to the normal packet
forwarding operations performed in intermediate nodes and for
such fields qualified as “mutable” the original value of the field
is not known by the node (host or security gateway) at the
receiving end of the security association. Thus all mutable fields
plus the authentication data field are set to a known value (zero)
prior to the computation of the secure hash function both for the
generation and the verification of the IP AH header as depicted
in Fig. 5. Regardless of the operational mode, the entire IP
datagram is considered as the input for the secure hash function
except for mutable fields (Fig. 3 and Fig. 4).

II.B.  IP Encapsulating Security Payload

Encapsulating Security Payload (ESP) is the second IPsec
protocol that can be used alone or in combination with IP AH to
provide data confidentiality. In its initial design [3], the services
provided by ESP were limited to data confidentiality, but this
paper refers to the current version of ESP [6] that also includes
data origin authentication, data integrity and replay detection
services. Data origin authentication and data integrity are joint
services that can be selected as an option during the
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establishment of the security association. Replay detection is
another optional service that can be selected if authentication
services are selected. Like IP AH, IP ESP may be applied in
transport mode or tunnel mode. In tunnel mode the
confidentiality service also assures some form of traffic flow
secrecy by enabling the security gateways to conceal the
identity of the source and destination hosts and the actual size of
the IP datagrams.

The ESP header (Fig. 6) includes the security parameter
index, sequence number and an optional authentication data
field which are handled as similar fields of the AH. The payload
field contains the data that is subject to confidentiality
protection. Padding is required for 4-byte alignment and to fill
the payload data field to the input size required by the
encryption algorithm, i.e. the block size of a block cipher, but it
may also be viewed as a technique for traffic flow secrecy by
keeping the actual length of the protected IP datagram secret.

In transport mode ESP (Fig. 7), the encrypted payload
includes the upper layer protocol (TCP) information, the user
data and the padding. In IPv6, end-to-end extension fields may
also be included in the encrypted payload. The original IP
header in both IPv4 and IPv6 and the extension fields required
by hop-by-hop IPv6 operations are not encrypted. As a result,
these fields are positioned in the cleartext part of the IP
datagram and before the ESP header. In transport mode the
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Fig. 5.     Computation of the Authentication Data Field for AH
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header of the IP datagram, that is, all the information pertaining
to the IP protocol including the source and destination
addresses, is in cleartext. Hence confidentiality is assured only
for the upper layer information. If the entire IP datagram
including the protocol specific information also needs to be
protected, tunnel mode should be used. In tunnel mode, security
gateways acting as intermediate nodes between the ultimate
source and destination hosts implement the IP ESP protocol by
encapsulating the original IP datagram exchanged between the
source and destination with an additional IP header used only
on the protected path between the security gateways. The
structure of a tunnel mode ESP datagram is depicted in Fig. 8.

Unlike the AH authentication data field, the ESP
authentication data field is optional and the authentication
provided thereby covers only the ESP header, the ESP payload
and the padding fields of the datagram. The IP header (the
original one in transport mode or the new one in tunnel mode) is
never protected by the ESP authentication service. Thus in
cases where data integrity and data confidentiality of the entire
IP datagram are required it is recommended to use IP ESP in
combination with IP AH.

Fig. 7.     Structure of IP datagrams in transport mode ESP
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II.C.  Authentication Data Computation

The authentication service provided by IP AH and IP ESP
rely on a secure hashing function to compute the authentication
data field that is used for data integrity and data origin
authentication. The authentication data can be computed in two
different ways:

1) using an encryption algorithm and a message digest func-
tion to yield EK(H(M)) where:

•  E is the encryption function using a symmetric or
asymmetric algorithm,

• K is the secret key shared by the source and destina-
tion with a symmetric encryption algorithm or the
private secret key of the source with an asymmetric
algorithm,

• H is a message digest computed with a secure one-
way hash function like MD5[7] or SHA[8],

2) simply applying the secure one-way hash function (H) on a
combination of the message (M) and the secret value (K)
shared by the source and destination.

Both methods rely on the security of the one-way hash
function, which is evaluated in terms of the frequency of
collisions using H on different input messages. By avoiding the
use of a cryptographic encryption algorithm, the latter method
offers an advantage with respect to government regulations that
control export or domestic use of cryptography in various
countries.

Even though IPsec protocols are algorithm independent, the
current IPsec architecture suggests two different ways to
provide secure hashing using the latter technique:

1)  keyed hashing: the authentication data is computed as the
result of the following expression

H(K, M, K)
where the cryptographic hash function H is applied to the
input message obtained through the concatenation of the
shared secret K, the message and K again. K is not
transmitted in the datagram since its value is a secret shared
by the source and the destination.

2) HMAC: the secure hashing expression is
HMAC(K, M) = H(K ⊕  P1, H(K ⊕  P2, M))

 where P1 and P2 are two different constant strings and ⊕
 denotes the bit-wise exclusive-or operation.

The main vulnerability of hashing techniques is due to the so
called “birthday paradox” that estimates the collision

probability for a hash function H with an n-bit output at 2-n/2

(2-64 for H with 128-bit output like MD5). In the case of keyed
hashing and HMAC, the fact that a secret value is included in
the input parameters eliminates the possibility of known-
plaintext attacks and the remaining chosen-plaintext search

requires on-line collection of 2n/2 message and authentication
data pairs generated by the legitimate parties with the same
secret value K. Further justification of keyed hashing and

HMAC can be found in [9] and [10], respectively. Current IPsec
work includes a proposal for each of the above techniques using
MD5 as the cryptographic hash function [11][12].

II.D.  Security Associations

A Security Association (SA) represents an agreement
between two IP nodes on a set of security services to be applied
to the IP traffic stream between these nodes. An SA is
unidirectional in that it defines the services applied to the IP
datagrams transmitted in one direction between the pair of
nodes that established the SA. Each SA is associated with AH,
or ESP services but not both. In cases when both AH and ESP
services are to be applied to the same IP traffic stream, two
different SA’s should be created. The traffic stream associated
with an SA can be identified with various levels of granularity.
When end-to-end traffic is concerned, the same security services
afforded by a single SA can be applied to all IP traffic between
two hosts identified by the host IP addresses in the SA, or the
traffic pertaining to some higher layer protocol or application as
identified by the next protocol field and port numbers. In tunnel
mode, all the transit flow between two intermediate nodes or
security gateways can be protected by the same set of security
services as defined by a single SA.

The SA’s of a node are stored in the SA Database (SAD), and
each SA is uniquely identified by the tuple

 <destination IP address, IPsec protocol, SPI>
that can be retrieved from the header of each IP datagram
protected by an IPsec service. Each SA entry in the SAD stores
the following information:

1) list of negotiated values:

• selected IPsec operational mode (tunnel or transport)

• list of selected AH or ESP services

• types of encryption and hashing algorithms

• value of specific parameters for security algorithms like
the IV for encryption algorithms or the size of variable fields

2) keys for authentication and encryption

3) counter value for message sequence integrity
The establishment of SA’s - either manual or automated - is

required prior to the provision of security services between
communicating entities. The current solution for the automated
management of SA’s in the Internet Architecture is presented in
section IV.A.

II.E.  IPsec Deployment Scenarios

This section presents four examples of IPsec deployment
scenarios emphasizing the use of SA’s and the corresponding IP
datagram structure.

The first scenario consists of end-to-end security between two
hosts across Internet (or an Intranet). Several SA’s, each with
different combinations of AH and ESP and different service
selections in transport or tunnel mode, can be used between the
two hosts in this scenario. Fig. 9 presents transport and tunnel
mode IP headers for possible SA combinations. Generalized



nesting of more than two SA’s is possible but not required.
The second scenario (Fig. 10) illustrates a virtual private

network (VPN) built with IPsec. In this case, only tunnel mode
is required. AH or ESP protocol can be enforced by the security
gateways in order to establish a secure virtual channel between
the two Intranet segments. The traffic inside each Intranet, i.e.
between Host1 and SG1 and between Host2 and SG2, is not
protected.

The third scenario is a combination of the two previous
scenarios. As depicted by the possible IP header combinations
in Fig. 11, the inner IP datagram exchanged between Host1 and
Host2 is encapsulated as a whole by the outer IP header
exchanged between the security gateways. The inner header
may be protected by AH, ESP, or both in transport and tunnel

mode according to the end-to-end SA between the host systems.
A different set of SA’s is applied to the outer IP header

exchanged between the security gateways across Internet. It
should be noted that the support of the end-to-end security
across the VPN imposes a new requirement: each security
gateway must authorize the transit of IPsec traffic destined to a
host behind it.

The fourth scenario depicted in Fig. 12 deals with a remote
access situation where an isolated host uses Internet to connect
to an Intranet through a security gateway in order to ultimately

reach a second host located within the Intranet. Possible choices
for the SA between Host1 and SG are identical to the ones
between the security gateways of the VPN scenario. Similarly
the choices for the end-to-end SA between the remote host and
the local one are identical to the ones in the first scenario. The
only new requirement in this case is that Host1 must apply the
end-to-end transport header before the tunnel header on
outbound datagrams.

III. TRANSPORT LAYER SECURITY

The main security activity in the area of transport layer is the
Transport Layer Security (TLS) Protocol specification [13]
based on the Secure Sockets Layer (SSL) Protocol developed
by Netscape Communications Corporation. Even though TLS is
not part of the IPsec architecture, the goal of the TLS effort is to
harmonize the TLS Protocol specification with respect to the
common key management architecture used by IPsec.

The TLS Protocol operates above a reliable transport
protocol like TCP and provides the following security services:
peer entity authentication, data confidentiality, data integrity,
key generation and distribution, and security parameter
negotiation.

 The TLS Protocol consists of two layers: the TLS Record
Protocol and the TLS Handshake Protocol. The TLS Record
Protocol provides basic connection security for various higher
layer protocols through encapsulation. One such protocol is the
TLS Handshake Protocol that allows the peer entities located at
both ends of the secure channel to authenticate one another, to
negotiate encryption algorithms and to exchange secret session

Fig. 9.     End-to-end security with IPsec
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keys for encryption. Once a transport connection is
authenticated and a secret shared key is established with the
TLS Handshake Protocol, data exchanged by application
protocols can be protected with cryptographic methods by the
TLS Record Layer using the keying materiel derived from the
shared secret.

III.A.  TLS Record Layer

The TLS Record Layer affords the following services to the
higher layers:

• data encryption using the algorithm selected by the TLS
Handshake Protocol. TLS Record Layer supports various
encryption algorithms including block ciphers like RC2,
Data Encryption Standard (DES), triple DES, 40-bit version
of DES (designed to comply with export control regula-
tions), IDEA, and stream ciphers like RC4 (see [14][15] for
further information on encryption algorithms).

• data integrity using a Message Authentication Code (MAC)
generated as follows:

HMAC_H(K, s | t | l | m)
where

- HMAC_H is the HMAC construction for computing
the authentication data (see II.C) that is based on the
secure hash function H selected by the TLS
Handshake Protocol. Possible function types for H
are MD5 and SHA.
- K is the unidirectional data integrity secret
established by the TLS Handshake Protocol,
- | denotes the concatenation
- s is a sequence number used for message sequence
integrity,
- t, l and m respectively are the type, length and the
content of the higher layer data fragment protected
by this MAC.

•  replay detection or message sequence integrity using the
sequence numbers included in the MAC calculation

• generation of separate secret keying material for each direc-
tion of the data flow and for each security function from the
master key established by the TLS Handshake Protocol.

In addition, the TLS Record Layer performs fragmentation
and loss-less compression on each higher layer message prior to
the application of security mechanisms.

III.B.  TLS Handshake Layer

When a client initiates a connection with a server using the
TLS Protocol, they first run the TLS Handshake Protocol to
negotiate security algorithms, to authenticate each other and to
establish shared cryptographic secrets. The outcome of the
initial negotiation by the TLS Handshake Protocol is a session
that consists of the following items:

• session identifier: a random byte sequence chosen by the
server to identify an active or resumable session state.

• peer certificate: public key certificate of the peer in X.509
version 3 (X.509v3) format [16].

• compression method: the algorithm used to compress data
prior to encryption.

• cipher specification: the encryption and MAC algorithms.

• cryptographic attributes such as the hash size.

• master secret: 48-byte secret shared between the client and
server and from which various encryption and MAC keys
are derived.

These items are then used to create security parameters for
use by the Record Layer when protecting application data.

One of three different authentication modes can be negotiated
with the TLS Handshake Protocol: authentication of both
parties, server authentication with an unauthenticated client,
and total anonymity. In conjunction with the authentication
modes, the TLS Handshake Protocol supports two different key
exchange methods:

1) key distribution with RSA (see [14][15] for a description
of the RSA algorithm): the client generates a secret and
sends it to the server after encrypting it with the server’s
public RSA key.

2) key generation with Diffie-Hellman: the server and the cli-
ent generate a shared secret key using the Diffie-Hellman
algorithm [14][15] and each other’s public Diffie-Hellman
component1. Both the public Diffie-Hellman component
and the public RSA key may be either permanent public val-
ues or ephemeral values generated for the purpose of a par-
ticular key exchange session.

In the anonymous key exchange mode, the public RSA key of
the server or the public Diffie-Hellman components are
exchanged without authentication. Since intruders do not know
the matching secret keys, the resulting shared secret will still be
protected from eavesdropping. However, since the
communicating parties are not authenticated, active man-in-the-
middle attacks [15] are possible.

In the case where only the server is authenticated, the server’s
public RSA key or its public Diffie-Hellman component can be
verified by the client using the certificate sent by the server. The

1. Each of the peer entities involved in the Diffie-Hellman key
exchange pick a random value, x, that is kept secret, and compute

y=gxmod p, the public value sent to the other party. The shared secret

is obtained by each party by computing y’xmod p, where y’ is the
public value received from the other party.

Fig. 12.     Remote access with IPsec
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server authentication is complete when the server sends the
encryption of all the handshake protocol messages using the
shared key distributed during the key exchange (Finished
message). Thus the server proves its identity by demonstrating
its ability to retrieve the shared secret exchanged under its
certified public RSA key or through the Diffie-Hellman key
generation using its secret component.

In the mutual authentication mode, when Diffie-Hellman key
exchange is used, the client is authenticated based on its
certified public component and its ability to retrieve the shared
secret as the server did in the previous case. If the key exchange
is based on RSA, neither a successful key exchange nor the
client’s ability to retrieve the shared secret assures the client’s
authentication to the server. In this case, the client is required to
sign a hash value derived from the shared secret and all
preceding handshake messages. The verification of the
signature by the server using the client’s certified public key
proves the client’s identity, and that the secret resulting from the
key exchange is shared with the authenticated client
(CertificateVerify message).

Fig. 13 depicts a typical TLS Handshake message flow. First
the client and the server send each other a message containing a
random number or a nonce (Nc and Ns respectively) and
negotiate the set of attributes and algorithms that will apply to
the current session. If the session is not anonymous, the server
sends its certificate in X.509v3 format [16]. This certificate
contains either the server’s public RSA exponent, its Digital
Signature Standard [14][15] public key, or its public Diffie-
Hellman component depending on the type of algorithm that
has been selected for that session. It also contains the
certificates of all the certification authorities in the chain
through the root certificate. For the purpose of key exchange, if
the key corresponding to the server’s certificate is not suitable
for encryption (signature key or export control limitations) then
the server may provide temporary public values signed under
the secret key matching with the public key contained in its
certificate. The temporary values may be a Diffie-Hellman

public component (gx mod p) or an RSA public exponent (PK).
The server indicates the end of its response by sending the
ServerHelloDone message.

If client authentication has been negotiated, the client’s first
reply message is Certificate and it contains the client’s public
key certificate. Next is a key exchange message that is always
sent by the client. Depending on the selected key exchange
method and authentication type, this message contains either

the client’s public Diffie-Hellman component (gx’ mod p) if it is
not already provided through the client’s certificate or the
shared secret - called pre-master key (PMK) - generated by the
client. PMK is encrypted under the server’s public RSA key that
is retrieved from the server’s certificate. At this point the client
and the server can retrieve the shared pre-master key using the
selected key exchange method. That is, each can compute it as
the Diffie-Hellman shared secret

 gxx’mod p
or the server can decrypt the encrypted value sent by the client

using its secret RSA key. If client authentication is required and
not implicitly assured by the key exchange technique (PMK
encrypted with server’s public RSA key), the client must send
the CertificateVerify message including its signature on the hash
value of PMK combined with all past messages exchanged in
the current session.

In order to reduce the exposure of PMK in the storage of the
communicating parties, PMK is substituted with a master secret
(K) derived from PMK using the secret hashing technique
applied to the concatenation of PMK and the two nonces (Nc

and Ns) exchanged in Hello messages.
The handshake process terminates with the exchange of the

Finished message that confirms that the key exchange and the
authentication were successful. The Finished message includes
the secret hash value computed over K and all the past
handshake messages.

After completion of the handshake process, application data
is protected by the TLS Record Layer using the previously
established authenticated secret channel.

IV.  KEY MANAGEMENT

Key management is the automated facility that provides
communicating parties with symmetric keys required for
security services such as authentication, data integrity, and
confidentiality. Key management is viewed as a natural
component of the basic security architecture in Internet. The
two IPsec protocols are tightly coupled with key management
via the Security Association (SA) concept. Key management is
also considered a complementary mechanism for TLS, routing
protocols such as RIP and OSPF (see section VI), and
application protocols. Even though the Internet Architecture
Board (IAB) has not yet agreed on a key management
architecture among several existing alternatives [18][19][20],
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the current work in this area is likely to converge toward a
combination of two protocols: the Internet Security Association
and Key Management Protocol (ISAKMP) and Oakley key
exchange protocol.

ISAKMP [17] is the framework for key exchange and
negotiation of SA’s (see II.D). ISAKMP is designed to be key
exchange independent and can support several key exchange
protocols. Oakley [20] describes a series of key exchange
methods based on the Diffie-Hellman method that are
compatible with the framework defined by ISAKMP. The other
alternative key exchange method, that is, key distribution based
on a key server like in Kerberos [21], is not supported within the
current ISAKMP framework.

Furthermore many Internet protocols rely on public key
encryption but the current key management initiative based on
ISAKMP and Oakley does not address the management of
public keys. Various efforts currently aim at providing a public
key infrastructure with different models. The Internet X.509
Public Key Infrastructure work [22] defines public key
certificates and certificate management protocols based on the
X.509v3 standard. This standard is tightly coupled with the
X.500 naming scheme in that each X.509v3 certificate binds a
public key with a name expressed in the X.500 format. Lack of
support for X.500 names in the Internet community probably
has been the main obstacle to the acceptance of the
corresponding public key management work. Conversely, an
alternative solution using Internet names is provided by the
Domain Name System Security Extensions effort, as described
in section V. Recently, a new direction in public key
management was opened in [23] suggesting a simple public key
infrastructure based on the idea that the public key itself can be
used as the name of the user, thus avoiding the requirement for
an additional naming scheme.

IV.A.  ISAKMP

A large variety of security services are required depending on
each individual network configuration and application scenario.
ISAKMP allows peer entities in different communication layers
to select and negotiate the security functions suitable to a
particular configuration in a pair-wise manner. It also allows
them to authenticate one another and to perform key exchanges
in a protocol and algorithm independent way.

An important security property assured by ISAKMP is the
link between SA establishment, authentication and key
exchange. Thus each SA is established between parties that are
mutually authenticated and share one or many secrets. Based on
the link between the authentication and the shared secrets, the
parties can provide the evidence of authentication by mutually
demonstrating their ability to encrypt with the shared secret.

Furthermore ISAKMP incorporates a mechanism to counter
denial of service attacks in which servers are flooded with
bogus request messages. The goal of the attacker perpetrating
these attacks is to keep a server busy with the verification of a
large number of bogus requests in order to cause abnormal CPU
usage and consequently degrade the service provided by the
server to legitimate users. To do so, the attacker issues several

request messages from his host with bogus user identification
information and a different bogus source address is set in each
IP datagram carrying the requests. These requests usually get
discarded by the application layer authentication mechanism at
the server but the CPU and memory consumption required for
the verification of these bogus requests can be sufficient to keep
most of the server’s resources busy thereby causing the denial of
service to the legitimate users. Classical authentication
mechanisms therefore cannot prevent such denial of service
attacks because of the high CPU consumption caused by
cryptographic operations used in authentication.

The ISAKMP mechanism to prevent such denial of service
attacks is based on the anti-clogging technique introduced by
[18]. The principle of anti-clogging is to perform the exchange
of a pair of “cookies” at the beginning of each client-server
connection before initiating any resource-intensive verification
(Fig. 14). This initial exchange provides a weak authentication
and allows for the verification of the client’s presence at the
claimed IP address thus thwarting all flooding attempts using
bogus IP addresses from a single host. In fact the intruder
cannot pursue the protocol using bogus addresses beyond the
first message since he cannot get the server’s cookie sent in
response to the bogus IP source addresses. The computation of
the cookie by the server is based on a simple hash function
requiring low CPU usage in comparison with CPU-intensive
strong authentication and key generation operations and no
resource reservation takes place before the completion of the
successful cookie exchange. Each ISAKMP message contains
the pair of cookies generated by the initiator and the responder
based on the anti-clogging technique.

ISAKMP provides protocol exchanges to establish SA’s
between peer ISAKMP servers (Fig. 15). From the point of
view of the protocol suite ISAKMP is an application layer
protocol positioned above the transport layer. The typical
ISAKMP server operates over UDP at port 500.

Fig. 14.     Denial of service protection using the anti-clogging token
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First, ISAKMP creates the ISAKMP SA between the
ISAKMP servers. Additional SA’s on behalf of user protocols
like IP AH or IP ESP can then be created by the ISAKMP
servers using the security services of the ISAKMP SA to protect
subsequent ISAKMP messages.

An ISAKMP message consists of a fixed header followed by
a variable number of building blocks named payloads. SA
negotiation, certificate exchange, authentication and key
exchange are achieved through the exchange of ISAKMP
messages using various combinations of basic payload types.
These include security association, identification, key exchange,
certificate, hash, signature, and nonce. Each payload type can
support a variety of techniques for the corresponding function,
i.e. the key exchange payload can support various key exchange
protocols including Oakley.

Fig. 16 depicts a simple ISAKMP exchange illustrating the
individual ISAKMP payload types included in each message.

In the first message, the initiator generates an SA proposal for
the selected security services and parameters it deems adequate
for the required protection level.   A one-time random number is
also transmitted in the Nonce payload. This value should be
used as a challenge by the authentication mechanism at the
responder to generate the Hash or Signature payload
transmitted in the third message.

In the second message, the responder indicates the security
services and parameters it has accepted. Again, the responder
includes a nonce to be used as a challenge by the authentication
mechanism at the client.

In the last two messages, the initiator and the responder
mutually exchange keying material using the selected key
exchange mechanism to come up with a shared secret and
identification information. The payloads in each of these
messages are authenticated using the selected authentication
mechanism and the challenge sent by the peer entity during the
initial SA negotiation. The result of the authentication
mechanism may be encoded either as a Hash or Signature
payload depending on the type of the agreed upon mechanism

(secure hashing or encryption).

IV.B.  The Oakley Key Determination Protocol

The Oakley Key Determination Protocol is a key exchange
mechanism for establishing shared secrets using the Diffie-
Hellman key generation technique. Oakley’s main properties
are: authenticated key exchange, perfect forward secrecy, and
compatibility with ISAKMP.

Oakley incorporates a mandatory authentication mechanism
for the verification of identities during key exchange in order to
prevent man-in-the-middle attacks. The public components
transmitted during the Diffie-Hellman key exchange are signed
using a pre-arranged shared secret and secure hashing, a
signature using RSA, or a DSS signature.

Perfect forward secrecy as defined by [24] assures that the
compromise of a long-lived master key (such as public and
private RSA keys) does not allow the intruder to retrieve the
value of the session keys that were exchanged during the
lifetime of the master key. The basic rule to achieve perfect
forward secrecy is to avoid using master keys to derive session
keys either through encryption or algorithmic key generation
such as Diffie-Hellman. In Oakley, perfect forward secrecy is
achieved by using the master keys only for the authentication of
the public Diffie-Hellman component from which the secret
session keys are derived. Theft of the master key would thus
allow the intruder to impersonate legitimate parties in future key
exchanges but the intruder would not be able to retrieve any past
session key.

Oakley messages consist of various fields including cookies,
public Diffie-Hellman components, nonces, signatures, hash
values and identification information. Oakley is compatible
with ISAKMP in that each Oakley field can be mapped onto
either some ISAKMP header field or ISAKMP payload.

 Fig. 17 depicts a typical Oakley exchange using the
following notation:

• I, R: the identities of the initiator and the responder, respec-
tively

• cookiei, cookier: anti-clogging cookies generated by the ini-
tiator and the responder, respectively, using the IP address
of the local host

• Ni, Nr: one-time random numbers or nonces generated by

Fig. 15.      ISAKMP Model
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the initiator and the responder, respectively

• SignK{}: signature or hash computed with secret K.
In the first message of this example, the initiator issues a

public Diffie-Hellman component (gx mod p) using a freshly
generated random value (x) that will be kept secret. In the
second message, the responder sends his public Diffie-Hellman

component (gy mod p) derived from a secret random value (y).

Each   party can compute a common shared secret (gxy mod p)
using the public component sent by the peer and the local
secret. Perfect forward secrecy is achieved through this key
exchange because the secret values (x and y) from which the
shared session keys are derived are random and not related to
any long-lived master key. On the other hand, the resulting
public Diffie-Hellman components are not authenticated (as
opposed to certified Diffie-Hellman public components). As a
result, in the key exchange, fields are accompanied by a
signature covering the public Diffie-Hellman component and
computed using a long-lived authentication key. The key
exchange protocol is also tightly coupled with an authentication
exchange using nonces. The signature of the responder on Ni in
the second flow and the signature of the initiator on Ni in the
third flow authenticate the responder and the initiator,
respectively. In addition, the fact that the authentication fields
also include the public Diffie-Hellman components assure that
the resulting shared session key will be known only by the
authenticated parties. Furthermore, anti-clogging cookies
included in Oakley messages are also used for the purpose of
key identification, each key name being derived from the peers’
cookies.

V. DOMAIN NAME SYSTEM SECURITY EXTENSIONS

The Domain Name System (DNS) provides host names to IP
address mapping. The DNS is organized into a hierarchy of
servers each having the responsibility of a particular portion of
the DNS database. Current DNS protocols completely lack

security mechanisms. A variety of threats on the DNS protocols
exist that mainly take advantage of the lack of authentication
and data integrity. By exploiting the absence of client
authentication or by eavesdropping with bulk data transfers
between DNS servers, intruders may cause the leakage of
information on the topology of private enterprise networks. The
impersonation of DNS servers can cause traffic or mail
subversion by injecting bogus addressing information.
Moreover, DNS impersonation combined with attacks on the
routing system can seriously jeopardize the overall network
operation as pointed out by [25].

Current work in the IETF security working groups defines
extensions to DNS [26] aiming at the addition of security
mechanisms in three areas:

- data origin authentication in order to prevent the tampering
with the data stored in the DNS servers,

- transaction authentication to eliminate the possibility of
server and client impersonation and data modification during
DNS transactions,

- public key certification using DNS as a public key
certificate repository.

The DNS extensions do not cover confidentiality, denial of
service or any form of access control for DNS requests. In order
to assure interoperability between the current DNS protocol and
future extensions, the extensions do not require any protocol
change other than the support of optional data types to store
security information in the basic DNS data structures called
“resource records” or RR (Fig. 18). DNS security extensions
introduce two new RR types: the KEY RR and the signature or
SIG RR.

 The SIG RR is the basic building block through which data
origin and transaction authentication is assured. A SIG RR
stores the value of a signature that covers one or many resource
records as identified by the “Type covered” sub-field in the
Resource Data field of the SIG RR (Fig. 19). In addition, the
Resource Data field of the SIG RR holds the name of the party
that issued the signature, the signature time and its expiration
date. The Key footprint sub-field contains an algorithm-
dependent short value for the rapid verification of the public key
that can possibly be used for the verification of the signature.
This can consist of the hash or some selected octets of the
public key. Although various signature algorithms can be used,
RSA encryption of the MD5 hash is incorporated as the default
signature mechanism.

Data origin authentication can be provided using a SIG RR
including a signature that covers one or many DNS RR’s.
Through the verification of that signature with the DNS public
key, recipients can be assured of the origin of the name to

Fig. 17.     Oakley key exchange example
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address mapping and thwart impersonation attacks.
The KEY RR stores the public key of a party identified by the

Resource Domain Name field (Fig. 20). A DNS public key
certificate consists of a KEY RR containing the public key and
the name followed by a SIG RR that includes the signature
covering the KEY RR. In the case of a SIG RR that is part of a
public key certificate, the signature should be computed using
the private key associated with the logical portion of the DNS
database named “zone”. The concept of a DNS zone is akin to
the role of a certification authority(CA) in X.509 [16]. A DNS
public key certificate thus provides a strong binding between a
name and a public key based on a trusted zone authority.

 DNS servers do not necessarily bear the role of a CA or zone
authority with respect to public key certification. Thus the zone
private key and the private key of each DNS server managing
the corresponding portion of the DNS database are different.
Public key signatures stored in the DNS database must therefore
be computed off-line using the zone private key that is not
stored in the DNS servers. Moreover current DNS extensions do
not include the certification chain concept whereby, each public
key can be verified using an ordered list of certificates each
delivered by a different CA positioned on a path or chain from
the local CA through the root CA. In order to validate a public
key certificate using such a chain, the certificate, that is signed
by the first CA of the chain, is verified using the public key of
the first CA. The latter public key is in turn signed by the next
CA in the chain. The next step of the certificate chain validation
consists of verifying this signature using the public key of the
next CA. The public key of each CA is thus verified using the
certificate delivered by the next CA on the chain until the root
CA is reached. The public key of the root CA is self validated
since its value is well known by all parties using the
certification system.

DNS transaction authentication is provided by a SIG RR that
covers the request or response message. In an authenticated
response message, the signature covers both the response and
the corresponding request that triggered the former. Unlike the
signature that is part of the public key certificates, the signature
for authenticating DNS responses is computed by the DNS
server that issues the response using the server’s private key.

VI. ROUTING SECURITY

Routing protocols that are responsible for maintaining
network connectivity for all the TCP/IP traffic have recently
become one of the main targets of attackers on the Internet.

Because of the global impact of such attacks, routing security is
a critical issue for the whole Internet infrastructure. Attacks on
routing protocols can cause legitimate traffic to flow over
unsecure paths and create various types of security exposure for
higher layer protocols ranging from eavesdropping to denial of
service.

Several routing protocols are used to exchange network
topology and routing table information between routers.
Commonly used intra-domain routing protocols are the Routing
Information Protocol (RIP) and the Open Shortest Path First
(OSPF). The Border Gateway Protocol (BGP) is the current
inter-domain protocol used between the core routers on the
Internet.

The main security threats on routing protocols are route
subversion through the exchange of bogus routing information
and through the impersonation of routers. The security services
required in routing protocols thus include data origin
authentication and data integrity to prevent router
impersonation and tampering with routing data. RIPv2’s
password-based authentication scheme that suffered from
eavesdropping and masquerade was enhanced with a strong
authentication mechanism based on secure hashing using MD5
[27]. Despite a sufficient level of protection against data
modification provided by this mechanism, RIPv2 still lacks
replay detection. OSPFv2 includes an authentication
mechanism that allows communicating routers to use either
password-based or cryptographic authentication and replay
detection [28]. In IPv6, intra-domain routing protocols rely on
the security provided by the default AH and ESP support of
IPv6 routers.

In the inter-domain area, the current version of BGP [29]
includes an extension for an authentication field in routing
protocol messages. Moreover, since BGP messages are carried
over the transport layer, unprotected BGP messages are exposed
to replay and data tampering in this layer. Some proprietary
implementations of BGP, such as the CISCO routers, offer a
transport layer protection mechanism for the encapsulated BGP
flows. The Inter-Domain Routing Protocol that will replace
BGP in the long run includes strong authentication as part of the
routing protocol.

Cryptographic mechanisms implemented in routers require a
significant amount of secret keys to be shared among routers.
Manual key distribution can be afforded, as in the case of OSPF
that already involves substantial manual configuration for the
routing functions. This becomes a significant burden in case of
RIP where the amount of manual configuration for the routing
operations is very low. In the inter-domain area, automated key

Fig. 19.     Resource Data Field of a SIG RR
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management requires the establishment of common trust
between independent domains, putting the accent on public key
certification. Automated key management seems to be a strong
requirement for both intra-domain and inter-domain routing
protocols, but the current authentication solutions in routing
protocols are not yet integrated with the forthcoming key
management architecture based on ISAKMP and Oakley.

VII. SECURITY OF NETWORK MANAGEMENT

The Simple Network Management Protocol (SNMP) that
allows network operators to remotely monitor, configure and
debug networks is one of the most critical components of the
Internet infrastructure. Impersonating various SNMP parties,
intruders can gain complete control of a network and totally
jeopardize its operation. The current version of SNMP that is
widely implemented in commercial products supports a simple
identity verification technique based on secret values called
“community names” that are shared by several parties and
exchanged in cleartext through the network. By obtaining a
community name through eavesdropping or any other form of
information leakage, intruders can access the Management
Information Base (MIB) on managed network components.
Intruders can then subvert the behavior of the network at various
layers using the read and write operations on the content of the
MIB, including routing tables and security information such as
passwords. Several attempts to include strong security features
in SNMP version 2 (SNMPv2) have failed. After the demise of
SNMPv2, two new pieces of architecture that define
authentication and confidentiality mechanisms based on a new
approach called “user-based security” [30], and access control
mechanisms [31] have recently been proposed as part of SNMP
version 3. The authentication scheme suggested in [30] relies on
the HMAC technique for the computation of the authentication
data. The new design also includes alternative solutions for
detecting replays and assuring the timeliness of network
management messages. As part of the user-based security
model, each autoritative SNMP engine inherits a cryptographic
key derived from the user’s password. The derivation technique
is location-dependent in that by computing the key as a function
of the password and the identity of the SNMP engine, a
different key is obtained for the same user on each different
SNMP engine. Despite the comprehensive analysis of security
problems and service requirements they offer, these two new
pieces of architecture still suffer from the lack of integration
with the underlying IPsec architecture.

VIII. CONCLUSION

An integrated security architecture exists for the Internet
Protocol, including security protocols covering various services
and joint management protocols for security association and
key exchange. Based on this core architecture, security can be
assured for several upper layer protocols that use IPv4 or IPv6
as the basic transport mechanism. Furthermore, in order to
provide secure connections that accomodate application specific

requirements, the transport layer security work defines a
security protocol positioned immediately below the application
layer. Based on a widely used product implementation, the
current version of this protocol consists of an independent
architecture including its own security management functions.

The need for security is even stronger for network control and
management functions that are responsible for maintaining the
connectivity over the global network. Routing protocols on IPv4
were recently enhanced with isolated authentication
mechanisms, but product support for these enhancements and
their integration with the core IPsec architecture are still
lacking. In IPv6, routing protocols will rely on the security of
IPsec like most other protocols using the IP layer. Network
management, crucial to the operation of the network, is an area
where cryptographic security is severely lacking despite
numerous attempts to include security in recent versions of the
Simple Network Management Protocol. Conversely, the
Domain Name System enjoys a well-defined architecture for
security extensions covering the authentication of its database
and user transactions.

When security is addressed as a global network problem, a
major issue is the management of security services, because of
the complexity of interactions between various security
mechanisms implemented in the protocols and the need for
automatic configuration of these mechanisms. ISAKMP and
Oakley offer a suitable solution for the management of security
associations and the exchange of shared session keys with IPsec
protocols. Other protocols like RIP and OSPF for routing and
the TLS protocol are likely to become integrated with the core
architecture and make use of ISAKMP and Oakley. Public key
management, on the other hand, is being looked at by various
competing parties that are far from agreeing on a common
solution.
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