
Authentication Method with Impersonal Token Cardsy

Re�k Molva

EURECOM Institute

Sophia Antipolis, 06560 Valbonne, France

molva@eurecom.fr

Gene Tsudik

IBM Z�urich Research Laboratory

CH-8803 R�uschlikon, Switzerland

gts@zurich.ibm.com

Abstract

Traditional methods of user authentication in distributed
systems su�er from an important weakness which is due

to the low degree of randomness in secrets that human be-

ings can use for identi�cation. Even though weak secrets

(passwords and PINs) are typically not exposed in the clear

over the communication lines, they can be discovered with

o�-line brute force attacks based on exhaustive trials. Since
such secrets are chosen from a relatively small key space,

a determined adversary can try all possible values until a

match is found between the trial value and the message
recorded from a genuine authentication session. Authen-

tication devices like smartcards and token cards o�er an

attractive solution by providing a user with a cryptograph-
ically strong key for authentication. In contrast to pass-

words and PINs, the device's key can be chosen from a

much larger key space thus making a brute force attack
computationally infeasible or, at least, di�cult.

In this paper we present a novel authentication method

whereby the authentication device (a token card) is used

solely to provide a secure channel between a human user

and an authentication server (AS). Since the communi-

cation channel is secured by the card, the user can still

utilize weak secrets for authentication purposes, but, with-

out any risk of exposure. Furthermore, the card's and the

user's secrets are mutually independent, i.e., the card is

not associated with any particular user. Since the card is

impersonal, it can be freely shared by several users. This

eliminates the high cost of administration which is typi-

cal of existing designs requiring �xed user-device relation-

ship. Moreover, our method does not require any coupling

between the token card and the workstation (e.g., a gal-

vanic connection) which would be di�cult to implement

on a global scale and retro�t onto existing equipment.

y In Proceedings of 1993 IEEE Symposium on Research in Se-

curity and Privacy.

1 Introduction

Users of distributed systems need to authenticate

themselves in order to gain access to system resources

and to delegate their rights to programs that will be

accessing system resources on their behalf. Tradi-

tional user authentication mechanisms are based on

the user's knowledge of a password or a Personal Iden-

ti�cation Number (PIN). An important vulnerability

common to most such methods is due to the lack of

randomness in weak secrets such as passwords and

PINs. Not only the methods whereby the password or

PIN value is transmitted in plaintext are vulnerable

but also the ones limiting the exposure of the pass-

word or PIN to their utilization as an encryption key

are subject to veri�able plaintext attacks as described

in [5]. In [13] an authentication scheme based on pass-

words and public-key cryptography is presented. Even

though this scheme is more secure than traditional

schemes based on passwords or PINs, it is not resistant

to veri�able plaintext attacks nor to the disclosure of

the password or PIN value by trojan horse programs

residing in the public or shared login terminal. Many

contemporary authentication designs involve a trusted

hardware device called a smartcard or a token that ad-

dresses this weakness by giving a user the ability to

authenticate using a strong cryptographic key.

Many existing designs based on such devices use a

delegation technique (e.g., [1]) whereby the device acts

on behalf of the user by deploying its strong crypto-

graphic capability. However, before the device can act

on user's behalf, the user has to authenticate himself

to the device. This requires some interaction between

the user and his device which may present a vulnera-

bility if the user is still authenticated on the basis of

a weak secret.1. An intruder in possession of a user's

authentication device can try to exhaust all possible

choices and break the weak secret. However, the ef-

fectiveness of such an attack is limited by the speed

1Of course, authentication devices employing biometric au-

thentication are not susceptible.

1

of manual entry at the device's keypad (or worksta-

tion's keyboard if there is an interface between the

device and the workstation). Moreover, an authenti-

cation device can be programmed to refuse any usage

after a reasonably small number of (e.g. 3-4) failed

authentication attempts.

An inherent disadvantage of most existing authen-

tication schemes based on such devices is the admin-

istrative burden incurred by the �xed relationship be-

tween the authentication device and the user. Since

the device is expected to act on behalf of the user

with respect to external parties, the relationship be-

tween the device and the user must be corroborated

and protected by a trusted authority so that all trans-

actions performed by the device can be accounted for

and traced to the associated human user. In order

to maintain this relationship, the administration must

maintain a mapping between users and devices. More-

over, it must assure a means for secure distribution,

update and revocation of the devices or of the personal

secret keys to be installed in the devices.

In this paper we present a novel authentication

method whereby the �xed relationship between the

user and the device is avoided. The authentication de-

vice is used solely to provide a secure channel between

a human user and an authentication server (AS). Since

the communication channel is secured by the device,

the user can still utilize weak secrets for authentica-

tion purposes, but, without any risk of exposure. Fur-

thermore, the device's and the user's secrets are mu-

tually independent, i.e., the device is not associated

with any particular user. This "impersonal" quality

allows a single device to be shared by several users.

This new concept eliminates the high cost of adminis-

tration which is typical of existing designs that employ

�xed user-device relationship. Moreover, because the

device involved is of the so-called token card variety,

there is no interface (coupling) between the device and

the workstation, e.g., a galvanic connection. There-

fore, realization of this method on existing systems is

logistically simpler and much less costly than in the

case of existing smartcard-based solutions which re-

quire equipping all workstations with card readers or

similar hardware gadgets.

2 Target Environment

Throughout the remainder of the paper, a particular

operating environment is assumed. We consider a very

large distributed system environment, e.g., a global

Internetwork, with a dynamic user and workstation

population. The system o�ers a number of services

accessible via public workstations. Workstations are

geographically dispersed. They are not only large in

number, but also anonymous in a sense that a partic-

ular workstation may not necessarily be registered in

any way. Furthermore, the workstations themselves,

the software they run, and the underlying network are

all completely untrusted. For example, consider pub-

lic terminals currently o�ered to attendees of some

conferences or to guests in some hotels. Prospective

users are ill-advised to make any assumptions about

security in such an environment.

There are a number of generally trusted, highly-

secure ASs situated throughout the internetwork. An

AS has two main duties: 1) to maintain a database of

user records, and, 2) to act as a certi�cation authority

(TGS, a la Kerberos [9]) for its constituent users

Every workstation is assumed to know of at least

one (perhaps, nearest) AS and every human user is

registered with at least one AS. Finally, users are con-

sidered to be highly mobile; a user may request system

access from any public workstation.

3 Traditional User Authentica-

tion

In a distributed systems environment, user authenti-

cation is typically attained by exchanging a number of

messages between the user (or a workstation acting on

the user's behalf) and the authentication authority. In

the course of the authentication process the user has

to prove his identity to the authenticator by demon-

strating the knowledge of a secret which is shared with

the authenticator.

Many user authentication protocols are susceptible

to masquerading attacks whereby an intruder spoofs,

intercepts and replays authentication messages. In

older protocols where the user's secret is sent in cleart-

ext simple spoo�ng and replay is su�cient to break the

protocol. More recent protocols (e..g, Kerberos which

is based on Needham-Schroeder protocols [6, 9]) use

the user's secret as an encryption key or a seed from

which an encryption key is derived. This measure is

not very e�ective because, as described in [5], such

an encryption key is still weak and can be easily bro-

ken by wiretappers. The weakness is due to the lack

of randomness in the way human users choose their

secrets and to the humans' di�culty of remembering

truly random numbers. In other words, the user's se-

cret is chosen out of a key space which is relatively

small in comparison with the minimum key space re-

quired by a good cryptographic algorithm. Usually,

2

the secret is a password chosen from a dictionary the

size of which (at most 105) is several orders of mag-

nitude smaller than, for example, the one required by

the Data Encryption Standard (DES[3]) (256).2 Cryp-

tographic keys derived from such weak secrets can be

easily broken by brute force attacks with an exhaus-

tive search in the relatively small key space fromwhich

the secret is chosen.

A practical mechanism for recovering strong cryp-

tographic keys using weak secrets without exposure

is provided by additional authentication devices like

smartcards and token cards [1, 4].

4 Device-based Authentication

Some current approaches address the exposure de-

scribed above by using an authentication device with

limited processing capability that contains a crypto-

graphically strong key. The purpose of the key is to

aid user authentication in a hostile environment. Un-

like the weak keys (passwords and PINs) used by hu-

man beings, the device's key is randomly chosen out

of the total key space of the underlying cryptographic

algorithm. The probability of success with a brute

force attack based on exhaustive search in the key

space is therefore negligible. The user must activate

the device operation by authenticating himself using

a weak initial secret but this interaction takes place

directly between the user and the device (via device's

keypad or a protected card reader device) without any

involvement of untrusted media. Thereafter, all data

exchanged over the untrusted network is sent under

the protection a�orded by encryption using the de-

vice's strong secret.

Existing device-based authentication methods dif-

fer widely in many respects. We are particularly in-

terested in the di�erences as they translate into the

requirements for the underlying device (be it a "true"

smartcard loaded with features or a "dumb" token

card with a primitive interface.) The following device

features in
uence both the cost and the security of the

associated authentication methods:

� Device-Workstation Coupling

One way for the device and the workstation to

communicate is through an electronic interfaces,

e.g., a card reader. This is an expensive solution

as it requires card readers on all workstations.

Alternatively, a user can act as an intermedi-

ary between the device and the workstation by

2The size of the PIN space is usually at most 106.

copying and entering the necessary information

by hand.

� Interaction Complexity

It is clearly desirable to keep the volume of the

information that user must exchange with the

device down to a minimum. Electronic coupling

eases the problem since the interface between

the smartcard and the workstation allows for

fast information transfer without user's involve-

ment. For token cards (without electronic cou-

pling), the user must act as an intermediary. In

order to ensure ease-of-use, functional complex-

ity (of the device) is can be traded o� in return

for minimal interaction complexity.

� Keypad

A keypad may be needed to enter into the device

the user's secret like a password or a PIN. If a

device is not equipped with an electronic inter-

face, other information may need to be entered

via the device's keypad.

� Clock

A clock may be required for generating timeli-

ness indicators and, possibly, nonces [6].

� Display

A display is imperative when there is no cou-

pling between a device and a workstation. With

electronic coupling, however, a workstation's

display may be utilized as described in [1].

� Non-volatile Storage (ROM)

Stable, non-volatile read-only storage is needed

to store the device's secrets, e.g., a key or a

nonce generator seed. It may also be needed to

store public key(s) of the Certi�cation Authority

(CA) or the Authentication Server (AS). Some

designs may also require a non-volatile RAM to

store secrets or sequence numbers generated at

run-time. The drawback of maintaining a non-

volatile RAM is the amount of power needed

to refresh the memory that is relatively high in

comparison with the power required by a clock.

� Encryption/Decryption Ability

The complexity of the encryption algorithm in-

uences the cost and the performance of the de-

vice. One possibility is to restrict the device's

computation power to perform only secret one-

way function (i.e., encryption but no decryp-

tion). Some recent smartcard schemes employ

asymmetrical (public key) cryptography (e.g.,

[1, 11]). This has two main drawbacks:

3

{ Public key encryption remains quite expen-

sive in terms of both implementation and

performance.

{ Most public key cryptosystems are cov-

ered by patents, e.g., Di�e-Hellman[2] and

RSA[8].

Traditional smartcard techniques employing

more conventional, symmetrical encryption do

not su�er from these problems but, instead, suf-

fer from heavy administrative burden owing to

the need to maintain a per card record at the

AS (in addition to user records containing pass-

words).

Finally, as alluded to above, all current device-based

methods are based on �xed user-device relationship.

This relationship originates from the basic concept of

delegation through which the user delegates the device

to perform an authentication procedure with the AS

on his behalf. The major drawbacks of this relation-

ship are the potential for masquerading by breaking

into a stolen device and the administrative burden of

maintaining this relationship that consists of safe dis-

tribution, updating and revocation of the devices like

in the case of PIN-based ATM cards. Besides, prac-

tical solutions based on token cards like the SecureID

card [12] su�er from the exposure of plaintext pass-

word or PIN to trojan horse programs residing in the

workstation.

5 Authentication Method with

Impersonal Token Cards

We begin with the discussion of the salient character-

istics of the token card as required by the new authen-

tication method.

5.1 Card Features

The token card has the following features:

� No card-user relationship:

The token card is completely decoupled from the

user. It has no PIN or password checking capa-

bilities and acts only as a means for providing a

secure channel between the user and the AS.3

3We envisage that such a token card can be purchased over-
the-counter in a retail shop. No buyer registration would be
necessary and users would be free to resell, exchange, discard

or lend their cards to anyone.

� No keypad:

The token card has no keypad but only a single

button. This button controls the state of the

card (ON/OFF).

� No coupling to the workstation:

There is no interface (electronic or otherwise)

between the token card and the workstation.

� Display:

There is an LCD display on the card.

� Internal clock:

The card has a built-in clock. The clock has no

dedicated display. The time is displayed (i.e, the

display is active) only when the card is ON. The

clock does not need to have high resolution; sec-

ond precision is su�cient for reasons explained

below.

� Cryptographic ability:

The token card implements a strong secret one-

way function, such as DES encryption (but no

decryption) [3] or MD5 with secret su�x [7, 10].

� Card's secret key:

Every token card, C, possesses a secret, Kc

which is computed as4:

Kc = E(Kas; SNc)

where SNc is the unique Serial Number of C

and Kas is the Card Key Generation Key, a se-

cret key known only to the AS(s). At the time

of manufacture, each token card is assigned a

unique SNc and a corresponding Kc. While

Kc is a secret value, SNc is not. For example,

SNc may be etched on the back of every token

card, not unlike serial numbers on other elec-

tronic merchandise (e.g., workstations, VCRs).

Even the means for generation of SNc's is not

necessarily kept secret; it may simply be a mono-

tonically increasing 32-bit (ten-digit) number.

This method for generating Kc is an application

of a well-known approach usually referred to as

name-based (or id-based) scheme [4].

The resulting token card is depicted in Figure 1.

5.2 User Requirements

Every legitimate user is identi�ed by a combination of:

i) a unique user (or login) name, and ii) a password

4We use the notation E(K;A) to denote encryption of a

value A under a key K.

4

9547511607

TIME Nc NasDisplay

Serial Number

On/Off switch

Figure 1: An impersonal token card

or a PIN. A password may be an alphanumeric string

of, say, eight characters, while a PIN is generally a

numeric string (i.e., a decimal number) of at most

�ve-six digits in length. For clarity's sake, the term

PIN is used hereafter to mean both password and PIN

in their traditional sense.

5.3 AS Requirements

Every AS is responsible for keeping the records of its

constituent users. A user's record includes, among

other things, the name and the PIN of the user. For

further re�nement, the AS may know only a one-way

function of the PIN similar to the way most modern

operating systems store only a one-way function of

the users' passwords. However, for simplicity's sake,

we will assume in the remainder of this paper that the

PIN itself is stored by the AS. The only information

the AS has to know about all public token cards is

the Card Key Generation Key, Kas. The AS does

not keep track of the identities or secrets of individual

token cards.

5.4 Protocol Steps

The goals of the protocol are to achieve:

� mutual authentication of the AS and the user

(i.e., workstation authentication is not taken

into account but our protocol can be easily ex-

tended to provide it),

� delegation of the user's identity to the worksta-

tion for a limited duration.

The protocol consists of the following steps:5

5The protocol is illustrated pictorially in Figure 2.

1. The user begins by turning on the token card

using the sequence button. The token card im-

mediately computes and displays two values:

(a) TIME - Current date/time. Hereafter, the

term TIME is used to denote both time

of day and date (e.g., time: 12:35.02 date:

02-29-92).

(b) E[Kc; T IME] - Encryption of current time

under Kc. Throughout the rest of this sec-

tion, this value is referred to as Nc. Here

we utilize the property that, although time

is predictable or easily-guessed, its encryp-

tion under a strong secret key is random

and unpredictable. Furthermore, as a clock

does not run backwards, Nc is guaranteed

to be unique. Hence, Nc can be considered

a "good" nonce.

2. The user supplies the following values to the

workstation:

(a) U - User name.

(b) SNc - Serial number of the token card.

(c) TIME - Current date/time taken from the

token card's display. (Actually, the entire

date/time string need not be entered into

the workstation. See Section 5.5.)

(d) Ku - User's authenticator computed as:

Ku = (Nc + PINu), where PINu is the

user's PIN. Our principal assumption in

this step is that it is fairly easy for the hu-

man user to compute the sum of Nc and

PINu. Moreover, it is not the arithmetic

sum that the user has to compute. For each

digit of Nc it su�ces to compute the mod-

ulo 10 addition of that particular digit and

the corresponding digit of the PIN.6 Addi-

tion is no the only example of an operation

that can be used to compute Ku; digit-by-

digit modulo 10 subtraction can be used as

can other methods (see Section 5.5 below).

Ku is a one-time credential that delegates

the identity of the user to the workstation

without disclosing the PIN to the worksta-

tion. The workstation can use Ku to act

on behalf of the user beyond the user's au-

thentication session, for instance, as a key

encryption key to get pair-wise keys from

6An assumption is made here that an average user is able to
compute the modulo 10 addition of two single-digit numbers in
his head.

5

the AS to communicatewith other systems.

The validity of Ku is limited in time, be-

cause it is computed as a secret function of

the current time value. The lifetime of Ku

can be de�ned as TIME + lifetime or in-

cluded as an explicit value in the expression

of Ku.

3. Now the workstation sends to the AS:

(a) U , SNc, TIME - All unmodi�ed from the

previous step.

(b) E[Ku; T IME] - Encryption of TIME un-

der Ku. Here, it is assumed that Ku forms

a valid encryption key. By sending this

value the workstation proves to the AS that

it was granted a valid one-time credential

by the user, i.e. Ku, without disclosing the

value of the latter.

4. AS uses SNc and Kas to compute Kc. Next,

it computes E[Kc; T IME] in order to obtain

a candidate Nc value, N̂c. Using U , AS

looks up PINu and obtains a candidate Ku

value, K̂u = [Nc + PINu]. Then, AS re-

computes E[K̂u; T IME] and compares it with

E[Ku; T IME] supplied by the workstation in

the previous step. If there is a match, AS replies

with:

(a) E[Ku; f(TIME)]

Encryption of f(TIME) under Ku where

the function f is a simple arithmetic func-

tion, e.g., one's complement. This value is

intended to authenticate AS to the work-

station and, to the user if (s)he trusts the

workstation.

(b) Nas = E[Kc; f(TIME)]

Encryption of f(TIME) under Kc. This

value is optional; its purpose is to authen-

ticate AS to the user if the user does not

trust the workstation (see step 6 below).

In this step, AS is simultaneously assured of the

freshness and the authenticity of the message it

received. The authentication of both the token

card and the user is attained by recomputing

E[Ku; T IME]. This is because Ku is uniquely

dependent on SNc, Nc and PINu. Freshness

is con�rmed as a part of the same sequence of

checks since Nc depends on a particular TIME

value. Furthermore, the cleartext TIME �eld

can be validated before any other checks are

made. (Recall that we assume loose time syn-

chronization between token cards and ASs. i.e.,

there is a maximum time skew.)

5. The workstation veri�es E[Ku; f(TIME)] sent

by the AS. This step assures the workstation

that someone (presumably, the AS) possesses

Ku. Finally, the workstation displays Nas on

the screen.

6. In order to authenticate the AS, the user pushes

the token card's sequence button and reads the

authentication value expected from the AS, i.e.,

Nas = E[Kc; f(TIME)], on the token card dis-

play and performs a visual comparison of this

value with the candidate value sent by the AS

which is displayed on the workstation's screen.

If the two values match, the authentication pro-

cess is completed. The goal of the last com-

parison is to assure the user that he/she has

been communicating with the real AS (since no

one but the AS and the token card at hand

can compute E[Kc; f(TIME)]). We note that

it may be considered laborious for the user to

compare two random-looking64-bit (8 byte) val-

ues in this step. In that case, instead of com-

paring E[Kc; f(TIME)], it will su�ce to com-

pare shorter values, e.g., 6-digit truncation of

E[Kc; f(TIME)] or even a digest of it (using

MD5[7], for example).

It is important to clarify the meaning of the last

step. Most (if not all) existing authentication

protocols based on token cards only provide for

the authentication of user-to-AS but not AS-

to-user. The protocol above provides for bidi-

rectional authentication. However, if AS-to-

user authentication is not desired, the user is

free to forgo the last step entirely.

5.5 Usability Concerns

The main usability concern in the above scheme has

to do with the interaction complexity of the authenti-

cation protocol, i.e., the number operations imposed

on the human user. These operations include:

1. Entering SNc and TIME into the workstation.

2. ComposingKu from PINu and Nc and entering

Ku into the workstation.

6

W U C

Activate 1

2

3

4

5

Authentication
Server Workstation User Smartcard

AS

TIME, Nc, Nas

Userid, SNc, TIME, Ku

Userid, SNc, TIME, E(Ku, TIME)

E[Ku, f(TIME)], Nas

Visual

comparison

Nc = E [Kc, TIME]
Ku = Nc − PINu
Nas = E [Kc, f(TIME)]

Figure 2: Authentication Protocol

3. (Optional) visual comparison

of E[Kc; f(TIME)] displayed by the worksta-

tion and its counterpart displayed by the token

card.

Of these three operations, only the �rst two are labor-

intensive; the third is strictly optional. In the �rst op-

eration, SNc is read directly from the token card as a

decimal number of, say, 10 digits. Current date/time

can also be entered directly as a decimal number. Al-

ternatively, the workstation can be programmed to

display its own time (which is assumed to be fairly

close to the time kept by the token card) and the user

can use the four ARROW keys to modify the dis-

played value to match the one shown by the token

card.

The biggest usability concern is the composition

of Ku since it requires the user to somehow combine

PINu and Nc to obtain Ku. This di�culty is a direct

consequence of our minimalist design. If we augment

the token card with a digit-only keypad, the user can

simply enter his PIN via the keypad and leave it to the

token card to compute Ku. However, a keypad would

not only increase the production costs but would also

result in the token card having larger surface area.

Moreover, volatile storage would be necessary in order

to store the user's PIN. Therefore, rather than add

new features to the token card, we intend to make the

composition of Ku easier for the user.

Assuming a 6-digit (decimal) PIN, the user can ob-

tain Ku in two alternative ways (many other varia-

tions are possible as well):

1. The user adds digit-by-digit his PINu with the

�rst 6 digits of Nc. (The �rst 6 digits of Nc

can be displayed highlighted in order to ease vi-

sual operations.) The user then enters Ku into

the workstation as the 6 decimal digits resulting

from the addition followed by the 14 remain-

ing digits of Nc. (See Figure 3 for an illus-

tration.) This method requires the ability to

perform modulo 10 addition of 6 decimal dig-

its. Also, we note that, while in the process of

adding the two numbers, the user is expected to

keep in his head a "running index" of the cur-

rent PIN digit involved in the addition. This

may prove to be more di�cult that the actual

addition.

There is, of course, the danger of a user perform-

ing the addition on a piece of paper (or using a

workstation-provided calculator software). One

simple solution is to have each workstation dis-

play on its screen (or have attached to it physi-

cally) a simple 10-by-10 table of single-digit dec-

imal numbers and their modulo 10 sum (e.g.,

row 9, column 6 will display 5).

2. Alternatively, the display area of the token card

can be modi�ed so that each digit of Nc is la-

beled with a �xed index carved on the token

card surface or printed on the LCD. The �rst

10 digits of Nc are thus numbered from 0 to

9. Using each digit of his PIN as an index the

user reads the Nc digit displayed below the la-

bel corresponding to the value of the PIN digit.

Each PIN digit thus points to an Nc digit that

is entered to the workstation to form the �rst

6 digits of Ku. The main advantage of this ap-

proach is that no arithmetic is required from the

user. (See �gure 3 for an example.)

Another issue of concern is the length ofKu. In the

protocol described in Section 5.4, Ku plays two roles:

i) authenticator of the user to the AS (
ow 3 in Figure

2), and ii) encryption key in the AS's reply to the user

(
ow 5 in Figure 2). Furthermore, subsequent to the

authentication protocol, it is possible to use Ku as a

one-time (or session) key. However, if Ku was only

used as a one-time authenticator (i.e., its use would

be limited to the
ows of the authentication protocol),

it would be possible make it the same length as the

user's PIN (6 decimal digits).

7

2 6 7 1 9 0

9 4 5 2 5 2

7 2 2 1 4 2

Composing Ku

with digit−by−digit subtraction

Nc

PIN

Ku

Composing Ku

by rearrangment

0 1 2 3 4 5 6 7 8 9 Index

2 6 7 1 9 0

5 0 7 4 4 9
Ku

PIN

9 4 5 2 5 2 0 7 1 4 Nc

A.

B.

Figure 3: Two examples of composing Ku

5.6 Informal Analysis

In this section we analyze the protocol presented

above. The following assumptions are made:

� Every token card's secret, Kc, is a strong key.

The derivation of Kc from Kas can be designed

to be as strong as required by a particular ap-

plication because there is no limit on the com-

plexity of this operation that is performed only

by the AS as opposed to other operations that

are also performed by the token card.

� The token card is trusted to faithfully display

appropriate values.

� It is di�cult to subvert the token card's hard-

ware and obtain the secret (Kc) or otherwise

manipulate the token card (e.g., set back the

clock).

� The token card clock is assumed to be monoton-

ically increasing.

� The token card can be stolen.

� Any public workstation can be taken over by

a hostile party. All communication involving a

workstation is subject to interception and divul-

gement and the workstation may contain trojan

horse programs that disclose all the information

entered by the user into the workstation or sent

by the AS.

� A bona �de, registered user may turn malicious

{ his purpose may be to discover other users' se-

crets (for instance, by letting them use his token

card).

The main purpose of this analysis is to show that the

protocol achieves its goals, i.e.:

� ! AS believes that it is talking to a particular

user, U , at time T through a token card C.

More formally, this can be stated as: AS believes

that U recently generated Ku using C. Applying

our assumption that only U and the AS know PINu

and no two token cards share the same key, only C

can generate Nc = E(Kc; T) and, hence, only U can

compute Ku = Nc + PINu.

� ! U believes that he/she is talking to AS at

time T .

This can be re-stated as: U believes that AS re-

cently generated E[Kc; f(T)]. The issue at hand is

wether the same value, E[Kc; f(T)], can be somehow

obtained by the adversary, presumably from the pre-

vious
ows of the protocol. This requires us to look

more closely at the function f .

� First, f must be a one-to-one function as the

protocol relies on the condition that a unique

value of time T correspond to an equally unique

value of f(T).

� Second, f must have a property that, given a

plausible time value T , f(T) can never amount

to a plausible or valid time value.7

One example of a function satisfying both of these con-

ditions is the one's complement function. (Recall that

our time value T includes the date; thus, one's com-

plement of T can never amount to a valid date/time

value).

We have now established that E[Kc; f(T)] could

not have been generated by either the card C or the

AS in the past. Since only the AS and C know Kc,

the user U is assured that AS's communication (i.e.,

E[Kc; f(T)]) is both authentic and timely.

There is, however, a small caveat. Since the to-

ken card has no knowledge of its immediate user, its

challenge value, E[Kc; f(T)], cannot be dependent on

the user; neither can the AS's response to that chal-

lenge. Therefore, if two well-meaning (and even mutu-

ally trusting) users decide to "save time" by activating

7This is necessary since, otherwise, the adversary can use
the pre-recorded E[Kc; f(T)] value at some later time when

f(T) becomes "timely" in order to break the PIN; of course,
the adversary has to be lucky in sense that the user will have
to be logging in at that particular time, i.e., f(T).

8

the token card only once for both logins, the second

part of the message returned by the AS (E[Kc; f(T)])

will be identical in both cases. This implies that a ma-

licious workstation can mislead one of the two users

into believing that he/she is talking to the AS.

Another important protocol property is that:

� ! PINu cannot be discovered by an intruder

(resistance to veri�able plaintext attacks) .

The user enters PINu indirectly in Step 3 of the

protocol. Since Ku is the only value dependent on the

PIN in the entire protocol, the only venue for obtain-

ing the PIN is from Ku. This is reasonable, since one

of our assumptions is that a workstation may turn

malicious and try to misuse Ku. However, in order

to extract the PIN from Ku, the knowledge of Nc is

required (recall that Ku = Nc + PINu). But, Nc is

known only to: i) the AS, ii) the token card, and iii)

the user.

One of our principal assumptions is that the token

card clock never runs backward. It guarantees that Nc

are never "recycled", i.e., every Nc is unique, and un-

predictable. Therefore, although a workstation may

accumulate a number of Ku's for the same user or

many di�erent users, it is not able to extract a single

PIN, since in all Ku-s, a PIN is masked by a nonce.

We now consider the case of a shared token card.

Suppose that two users, Alice and Bob, share the same

token card. The issue is whether or not it is possible

for one of them (say, Bob) to discover the other's PIN.

It is fair to assume that Bob can subvert a public work-

station and discover Alice's KAlice

u
. Then, in order to

extract the PIN, he will need to obtain the same Nc

as was used for KAlice

u
. He cannot obtain it by ma-

nipulating the token card after the fact (since Nc is

time-dependent). Hence, the only viable method of

attack is to to look over the shoulder and record Nc

the "hard way". However, we note that this is also an

issue in current non-token card techniques.

Finally, this protocol o�ers protection against some

denial-of-service attacks since an authentication re-

quest sent by the user is answered only if the AS is

able to verify the authenticity, integrity and timeliness

of the request. Thus, bogus or otherwise fraudulent

requests are not serviced.

6 Summary

The mechanism described in this paper o�ers the

following advantages over existing authentication de-

signs based on special devices:

� The token card is not personalized, i.e.,

it is not associated with a particular user.

This property implies several advantages:

{ No administration cost: the token card

does not need to be registered under a

user's name or sent to a particular user

with a safe courier. Token cards can be

freely purchased over the counter (with no

special registration procedure) and subse-

quently shared, discarded or exchanged.

{ Prevention of potential masquerad-

ing: Since a token card, by itself, does not

represent any user, its theft carries no dan-

ger. In other words, a stolen token card

cannot be misused in any way to obtain

the rights of any of its past or future users.

{ No PIN storage on the token card:

the user's secret does not need to be stored

on the token card. This eliminates the need

for entering, updating and storing user spe-

ci�c secrets (passwords, PINs, biometric

patterns, etc.) on the token card. This

feature is conducive to a low-cost design.

� The token card's secret key is not stored

in the AS. This o�ers the following advantage:

{ Minimum key management require-

ment: Since we use a well-known name-

based scheme for generating token card

keys [4], no per card records ever need to be

maintained. The AS has to keep only one

key to be able to retrieve all the token card

keys. The management of the token card

keys has therefore a minimal complexity.

The key storage in the AS is independent

of the existing token card population; ad-

dition, update, revocation of token cards

and/or their keys have no e�ect on the AS.

� The token card protocols achieve the above men-

tioned goals with minimum requirements for to-

ken card and protocol features:

{ The token card design and protocols re-

quire no hardware modi�cations to existing

(workstation) equipment. In other word,

there is no electronic coupling between the

token card and the workstation.

{ The design does not rely on public key

cryptography or other sophisticated en-

cryption algorithms that impose signi�cant

9

execution overhead. Only a secret one-way

function is required, e.g., DES encryption.

In this paper we discussed a number of issues in to-

day's authentication methods based on special devices

like smartcards and token cards. We introduced a new

method which, in addition to being both simple and

secure, lends itself to immediate deployment with very

little cost. The token card design and protocols we en-

visage require no hardware modi�cations to existing

terminal (workstation) equipment (i.e., no card read-

ers or galvanic connections), incur no signi�cant over-

head due to time-consuming encryption (e.g., public

key) and, at the same time avoid the administrative

burden typical of other device-based authentication

solutions.

Acknowledgements

The authors are grateful to Todd Arnold, Phil Janson, Els

Van Herreweghen, Ralf Hauser and Liba Svobodova for

their helpful comments and discussions.

References

[1] M. Abadi, M. Burrows, C. Kaufman, B. Lampson,

Authentication and Delegation with Smart-cards,
DEC SRC Technical Report #67, October 1990.

[2] W. Di�e and M. Hellman, New Directions in Cryp-

tography, IEEE Transactions on Information Theory,

November 1976.

[3] National Bureau of Standards, Federal Information

Processing Standards, National Bureau of Standards,

Publication 46, 1977.

[4] H. Konigs, Cryptographic Identi�cation Methods for

Smart Cards in the Process of Standardization, IEEE

Communications Magazine, June 1991.

[5] T. Lomas, L. Gong, J. Saltzer, R. Needham, Re-
ducing Risks from Poorly Chosen Keys, Proceedings

of ACM Symposium on Operating System Principles,

1989.

[6] R. Needham and M. Schroeder, Using Encryption

for Authentication in Large Networks of Computers,

Communications of the ACM, December 1978.

[7] R. Rivest, The MD5 Message Digest Algorithm, In-

ternet DRAFT, July 1991.

[8] R. Rivest, A. Shamir and L. Adleman, A Method for
Obtaining Digital Signatures and Public Key Cryp-

tosystems, Communications of the ACM, February

1978.

[9] J. Steiner, C. Neuman, J. Schiller, Kerberos: An

Authentication Service for Open Network Systems,
Proceedings of USENIX Winter Conference, February

1988.

[10] G. Tsudik, Message Authentication with One-Way

Hash Functions, Proceedings of IEEE INFOCOM

1992. May 1992.

[11] T. Woo and S. Lam, Authentication Protocols Pro-

ceedings of ACM SIGCOMM 92, September 1992.

[12] Security Dynamics, The ACE System Access Control

Encryption Product Information, 1992.

[13] J. Linn, Practical Authentication for Distributed

Computing Proceedings of the IEEE Symposium on

Security and Privacy, May 1990.

10

