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Abstract—We deal with a multi-access wireless network in
which transmitters dynamically select a frequency band to
communicate on. The slow fading channel attenuations follow
an autoregressive model. In the single user case, we formulate
this selection problem as a restless multi-armed bandit problem
and we propose two strategies to dynamically select a band at
each time slot. Our objective is to maximize the SNR in the
long run. Each of these strategies is close to the optimal strategy
in different regimes. In the general case with several users, we
formulate the problem as a stochastic game with uncountable
state space, where the objective is the SINR. Then we propose
two strategies to approximate the best response policy for one
user when the other users’ strategy is fixed.

I. INTRODUCTION

Next generation of wireless networks is expected to be
characterized by a high decentralization/distribution of control
functions among nodes to support self-organizing and self-
healing capabilities. Network devices shall be able to monitor
and sense the surroundings, learn from their monitoring and
smartly and dynamically allocate resources. This perspective
scenario is attracting a considerable amount of research efforts
to develop learning techniques able to optimize the trade-
off between exploration and exploitation of environment and
resources. A relevant class of learning algorithms is the Multi-
Armed Bandit (MAB) one. In the classic MAB problem there
exist several “arms” that offer a reward when pulled (in
analogy with gambling on bandits in casinos). Each arm is
associated with a Markov process, and the reward of an arm
is a function of its state. Gittins provided in [1] a dynamic
allocation procedure, then dubbed Gittins index, which is
optimal if the arms that are not pulled do not evolve over time.
The more general case when the arms that are not pulled keep
evolving in time is known as Restless MAB. It was proven
by Papadimitriou and Tsitsiklis in [2] that restless MAB are
PSPACE-hard in general. In [3], Whittle proposed to adopt a
heuristic Lagrangian relaxation to extend the Gittins index to
the restless case, which is asymptotically optimal under certain
limiting regime [4].
In this work, we consider a wireless network where trans-
mitters can select a frequency band from a shared pool to
communicate on. The evolution of the slow fading channel
attenuation associated to each frequency band and each trans-
mitter is a random process that can be well approximated by
an autoregressive process [5]. We assume that all such random
processes are independent of each other. The goal of each
transmitter is to maximize its average Signal to Interference
and Noise Ratio (SINR) in the long run.

To get insight into this problem, first we focus on a single
transmitter system to investigate the exploration-exploitation
trade-off for the randomness introduced in the system by
the autoregressive channel attenuations. Then, we consider
the multi-transmitter case where the problem is further com-
plicated by the randomness introduced by the autonomous
band selections of multiple transmitters. For the single ter-
minal case, the problem of dynamic frequency allocation
for SNR maximization can be modeled as a restless Multi
Armed Bandit (MAB) since the transmitter only knows the
instantaneous attenuations on the bands utilized in the past
and they evolve also when not utilized. To the best of the
authors’ knowledge, there are no available results on the
MAB problem for autoregressive processes. We propose two
heuristic frequency allocation strategies, one called “myopic”
and the other “randomized”. When the AR processes possess
similar autocorrelation functions, we suggest to use the myopic
strategy. Instead, when there is one AR process having a
much higher autocorrelation, we suggest to use the randomized
strategy. In the scenario with multiple transmitters the problem
is formulated as a stochastic game with uncountable state
space. We focus on a two-user system and we assume that
user 1 is oblivious of the presence of user 2 and follows
a plain single-user myopic approach. Then we propose two
strategies for user 2 to approximate its best response against
user 1’s strategy. Again, one strategy is myopic and the other
is randomized, with respect to the SINR objective function.
A lexical remark. We say that we “sample” a frequency band
when we utilize it for the communication in a certain time
slot.

II. MODEL

In Section III we consider one transmitters and one re-
ceiver, while in Section IV we deal with a model with two
transmitters. Time is divided into slots and, at the beginning
of a time slot, each transmitter (or user) selects a frequency
band, out of a pool of M different ones, to transmit. At the
receiver, a single-user decoder per transmitter is deployed. In
the two-transmitter case, when a both users access the same
frequency band i at time slot t, they interfere with each other,
and the SINR (Signal to Interference plus Noise Ratio) for
user j = 1, 2 at time t is

SINRi,j [t] =
Pj |hi,j [t]|2

N0 +
∑

q ̸=j Pq|hi,q[t]|2



where Pj is the transmit power of user j, hi,j [t] ∈ C is the i-th
channel coefficient of user j at time t and N0 is the variance of
the additive white Gaussian noise at the receiver. When only
one user is present, the SINR definition boils down to the
classic SNR. For simplicity of notation, henceforth we will
denote the channel attenuation coefficient |hi,j [t]|2 as gi,j [t].
Let us describe now our channel model. In [5] it is shown
that, under slow fading conditions, the SNR (Signal to Noise
Ratio) of indoor wireless channels can be well approximated
by an autoregressive (AR) model. This means that, under such
conditions, we can model the channel attenuations as

gi,j [t] =

pi,j∑
k=1

ϕ
(k)
i,j gi,j [t− k] + ci,j + ϵi,j [t]

where ϕi,j ∈ R, {ϵi,j [t]}t is an i.i.d. Gaussian process with
zero mean and variance σ2

i,j , ci,j > 0, and pi,j is the
order of the model. Moreover, all the channels considered
are independent of each other, i.e. ϵi1,j1 [t] is independent of
ϵi2,j2 [t] when either i1 ̸= i2 or j1 ̸= j2.
We assume the AR process to be wide sense stationary (WSS),
i.e. the roots of the polynomial zp −

∑p
k=1 ϕ

(k)
i,j z

p−k must lie
inside the unit circle.

III. SINGLE USER: MDP FORMULATION

In this section we consider the single user case. In order to
simplify the notation, we drop the user index. In our study we
consider an AR(1) channel attenuation model, i.e.

gi[t] = ϕi gi[t− 1] + ci + ϵi[t]

For |ϕi| < 1, the process is WSS, and the (unconditioned)
expected value of channel attenuation gi[t] at any time instant
t can be expressed as

mi = E(gi[t]) =
ci

1− ϕi
∀ t.

Therefore we can say that E(SNRi[t]) = Pmi/N0, for all
t. Straightforward computations show that the autocovariance
function of the channel attenuation can be written as

E
(
(gi[t]−mi)(gi[t− n]−mi)

)
= ϕ

|n|
i

σ2
i

1− ϕ2
i

. (1)

We now illustrate the two fundamental assumptions of this
paper. First, the coefficients ϕi and σi are known by the
transmitter, which might have estimated them during a training
phase. Second, the transmitter, at time t, only knows the
instantaneous attenuations of the frequency bands utilized up
to time t − 1. Indeed, we assume that the receiver estimates
gi,j and broadcast this information on the channel along with
an identifier for the transmitter and the frequency band. The
goal of the user is to dynamically switch among the channels at
each time slot in order to maximize the expected average SNR
over an infinite horizon. Equivalently, it wants to maximize the
expected average over time of channel attenuations, denoted
by r(π):

maxπ

{
r(π) = lim

T→∞

1

T

T−1∑
t=0

Eπ(gπ(t)[t])
}

(2)

where π is a dynamic sampling strategies over the channels
1, . . . ,M . The reader should notice that a channel sampling
strategy π at time t may depend on the whole history of the
observed channels and of the sampling decisions up to time
t. This class also includes static strategies, that choose one
channel once for all. Intuitively, when there exists a channel
i with much lower unconditioned expected attenuation, i.e.
mi ≫ mk for all k ̸= i, a static selection of the channel
i is the nearly optimal strategy, since with high probability
gi[t] > gk[t] for all k ̸= i for almost all t.
In this section, we want to study how to dynamically select
the band on which to transmit when, a priori, all of them are
nearly equivalent, i.e. there exists m ≈ mk, for all k. At each
time slot, there is always one channel better than the others,
hence we wish to track dynamically the evolution over time
of the best channel.
Intuitively, the sampling choice at each instant has to be a
trade-off between exploration and exploitation. To give a hint,
the most natural policy, that we will call myopic, at each time
step t aims at maximizing the expected value of SNR[t], given
all the previous channel observations. On the other hand, the
statical information about channels that are not used becomes
more and more obsolete, therefore in some cases it might be
better to explore different channels with a randomized strategy.
We can formulate the optimization problem (2) as a restless
Multi Armed Bandit problem (MAB for short), in which a user
at each time instant t selects an arm (here, frequency band)
which gives a reward (here, the SNR) and all the arms, includ-
ing the ones that have not been selected, evolve according to
a certain stochastic process (here, an autoregressive process).
More specifically, we can describe the decision problem at
hand as a Markov Decision Process (MDP) with an uncount-
able set of states S or, equivalently, as a Partially Observable
MDP. Let us describe it in detail. At time t, we call ni(t) the
number of steps ago in which channel i has been last used.
The attenuation of channel i at time t conditioned on its last
observation is a Gaussian r.v., and we denote its mean and
variance as µi(t) and νi(t), respectively:

µi(t) = E
(
gi[t]

∣∣ gi[t− ni(t)]
)

= ϕ
ni(t)
i gi[t− ni(t)] + ci

1− ϕ
ni(t)
i

1− ϕi
(3)

νi(t) = Var
(
gi[t]

∣∣ gi[t− ni(t)]
)
= σ2

i

1− ϕ
2ni(t)
i

1− ϕ2
i

(4)

where gi[t − ni(t)] is the attenuation of channel i during its
last utilization. At time step t, thanks to the Markov property
of the AR(1) process, the whole statistical information about
channel i is hence contained in (µi(t), νi(t)). We observe that
µi ∈ R, while νi is bounded between [σ2

i ;σ
2
i /(1− ϕ2

i )]. The
decision on which channel to utilize at time t hinges on the
set S[t]:

S[t] = {µ1(t), ν1(t), µ2(t), ν2(t), . . . , µM (t), νM (t)}. (5)

By utilizing the MDP jargon [6], we call by S[t] the state
of the decision problem at time t. The state space S is the
uncountable collection of all the possible states. In each state
S ∈ S , a set of actions A = {1, 2, . . . ,M} is available to



the transmitter, which represents the collection of channels
that can be selected at time slot t. If channel i is selected,
then we map the “reward” for the user in state S[t] to the
expected channel attenuation at time t conditioned on the last
observation of channel i itself, i.e. µi(t). The state of the
system at time t + 1 evolves stochastically, according to the
following Markovian rule. If channel i is selected at time t,
then at time t+ 1,

µi(t+ 1) = ϕiY + ci, where Y ∼ N
(
µi(t), νi(t)

)
νi(t+ 1) = σ2

i .

Instead if channel i is not selected at time t,

µi(t+ 1) = ϕiµi(t) + ci

νi(t+ 1) = ϕ2
i νi(t) + σ2

i .

A. Heuristic algorithms
The theory of MDP allows us to claim that there exists

an optimal stationary strategy πO for the problem (2). Un-
fortunately, the computation of πO turns out to be a difficult
task. Indeed the solution to a Markov Decision Problem with
uncountable state can only be approximated by means of
discretization algorithms [6], and even in this case the curse
of dimensionality entails that the size of the discretized state
space increases exponentially with the number of arms. A
different approach would be to compute the Whittle index [3]
of each channel, but this approach is not guaranteed to be
optimal. Hence, it becomes crucial to devise a simple policy
whose performance is reasonably close to the optimal r(πO).

In the following we propose the most natural stationary
strategy one can think of, i.e. the myopic policy πM that aims
at maximizing the instantaneous expected SNR in each state.
Such a policy does not take into account that the statistics of
the channel that have not been selected for a long period might
become too stale. First, we need to initialize the algorithm, and
we choose to sample the coefficient of each channel once.

Algorithm 1. Myopic policy πM .
For 0 ≤ t ≤ M − 1 select channel t, i.e. πM (S[t]) = t + 1.
For t ≥ M ,

πM (S[t]) = argmax
i∈{1,...,M}

µi(t).

We intend to compare the performance of the myopic
policy with a more sophisticated one, that we call randomized
strategy and is inspired by the Thompson sampling strategy
for Bayesian Multi Armed Bandit problems [7]. We suggests
to draw, in each state S[t], one realization of the random
variable ξi = gi[t]

∣∣gi[t−ni(t)], for each channel i = 1, . . . ,M .
Then, the arm corresponding to the highest realization of ξ is
chosen. This procedure does not always follow the myopic
rule, but with a certain probability explore the arms that,
though possessing a lower µ, might be optimal since their
last observation is too stale.

Algorithm 2. Randomized policy πR.
For 0 ≤ t ≤ M − 1 select channel t, i.e. πR(S[t]) = t + 1.
For t ≥ M , draw a realization of the Gaussian variable ξi ∼
N (µi(t), νi(i)) for all i = 1, . . . ,M . Select

πR(S[t]) = argmax
i=1,...,M

ξi.

B. Simulations
In this section we show the results of some simulations,

giving a hint about the performance of the myopic and the
randomized policies, described respectively in Algorithm 1
and 2. Given a stationary policy π, we want to assess its
average reward r(π). We compare the myopic and randomized
policies with i) the optimal policy πO, approximated by means
of a state discretization technique [6], with ii) the upper bound
for the performance of any strategy, computed by selecting the
channel with the highest coefficient g at each time step:

πU (t) = argmax
i=1,...,M

gi[t], ∀ t ≥ 0 (6)

and with iii) the static policy πS , that selects off-line the arm
with the highest expected value, and no longer switches to
other channels, i.e.

πS [t] = argmax
i=1,...,M

mi, ∀ t ≥ 0.

Of course, the strategy πU is not applicable, since it is not
causal. In theory, its performance is achievable only when
the channels are deterministic hence perfectly predictable, i.e.
σi = 0 for all i = 1, . . . ,M . We now show the performance
of the five policies under scrutiny, the myopic πM , the
randomized πR, the static πS , the optimal πO, and the upper
bound policy πU , under different channel conditions.
First, we consider 3 arms, where arms 2,3 are statistically
equivalent, and ϕ2 = ϕ3 = 0.3, σ2

2 = σ2
3 = 1, and

m2 = m3 = 8. Arm 1 has the same coefficients ϕ1 = 0.3,
σ2
1 = 1 as arms 2,3. In Figure 1 we show the performance

of the five policies when m1 varies within [7; 9]. We see
that, under these conditions, the myopic policy outperforms
the randomized one since the latter wastes too much time in
exploring arms that are not optimal. As intuition confirms, the
static policy πS performs as well as the myopic πM when arm
1 has the highest expected value m1 > m2 = m = 3. Instead,
for m1 < m2 = m3, dynamically switching between the arms
2,3 is beneficial with respect to statically selecting one of the
two.
As we see in Figure 1, when all the arms are characterized
by the same unconditioned expectation, i.e. mi = 8, for
i = 1, 2, 3, the static policy πS is outperformed by both
the myopic and the randomized strategies. It is indeed better
to switch among the channels to attempt to track the best
instantaneous channel at each time instant, based on the
previous observations. Remarkably, the performance of the
myopic policy πM is close to the optimal πO.

Hence, we evaluate our algorithms in a different scenario, in
which the value m’s are the same for all the channels, but there
exists one channel (say, 1) whose autocovariance function (1)
decays considerably more slowly than the others. It is clear
from Figure 2 that there are lapses in which channel 1 is by
far the best, and some others in which its channel coefficient
g1 plummets below the others. From Figure 2 we observe that
the myopic strategy often fails to track channel 1 when it is the
best. The reason is quite intuitive: during the lapse in which
channel 1 is the worst one, the myopic strategy does not choose
it, then its last observation become obsolete, and consequently
the prediction µ1(t) tends to m1 = 10. Thus, it is highly
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Figure 1. Performance of myopic and randomized algorithm with 3 arms
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σ2
2 = σ2

3 = 1, and m2 = m3 = 8. Arm 1 has the same ϕ1 = 0.3, σ2
1 = 1

as arms 2,3, while the performance of the proposed algorithms are assessed
when m1 varies within [7; 9].
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Figure 2. Channel (or arm) selection when ci = 10 for all i, ϕ1 = 0.9, ϕ2 =
ϕ3 = 0.3, σ2

1 = 1.5, σ2
2 = σ2

3 = 0.5. The randomized strategy succeeds in
tracking the first channel with higher autocorrelation, when it is the best one.

probable (and this probability increases with M ) that one of
the other, suboptimal, channels, having a fresher observation,
offers a higher prediction. It easily follows that, for its inherent
features, the randomized policy is more suitable to such kind of
situations, as results in Figure 3 confirm. We considered 3 arms
(frequency bands). Arms 2 and 3 are statistically equivalents,
with ϕ2 = ϕ3 = 0.3, σ2

2 = σ2
3 = 1, c2 = c3 = 10. Arm 1

has the same coefficients c1 = 10, σ2
1 = 1 as arms 2,3, while

the performance of the proposed algorithms are assessed when
the coefficient ϕ1 varies within [0.3; 0.98]. As we intuitively
explained before, when the coefficient ϕ1 is sufficiently high,
i.e. ϕ > 0.85, the randomized strategy outperforms the myopic
one. Notably, the myopic policy is quasi-optimal for ϕ1 < 0.6,
while the the randomized one is nearly optimal for ϕ1 > 0.9.

IV. MULTI USER: STOCHASTIC GAME FORMULATION

In this section we discuss the more general scenario de-
scribed in Section II, in which two transmitters dynamically
select one among M channels at each time slot. If some users
choose the same channel in one time slot, they interfere with
each other. Therefore, the objective function for each user is
its SINR, and no longer its SNR. Since in the single user
case the decision process can be described as an MDP, then
the scenario with two users can be formalized as a stochastic
game, also called competitive MDP [8], with uncountable state
space. In general, a stochastic game is an MDP in which
the instantaneous rewards for each player and the transition
probabilities among the states are controlled by the joint
actions of the players in each state.
In our case, the set of channels h1,j , . . . , hM,j for player j
evolve independently from the ones available to any other
player k ̸= j, and the action space for each player is still
A = {1, . . . ,M}, i.e. the channel indices to be selected at
each slot. Therefore, we are allowed to formulate the game
as a stochastic game in which each user j controls its own
Markov chain on the state space Sj . As in the single user
case Sj is the set of all the possible states (5). Formally, the
state space of the stochastic game at hand is the Cartesian
product S∗ = S1 × S2.
Let us denote by πj a sampling strategy for user j and by π−j

the one for the other users. Possibly, πj , π−j are randomized
policies. We define the instantaneous reward for user j in state
S∗[t] ∈ S∗ as the expected reward

E
(
SINRj [t]

∣∣S∗[t], πi, π−i

)
.

Thus, the interaction on the players occurs only on the
instantaneous rewards gained in each state, through the SINR
expression. Thus we can say that our model is a reward-
coupled stochastic game. This model is very similar with
the one dealt with in [9], except that here the state space is
uncountable and there are no constraints on the rewards.

A. Heuristic Best Response

We now propose a heuristic best response policy for user
2. Suppose that user 1 is oblivious of the presence of user 2
and performs a myopic policy πM

1 to maximize the expected
average of channel attenuations over time, as in the single
user case. On the other hand, user 2 knows the parameters
of the channels, the current state, and the strategy of user
1. Thus, user 2 still faces an MDP with uncountable states,
which is equivalent to the stochastic game described before,
when user 1 fixes its own stationary strategy. Let us give an
insight on a possible strategy for user 2. Assume that, for
user 2, channel i1 presents at time t the highest coefficient
gi1,2[t], but the expected SINR guaranteed by channel i2 with
suboptimal attenuation is higher, since the interference is much
weaker. Then, it is in general not clear what user 2 should do.
A myopic solution would suggest to switch to the free channel
i2, but on the other hand, in such a way the information
about channel i1 becomes stale, and moreover channel i1 itself
might become free in a near future. Then, in analogy with the
single player case, we propose two strategies, one myopic and
one randomized, to approximate the best response for user 2
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Figure 3. Performance of myopic and randomized algorithm with 3 arms
(frequency bands). Arms 2 and 3 are statistically equivalents, with ϕ2 =
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against a myopic policy πM
1 that user 1 implements regardless

of user 2’s behavior. We suppose the algorithms are initialized
by sampling each channel once.

Algorithm 3. SINR myopic policy πMS
2 for user 2, against

myopic policy πM
1 for user 1.

πMS
2 (S∗[t], πM

1 ) = argmax
i∈{1,...,M}

E(SINRi,2[t]
∣∣S∗[t], πM

1 , i).

Algorithm 4. Randomized policy πRS
2 for user 2, against

myopic policy πM
1 for user 1.

Draw a realization of the random variable ξi =
SINRi,2[t]

∣∣(S∗[t], πM
1 , i), for all i = 1, . . . ,M . Select

πRS
2 (S∗[t], πM

1 ) = argmax
i=1,...,M

ξi.

About the performance of policies πMS , πRS , we can do
similar considerations to the one made for the myopic and
randomized algorithms in the single user case. Let us explain
the results illustrated in Figure 4. We considered 2 users and 2
channels. The noise variance is N0 = 1 and P1 = P2 = 1. The
channels for user 1 are almost deterministic, i.e. σ2

1,1 = σ2
2,1 =

0.1 and ϕ1,1 = ϕ2,1 = 0.3, m1,1 = 2, m2,1 = 0.5. Thus user
1, that is unaware of the presence of user 2 and adopts a
myopic policy πM

1 , selects channel 1 almost always. For user
2, σ2

1,2 = 0.8, σ2
2,2 = 0.4, m1,2 = 8,m2,2 = 3, ϕ2,2 = 0.3.

Hence, a static strategy for user 2 would suggest not to collide
and to select channel 2. Anyway, sometimes it is beneficial for
user 2 to select channel 1 when this is good enough. Indeed, for
values of ϕ1,2 approaching 1, the autocorrelation of channel 1
for user 2 increases, and the randomized policy πRS succeeds
in tracking channel 1 in the time slots in which its coefficient
g is large enough to overwhelm the interference caused by
user 1.

V. CONCLUSIONS

We proposed two strategies to dynamically select one out of
a pool of M slow fading channels, modeled as autoregressive
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Figure 4. Best response strategy of user 2 against a myopic policy for user
1. For user 1, σ2

1,1 = σ2
2,1 = 0.1 and ϕ1,1 = ϕ2,1 = 0.3, m1,1 = 2,

m2,1 = 0.5. For user 2, σ2
1,2 = 0.8, σ2

2,2 = 0.4, m1,2 = 8,m2,2 = 3,
ϕ2,2 = 0.3. ϕ1,2 varies within [0.8; 0.98]. r2(πM

1 , π2) is the expected long
run average SINR for user 2 when user 1 adopts strategy πM

1 .

processes of order 1. The decision process is modeled as a
restless bandit, or equivalently as a Markov Decision Process.
The myopic channel selection strategy is nearly optimal when
the channels are similarly correlated. Instead we suggest to
adopt a randomized strategy when one channel shows higher
autocorrelation. When two users are present, they interfere
with each other, and we model the competitive learning
process as a stochastic game. We finally propose two ways
to approximate a best response selection strategy for the
transmitters.

Acknowledgments: This research was supported by
“Agence Nationale de la Recherche”, with reference ANR-09-
VERS-001, and Orange France Telecom Grant on Content-
Centric Networking. We would like to thank Alexey Pi-
unovskiy for very helpful discussion.

REFERENCES

[1] J. C. Gittins, R. Weber, and K. D. Glazebrook, Multi-armed bandit
allocation indices. Wiley Online Library, 1989, vol. 25.

[2] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of optimal
queueing network control,” Mathematics of Operations Research, vol. 24,
1999.

[3] P. Whittle, “Restless bandits: Activity allocation in a changing world,”
Journal of applied probability, pp. 287–298, 1988.

[4] R. Weber and G. Weiss, “On an index policy for restless bandits,” Journal
of Applied Probability, pp. 637–648, 1990.

[5] R. Aguero, M. Garcia, and L. Mufioz, “BEAR: A bursty error auto-
regressive model for indoor wireless environments,” in Personal, Indoor
and Mobile Radio Communications, 2007. PIMRC 2007. IEEE 18th
International Symposium on. IEEE, 2007, pp. 1–5.
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