
Towards Assisted Remediation of Security Vulnerabilities

Gabriel Serme§, Anderson Santana De Oliveira∗, Marco Guarnieri† and Paul El Khoury‡
∗SAP Research

Sophia Antipolis, France
{name.lastname}@sap.com

§Eurecom
Sophia Antipolis, France

serme@eurecom.fr
†Dept. of Information Technology

and Mathematical Methods
University of Bergamo, Italy

0guarnieri.marco0@gmail.com
‡SAP AG

Walldorf, Germany
paul.el.khoury@sap.com

Abstract—Security vulnerabilities are still prevalent in sys-
tems despite the existence of their countermeasures for several
decades. In order to detect the security vulnerabilities missed
by developers, complex solutions are undertaken like static
analysis, often after the development phase and with a loss of
context. Although vulnerabilities are found, there is also an
absence of systematic protection against them. In this paper,
we introduce an integrated Eclipse plug-in to assist developers
in the detection and mitigation of security vulnerabilities
using Aspect-Oriented Programming early in the development
life-cycle. The work is a combination of static analysis and
protection code generation during the development phase. We
leverage the developer interaction with the integrated tool to
obtain more knowledge about the system, and to report back
a better overview of the different security aspects already
applied, then we discuss challenges for such code correction
approach. The results are an in-depth solution to assist de-
velopers to provide software with higher security standards.

Keywords-Security, AOP, Software Engineering, Static Anal-
ysis, Vulnerability Remediation

I. INTRODUCTION

After a decade of existence, cross-site scripting (XSS),
SQL Injection and other of types of security vulnerabilities
associated to input validation can cause severe damage once
exploited. To analyze this fact, Scholte et al. [1] conducted
an empirical study that shows that the number of reported
vulnerabilities is not decreasing.

While computer security is primarily a matter of secure
design and architecture, it is also known that even with best
designed architectures, security bugs will still show up due
to poor implementation. Thus, fixing security vulnerabilities
before shipment can no more be considered optional. Most
of the reported security vulnerabilities are leftovers forgotten
by developers, thought to be some benign code. Such kind

of mistakes can survive unaudited for years until they end
up exploited by hackers.

The software development lifecycle introduces several
steps to audit and test the code produced by developers
in order to detect the security bugs, such as code review
tools for early detection of security bugs to penetration
testing. The tools are used to automate some tasks normally
handled manually or requiring complex processing and data
manipulation. They are able to detect several of errors and
software defects, but developers have to face heterogeneous
tools, each one with a different process to make it run
correctly, and they have to analyze the results of all the
tools, merge them and fix the source code accordingly.
For instance, code scanner tools are usually designed to be
independent from the developers’ environment. Therefore,
they gain in flexibility but loose comprehensiveness and the
possibility to interact with people having the experience
on application code. Thus, tools produce results that are
not directly linked to application defects. It is the case
for example for code scanner tools triggering several false
positives, which are not actual vulnerabilities.

The contributions of this paper are twofold. First, we
focus on static code analysis, an automated approach to
perform code review integrated in developer’s environment.
This technique analyzes the source code and/or binary code
without executing it and identifies anti-patterns that lead to
security bugs. We focus on security vulnerabilities caused by
missing input validation, the process of validating all the in-
puts to an application before using it. Although our tool han-
dles other kinds of vulnerabilities, here we discuss on three
main vulnerabilities caused by missing input validation, or
mis-validation of the input: cross-site scripting (also called
XSS), Directory Path Traversal and SQL Injection. Second,
we provide an innovative assisted remediation process that

employs Aspect-Oriented Programming for semi-automatic
vulnerability correction. The combination of these mecha-
nisms improves the quality of the software with respect to
security requirements.

The paper is structured as follows: Section II presents
the overall agile approach to conduct code scanning and
correct vulnerability during the development phase. Then,
Section III presents the architecture we adopt to combine
the static analysis with the code correction component. The
Section IV describes the static analysis process with its
integration in the developers’ environment. Then, we explain
techniques for assisted remediation along with pros and cons
in Section V. Finally, we discuss the advantages of our
approach compared to related work in Section VI, and we
conclude in Section VII.

II. AN AGILE APPROACH

Agile approaches to software development require the
code to be refactored, reviewed and tested at each iteration of
the development lifecycle. While unit testing can be used to
check functional requirements fulfillment during iterations,
checking emerging properties of software such as security
or safety is more difficult. We aim to provide each developer
with a simple way to do daily security static analysis on his
code. That would be properly achieved by providing a secu-
rity code scanner integrated in the development environment,
i.e., Eclipse IDE in this case, and a decentralized architecture
that allows the security experts to assist the developers in any
of the findings. Typically, that would include verifying false
positives and correspondingly adjusting the code scanner
test cases, or assisting in reviewing the solutions for the
fixes. It brings several advantages over the approach in
which the static analysis phase stays only at the end. The
expertise of the context in which the code was developed lies
in development groups. Therefore, the interaction between
development team and security experts is faster with less
effort in finding and applying corrections on the security
functionalities. The experts provide support on a case basis
for a better tuning of false positive detection across teams
and reducing final costs of maintenance: solving security
issues into the development phase can reduce the number of
issues that the security experts should analyze at the end.

Maintaining the separation of roles between the security
experts performing the code scanning and the team members
developing the application raises a critical complication, typ-
ically, from a time perspective, due to the human interaction
between security experts and developers. If such an approach
would have to scale to what most of the agile approaches
describe, the amount of iteration between developers and
experts would need to be reduced. That could be reduced
by up-skilling the developers and reducing the interaction
between them and the security experts for the analysis of
the security scans of the project, which is simplified by the
introduction of our tool.

Figure 1. Vulnerability remediation process. The red corresponds to the
static analysis component. The green one corresponds to the remediation
component. The blue one corresponds to assisted processing

Our incentive is to harvest the advantages acquired by us-
ing our approach in an agile and decentralized static analysis
process early in the software development lifecycle. It raises
security awareness for the developers at the development
time and reduces maintenance costs. A tool covering the
previous needs should fulfill several requirements:

• easy-to use for users non-experts in security
• domain specific with integration into developers’ daily

environment, to maximize adoption and avoid addi-
tional steps to run the tool

• adjustable to maximize project knowledge and reduce
false positives and negatives

• reflexive to adjust accuracy of the scan over time, with
collaborative feedbacks for example

• supportive to assist developers in correcting and under-
stand issues.

• educative to help developers understanding errors, steps
to correct existing error, and techniques to prevent
future vulnerability

We have developed an Eclipse Plugin, presented in [2], made
of components leveraging decentralized approach for static
analysis. It gives direct access to detected flaws and global
overview on system vulnerabilities. The developer analyzes
its code and review vulnerabilities when necessary.

Figure 1 presents the interaction between the two phases:
the static analysis phase allows scanning the code in order
to identify and classify the different vulnerabilities found.
It is described in details in Section IV. The measurement
is performed directly by developers who decide what to
remediate by undertaken actions, with support from our
second component. The full remediation process is given
in Section V .

III. ARCHITECTURE

Figure 2 represents the architecture of our prototype. First
of all, we consider two main stakeholders involved in the
configuration and usage of the prototype. Security experts
and developers regroup different profiles whose goal is to
provide and configure the knowledge database in order to
avoid false positives and negatives, and to provide better
accuracy during the analysis phase. They have two main
tasks. First, they update the knowledge base, adding to its
classes or methods that can be considered as trusted for
one or more vulnerabilities. Second, the knowledge database
receives feedback from analysis on possible trusted objects

for one or more security vulnerabilities; they must analyze
them more in detail and, if these objects are really trusted
they tag them as trusted into the knowledge base. We better
explain the different concepts and tasks in Section IV.

Figure 2. Architecture

The second role is the developer, interacting directly
with the static analysis engine to verify vulnerabilities in
application, code and libraries under its responsibility. The
developer at this stage can be naive, therefore with no
focus on complexity of security flow. The knowledge base
is shared among developers. It contains all the security
knowledge about trust: objects that do not introduce security
issues into the code. Security experts and developers with
understanding of security patterns maintain and keep under
control the definitions used by all developers in an easy
way using one admin web application or some web-services.
In this way the code scanner testing rules are harmonized
for the whole application or even on a project-basis. The
knowledge base allows developers to run static analysis that
is perfectly adapted to the context of their project.

In industrial scale projects, daily scans are recommended.
In order to facilitate this task, we provide a plugin for Eclipse
that uses an abstract syntax tree (AST) generated by the JDT
compiler - the compiler that Eclipse provides as part of the
Java Development Tools platform, to simplify the static anal-
ysis process. The plugin accesses the knowledge database
via web-services making it possible to each developer to run
independently the code scanner. We detail its components in
the next section.

IV. STATIC ANALYSIS

Static analysis can report security bugs even when scan-
ning small pieces of code. Another family of code scanners

is based on dynamic analysis techniques that acquire infor-
mation at runtime. Unlike static analysis, dynamic analysis
requires a running executable code. Static analysis scans all
the source code while dynamic analysis can verify certain
use cases being executed. The major drawback of static
analysis is that it can report both false positives and false
negatives. The former detects a security vulnerability that is
not truly a security vulnerability, while the latter means that
it misses to report certain security vulnerabilities. Having
false negatives is highly dangerous as it gives one sensation
of protection while vulnerability is present and can be
exploited, whereas having false positives primarily slows
down the static analysis process. Modern static analysis
tools, similarly to compilers, build an abstract syntax tree
that represents the abstract syntactic structure of the code
from the source code and analyze it.

A. Static Analysis Process

In a nutshell, our process allows developers to run a check
on their code to uncover potential vulnerabilities by checking
for inputs that have not been validated. It finds information
flows connecting an entry point and exit point that does not
use a trusted object for the considered vulnerabilities. The
algorithm uses an abstract syntax tree of the software in con-
junction with the knowledge base to identify the vulnerable
points. The Figure 3 presents the different analysis steps
performed from the moment developer presses the analysis
button to the display of results.

Figure 3. Static Analysis Activity Diagram

The static analysis works on Document Object Model

generated by the Eclipse JDT component able of handling all
constructs described in the Java Language Specification [3].
The static analysis process is described as follows:

• The engine contacts the knowledge database in order to
retrieve the up-to-date and most accurate configuration
from the shared platform. If the developer cannot re-
trieve the configuration, it can still work independently
with the latest local configuration.

• The process identifies all entry points of interest in
the accessible source code and libraries. The analysis
is based on the previously mentioned AST. We are
gathering the different variables and fields used as
well as the different methods. We apply a first filter
with pattern-matching on the potential entry points:
a method call or a new object instantiation might be
tagged as returning trusted inputs.

• For each entry point the control flow is followed to
create the connections between methods, variables and
fields to discover all the exit points. For instance,
the engine visits assignments, method invocations and
construction of new objects with the variables and fields
detected during the entry point gathering.

• Once the different exit points have been collected, we
evaluate the risk of having security vulnerabilities in
the code. We check for an absence of validation in
the flow for the different kinds of vulnerabilities. For
instance, if the flow from an entry point to an exit
point passes through a method or a class, which is
known to validate SQL input, the flow is tagged as
trusted for this specific vulnerability. Of course, the tag
runs from the moment where the method validates for
the vulnerability to the moment of a novel composition
with potential vulnerable code, or until an exit point.

B. Multiple vulnerability analysis

In the previous section, we have presented the global
analysis process. In this section, we discuss more in-depth
the notion of trusted object and vulnerability propagation
for the different vulnerabilities we address. The Listing 1
presents some source code vulnerable to cross site scripting.
The vulnerability propagates from the request parameter to
the object query, which is then written in the response.
The problem of identifying security vulnerabilities caused
by errors in input validation can be translated to finding
an information flow connecting an entry point and an exit
point that does not use a trusted object for the considered
vulnerabilities.

1 /** This servlet proposes XSS example. */
2 public class EchoServlet extends HttpServlet {
3 protected void doGet(HttpServletRequest req,

HttpServletResponse resp) {
4 PrintWriter writer = resp.getWriter();
5 String query =

req.getParameter("query") ;

6

7 resp.setContentType("text/html");
8 writer.print("<html><h1>Results for ");
9 writer.print (query);

10 writer.print("</h1></html>");
11 writer.flush();
12 writer.close();
13 }
14 }

Listing 1. Vulnerability propagation of a cross site scripting

We define an input as a data flow from any external
class, method or parameter into the code being programmed.
We also define as entry point any point into the source
code where an untrusted input enters to the program being
scanned, like the query input from Listing 1. In an anal-
ogous way we define as output any data flow that goes
from the code being programmed into external objects or
method invocations. Our approach relies on our trusted
object definition, which impacts the detection accuracy. A
trusted object is a class or a method that can sanitizes all the
information flow from an entry point to an exit point for one
or more security vulnerabilities. We implemented the trust
definitions into the centralized knowledge base presented
in the previous section. The knowledge database represents
the definitions using a trusting hierarchy that follows the
package hierarchy.

Security experts can tag classes, packages or methods as
trusted for one or more security vulnerabilities, accordingly
to their analysis, feedbacks from developers or static analysis
results. Obviously defining a trusted element in the trust
hierarchy also adds all the elements below it: trusting a
package trusts all the classes and methods into it and trusting
a class trusts all the fields and methods in it. A trusted
object can sanitize one or more security vulnerabilities (e.g.,
sanitization method can be valid for both SQL Injection and
cross site scripting). This approach enables developers and
security experts to define strong trust policies with regards
to the system they are securing.

Defining a trusted object is a strong assertion as it taints
a given flow as valid and free for a given vulnerability. The
definition process to trust a class, a package or a method
must be rigorous: it influences the risk evaluation accuracy.
The object must not introduce a specific vulnerability into
the code. This is the reason why developers report feedback
and security experts take the decision. The experts can also
analyze, manage and update the base, if the class, package
or method is considered trusted. This phase allows system
tuning that is related to a given organization and leads to
fewer false positives while ensuring no false negatives.

The detected vulnerabilities (Figure 4 gives an example of
analysis result in the tool) are mainly caused by lack of input
validation, namely SQL Injection, Directory Path Traversal
and Cross Site Scripting. The engine detects also a more
general Malformed Input vulnerability that represents any
input that is not validated using a standard implementation.

Figure 4. Code Analysis result

The engine can be easily extended to support new kinds
of vulnerabilities caused by missing input validation. One
needs to add the definition of the new vulnerability to the
centralized knowledge base (and, if exist, adding trusted
objects that mitigate it), and creating a new class extending
an interface, that implements the checks to be done on the
result of the static analysis to detect the vulnerability.

V. ASSISTED REMEDIATION

Performing static analysis is yet integrated in quality
processes in several companies. But, the actual identification
of vulnerabilities does not mean they are correctly mitigated.
Given this problem, we can have several approaches: (i)
refactoring the code, (ii) applying a proxy in inbound and
outbound connections, and finally the solution we adopted,
(iii) to generate protection code linked to the application
being analyzed.

Software refactoring involves the developer into under-
standing the design of its application and the potential
threats, to manually rewrite part of the code. The refactoring
improves the design, performance and manageability of the
code, but is difficult to address. It costs time and is error
prone. Up to six distinct activities have been observed
in [4] from identification to verification of refactoring. The
impacted code is generally scattered over the application,
and some part can be left unchecked easily. This can lead to
an inconsistent state where the application does not reflect
the intended goal. In terms of vulnerability remediation, the
software refactoring is one of the most powerful due to
the flexibility in terms of code rewriting and architecture
evolution.

The proxy solution is equivalent to a gray-box approach,
with no in-depth visibility of internal processes. It can be
heavy to put in place, especially when the environment is
under control of a different entity than the development
team. For instance, on cloud platforms, one can deploy
its application but has limited management on other capa-
bilities, leading to the impossibility to apply filter on the
application. The lack of flexibility and the absence of small
adjustments make it complicated to adopt at the development
phase.

In this work we provide inline protection with the ap-
plication. This solution has several advantages, but also
brings new limitations due to the technology we use: Aspect-
Oriented Programming paradigm (AOP) [5], which is a

Vulnerability Origin Potential Remediation
Cross-Site
Scripting

Server does not
validate input
coming from
external source

Validate input and filter or
encode properly the output
depending on the usage: the
encoding differs from HTML
content to Javascript content
for example

SQL Injection Server does not
validate input and
use it directly in a
construct of a SQL
Query

Use a parameterized query or
a safe API. Escape special
characters. Validate the input
used in the construction of
query

Directory Path
Traversal

Application server
is misconfigured,
or the file-system
policy contains
weaknesses

Enclose the application with
strict policies, that restrict ac-
cess to the filesystem by de-
fault. Filter and validate the
input prior to direct file access

Other
malformed
input

Misvalidation Validate input, determine the
origin and possible manipula-
tion from externals

Table I
LIST OF DETECTED VULNERABILITIES WITH POTENTIAL ORIGIN AND

POTENTIAL REMEDIATION.

paradigm to ease programming concerns that crosscut and
pervade applications. In the next section, we describe our
methodology and provide a comprehensive list of advantages
and drawbacks.

A. Methodology

The approach comprises the automatic discovery of vul-
nerability and weaknesses in the code. In addition, we
integrate a protection phase tied to the analysis process
which guides developers through the correct and semi-
automatic correction of vulnerabilities previously detected.
It uses information from the static analysis engine to know
what vulnerabilities have to be corrected. Then it requires
inputs from the developer to extract knowledge about the
context, like in Figure 5. These steps allow gathering places
in the code where to inject security correction. The security
correction uses AOP. The goal is to bring proper separation
of concerns for cross cutting functionalities, such as security.
Thus, code related to a concern is maintained separately
from the base application. The main advantage using this
technology is the ability to intervene in the control flow of
a program without interfering with the base program code.

The list of vulnerability we cover principally are in
Table I. The Table highlights the potential origin vulnera-
bilities and some of known remediation techniques. These
vulnerabilities are known and subject to high attention. For
instance, we can retrieve them in the OWASP Top Ten [6]
for several years now, but also in the MITRE Top 25 Most
Dangerous Software Errors [7]. Albeit several approaches
exist to remediate the vulnerabilities, we are considering
mainly escaping and validation to consistently remediate the
problems with the aspect-oriented technique.

By adopting this approach, we reduce the time to correct
vulnerabilities by applying semi-automatic and pre-defined

Figure 5. Gathering context for vulnerability protection

mechanisms to mitigate them. We use the component to
apply protection code which is mostly tangled and scattered
over an application.

Correcting a security vulnerability is not trivial. Different
refactoring are possible depending on the issue. For instance,
the guides for secure programming advises SQL prepared
statement to prevent SQL Injection. But, developers might be
constrained by their frameworks to forge SQL queries them-
selves. Therefore, developers would try another approach
such as input validation and escaping of special characters.

Figure 6. Example of correction snippet generated for a malformed input

We assist developers by proposing them automated so-
lutions. For the previously mentioned correction, our inte-
grated solution would propose to mitigate the vulnerabil-
ity with an automatic detection of incoming, unsafe and
unchecked variables. The developer does not need to be
security expert to correct vulnerabilities as our approach
provides interactive steps to generate AOP protection code,
like in Figure 6. Although semi-automation simplifies the
process to introduce protection code, the technique can
introduce several side-effects if the developers are not fol-
lowing closely what is generated. The plug-in gives an
overview for the developer of all corrected vulnerabilities,
allowing him to visually manage and re-arrange them in
case of need. Currently, the prototype does not analyze

interaction between the different protection code generated.
By adopting this approach, we allow better understanding
from a user point of view of the different vulnerabilities
affecting the system, and we guide the developer towards
more compliance in its application. The protection code can
be deployed by security expert teams and change without
refactoring.

B. Constraints from Aspect-Oriented Programming

The usage of AOP in the remediation of vulnerability
bring us more flexibility. One can evolve the techniques
used to protect the application, by switching the process to
resolve a problem, making the security solution independent
from the application. But this approach also brings us some
limitations we discuss in this section.

Firstly, the language is designed to modify the application
control flow. One of the limitations we have is related
to the deep modification we need to perform in order to
replace partially a behavior. For example, suppose a SQL
query written manually in the application we would like
to validate. We are able to weave validation and escaping
code, but we can hardly modify the application to construct
a parameterized query.

Secondly, the aspects cover the application in the whole.
When more than one aspect is involved, the cross-cutting
concerns can intersect. Therefore, we need to analyze aspect
interaction and prevent an annihilation of the behavior we
intended to address.

Thirdly, the evolution of the program leads to a different
repartition of vulnerabilities. The vulnerabilities are detected
after the static analysis phase. We are not addressing yet
this problem of evolution to maintain the relation between
the aspects and the application. This differs from the fragile
pointcut problem inherent of aspect using pointcut languages
referring to the syntax of the base language: the evolution
affects the application as a whole, by introducing new
entry points and exit points that need to be considered,
or introducing methods that validate a flow for a given
vulnerability.

The fourth constraint is that aspects have no specific
certification. The actual protection library is defined globally,
but applied locally, with a late binding to the application. The
protection code is the same everywhere, but we put strong
trust in the protection library by assuming that aspects are
behaving properly with the actual modification of the flow
to mitigate the vulnerability.

Finally, the fifth constraint is user acceptance. Since the
developers rely on cross cutting solution, the code itself
does not reflect the exact state of the application. The point
where the aspect interferes with the base application is not
presented in the code. We address this limitation with the
strong interaction with the developer’s environment. The
Eclipse plugin provides a mean to display remediation code
in place at a given time.

VI. RELATED WORK

The interest into static analysis field has led to several
approaches. They go from simple techniques like pattern
matching and string analysis like in [8]–[11] to more
complex techniques like data flow analysis in [12]–[14].
Commercial tools, such as Fortify [15] or CodeProfiler [16]
propose better integration in developers’ environment but
lack of decentralized approach and assistance in security
management. Several tools are based on the Eclipse’s plat-
form and detect vulnerabilities in web applications [17] ,
flaws [18], bugs [19], and propose testing and audit to verify
respect of organizational guidelines [20]. Compared to the
aforementioned techniques, we advocate a better integration
into the daily development lifecycle with our tool, and
propose an integrated correction with good accuracy as we
leverage developer’s knowledge on development context.

Hermosillo et al. [21] uses AOP to protect against web
vulnerabilities: XSS and SQL Injection. They use AspectJ -
the mainstream AOP language, to intercept method calls in
an application server then perform validation on parameters.
Viega et al. [22] presents simple use case on the usage
of AOP for software security. Masuhara et al. [23] intro-
duces an aspect primitive for dataflow, allowing to detect
vulnerabilities like XSS. Our approach reduces the overhead
brought by the detection of vulnerability patterns at runtime
and allows wider range of vulnerability detection. Also, the
aforementioned approaches do not rely on external tools
to gather security context, but rather a manual processing
to understand the architecture and decide where to apply
aspects. Our approach also brings more awareness to the
developer as he obtains a visual indicator of what is applied
at which place in its application.

A combination of detection and protection is found in
Deeprasertkul et al. [24] approach for detecting faults iden-
tified by pre-compiled patterns. Faults are corrected using
a correction module. The difference with our approach lies
in the detection of faults rather than security vulnerabilities.
Also, the correction module fixes the faults statically and
prevents further modifications of the introduced code. A
recent work conducted by Yang et al. [25] uses static
analysis to detect security points to deploy protection code
with aspects, on distributed tuple space systems. These two
approaches suffer from same limitation as the ones presented
in the previous paragraph, which is a lack of visual support
from the tool, and a loose of context. It is worth mentioning
the work from Hafiz et al. [26], where authors propose
several techniques to correct data injection through program
transformations. They have list several cases along with
steps to describe transformations to realize security policies.
Their work can benefit our overall methodology to propose
multiple corrections once vulnerability has been identified.

VII. CONCLUSION AND FUTURE WORKS

We presented how to overcome several security vulnera-
bilities using a combination between a static analyzer that
assists developers to report security vulnerabilities and a
semi-automated correction of these findings with AOP. The
usage of an integrated tool to provide support for security
bugs detection and mitigation has several advantages. It
benefits to several stakeholders at the same time. First,
security teams are able to distribute the maintenance of the
code to the people writing their code and let them mitigate
security bugs whenever they are detected. They can interact
closely to decide of the best solutions for a given situation,
and apply security across development teams. Developers
benefit from this approach, having an operational tool al-
ready configured for their development. They can focus
on writing their functional code and, time to time, verify
the accuracy of their implementation. Security concerns are
often cross cutting the application, which tends to have
security checks spread around application. Using one central
tool to have an overview is more efficient and productive,
and gives the possibility to track all applied protection code.
The automation allows a broader and consistent application
of security across applications. The usage of AOP eases the
deployment and change of security protection code, in a
single environment and during the development phase. The
overall vision we would like to achieve in the future is the
specification and maintenance of security concerns in one
central place, and usage by developers of these concerns by
defining some places in application where they should be
active.

We have designed this plug-in for an improved awareness
of security concerns from a developer point of view. It is
important to notice that correcting vulnerabilities doesn’t
make the whole system secure. It only means the code tends
to be free of security bugs. Other parts of the application,
such as authentication flow, authorization checks, etc. are not
covered by our analysis. Besides, we encourage developers
to look further in vulnerabilities’ descriptions, as the auto-
mated correction proposed might not be the best choice in all
situations. We do not want developers to believe our solution
is bullet-proof. It leads to a false sensation of security, which
is the opposite of our goal.

Albeit we have listed several benefits for an integrated
tool, we know that it suffers from limitations. For instance,
when we are developing a tool such as an Eclipse plug-
in, we are targeting a platform and a language, thus vol-
untarily restricting the scope of application. From the tool
itself, we have designed a working prototype that we have
validated on projects internally at SAP and compared to
commercial softwares. In several cases, the agile approach
leads to a reduction of false positives and an absence of
false negatives. Also, the approach of providing support for
correcting the vulnerability is novel and we focus now in

improving accuracy of the protection code. Especially, we
need to investigate in the cost in term of complexity and
maintainability for the different stakeholders interacting with
the system.

ACKNOWLEDGMENT

This work has been partially carried out in the CESSA
project (project id.: 09-SEGI-002-01).

REFERENCES

[1] T. Scholte, D. Balzarotti, and E. Kirda, “Quo vadis? a study
of the evolution of input validation vulnerabilities in web
applications,” in Proceedings of Financial Cryptography and
Data Security 2011, ser. Lecture Notes in Computer Science,
February 2011.

[2] M. Guarnieri, P. El Khoury, and G. Serme, “Security vulner-
abilities detection and protection using eclipse,” in ECLIPSE-
IT 2011, Milano, ITALY, September 2011.

[3] J. Gosling, B. Joy, G. Steele, and G. Bracha, “Java(TM)
Language Specification,” http://docs.oracle.com/javase/specs/,
January 2005.

[4] T. Mens and T. Tourwe, “A survey of software refactoring,”
Software Engineering, IEEE Transactions on, vol. 30, no. 2,
pp. 126 – 139, February 2004.

[5] G. Kiczales, J. Lamping, and al., “Aspect-oriented program-
ming,” in ECOOP, ser. Lecture Notes in Computer Science,
M. Aksit and S. Matsuoka, Eds. Springer Berlin / Heidelberg,
1997, vol. 1241, pp. 220–242.

[6] OWASP, “OWASP Top Ten Project,” http://www.owasp.org/
index.php/OWASP Top Ten Project, 2010.

[7] MITRE, “CWE/SANS Top 25 Most Dangerous Software
Errors,” http://cwe.mitre.org/top25, September 2011.

[8] J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw, “Its4: A
static vulnerability scanner for c and c++ code,” in ACSAC.
IEEE Computer Society, 2000, pp. 257–.

[9] C. Gould, Z. Su, and P. T. Devanbu, “Jdbc checker: A static
analysis tool for sql/jdbc applications,” in ICSE. IEEE
Computer Society, 2004, pp. 697–698.

[10] G. Wassermann and Z. Su, “An analysis framework for
security in web applications,” in Proc. FSE Workshop on
Specification and Verification of Component-Based Systems,
ser. SAVCBS’04, 2004, pp. 70–78.

[11] A. S. Christensen, A. Moller, and M. I. Schwartzbach, “Pre-
cise analysis of string expressions,” in Proc. 10th Interna-
tional Static Analysis Symposium, ser. SAS’03. Springer-
Verlag, 2003, pp. 1–18.

[12] M. S. Lam, J. Whaley, V. B. Livshits, and al., “Context-
sensitive program analysis as database queries,” in Symposium
on Principles of database systems, ser. PODS’05. ACM,
2005, pp. 1–12.

[13] Y. Liu and A. Milanova, “Static information flow analysis
with handling of implicit flows and a study on effects
of implicit flows vs explicit flows,” in Proceedings of the
2010 14th European Conference on Software Maintenance
and Reengineering, ser. CSMR ’10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 146–155. [Online].
Available: http://dx.doi.org/10.1109/CSMR.2010.26

[14] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna, “Saner: Composing static and dy-
namic analysis to validate sanitization in web applications,” in
IEEE Symposium on Security and Privacy. IEEE Computer
Society, 2008, pp. 387–401.

[15] HP, “Fortify 360,” https://www.fortify.com/, June 2012.

[16] Virtual Forge, “Codeprofilers,” http://www.codeprofilers.
com/, June 2012.

[17] V. B. Livshits and M. S. Lam, “Finding security errors in
Java programs with static analysis,” in Proceedings of the
14th Usenix Security Symposium, Aug. 2005, pp. 271–286.

[18] J. Dehlinger, Q. Feng, and L. Hu, “Ssvchecker: unifying static
security vulnerability detection tools in an eclipse plug-in,” in
Proc. OOPSLA Workshop on eclipse technology eXchange,
ser. Eclipse’06. ACM, 2006, pp. 30–34.

[19] University of Maryland, “Findbugs,” http://findbugs.
sourceforge.net, July 2012.

[20] Google, “Codepro analytix,” http://code.google.com/
javadevtools/codepro/, June 2012.

[21] G. Hermosillo, R. Gomez, L. Seinturier, and L. Duchien,
“Aprosec: an aspect for programming secure web applica-
tions,” in ARES. IEEE Computer Society, 2007, pp. 1026–
1033.

[22] J. Viega, J. T. Bloch, and P. Ch, “Applying aspect-oriented
programming to security,” Cutter IT Journal, vol. 14, pp. 31–
39, 2001.

[23] H. Masuhara and K. Kawauchi, “Dataflow pointcut in aspect-
oriented programming,” in APLAS, ser. Lecture Notes in
Computer Science, A. Ohori, Ed., vol. 2895. Springer, 2003,
pp. 105–121.

[24] P. Deeprasertkul, P. Bhattarakosol, and F. O’Brien, “Auto-
matic detection and correction of programming faults for
software applications,” Journal of Systems and Software,
vol. 78, no. 2, pp. 101–110, 2005.

[25] F. Yang, T. Aotani, H. Masuhara, F. Nielson, and H. R.
Nielson, “Combining static analysis and runtime checking in
security aspects for distributed tuple spaces,” in COORDINA-
TION, ser. Lecture Notes in Computer Science, W. D. Meuter
and G.-C. Roman, Eds., vol. 6721. Springer, 2011, pp. 202–
218.

[26] M. Hafiz, P. Adamczyk, and R. Johnson, “Systematically
eradicating data injection attacks using security-oriented pro-
gram transformations,” in Proceedings of the 1st International
Symposium on Engineering Secure Software and Systems, ser.
ESSoS ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp.
75–90.

http://www.owasp.org/index.php/OWASP_Top_Ten_Project
http://www.owasp.org/index.php/OWASP_Top_Ten_Project
http://cwe.mitre.org/top25
http://dx.doi.org/10.1109/CSMR.2010.26
https://www.fortify.com/
http://www.codeprofilers.com/
http://www.codeprofilers.com/
http://findbugs.sourceforge.net
http://findbugs.sourceforge.net
http://code.google.com/javadevtools/codepro/
http://code.google.com/javadevtools/codepro/

	Introduction
	An agile approach
	Architecture
	Static analysis
	Static Analysis Process
	Multiple vulnerability analysis

	Assisted Remediation
	Methodology
	Constraints from Aspect-Oriented Programming

	Related work
	Conclusion and future works
	References

