BLIND AUDIO SOURCE SEPARATION EXPLOITING PERIODICITY AND SPECTRAL
ENVELOPES

Souar Bensaid, Dirk Sock

EURECOM, Mobile Communications Dept.
2229 Route des @tes, BP 193, 06904 Sophia Antipolis Cedex, France
Email: {siouar.bensaid, dirk.slo¢i@eurecom.fr

ABSTRACT variation with time. The separation is achieved by identifying this
. ) . function and estimating the ML solution of the other usual parame-
In this paper we focus on the use of windows in the frequency doge g (amplitudes, phases, etc..). In [12], the short-term and long-ter

main processing of data for the purpose of spectral parameter eS«t;{'spect of speech are jointly modeled. For more references about

mation. Classical frequency domain asymptotics replace linear Co%ultipitch modeling and estimation, the reader can refer to [13].
volution by circulant convolution leading to approximation errors.

We show how the introduction of windows can lead to S“ghtly more In [14, 15]’ ajoint autoregressive (AR) model (Short_ p|us |0ng_

complex frequency domain techniques, replacing diagonal matricegrm (ST+LT)) was introduced for quasiperiodic sources. The long-
by banded matrices, but with controlled approximation error. Weerm part allows to capture the quasiperiodicity (with possible imper-
focus on the estimation of zero mean Gaussian data with a pargect correlation in time), while the short-term part allows to model
metric spectrum model and show the equivalence of three approhe spectral envelope. The modeling of the power spectral density
imation/estimation criteria: ltakura-Saito distance (ISD), Gaussiafy important to allow power splitting between sources at overlapping
Maximum Likelihood (GML) and Optimally Weighted Covariance harmonics in the source extraction operation. In [14, 15] Bayesian
Matching (OWCM). We specialize the discussion to the case of singpproaches were adopted for source and parameter estimation, us-
gle microphone based separation of quasiperiodic sources with AfRg EM-Kalman and Variational Bayes techniques resp. In [16], the
spectral envelope. ST+LT AR models were used for mono-microphone source separa-

Covariance Matching, AR modeling, audio source separation, winSource extraction is simply Linear MMSE (Wiener) estimation. In
dow, periodogram. the parametric approach, the ST+LT AR parameters need to be esti-

mated also. In [16], three criteria are formulated for the estimation
of these parameters on the basis of one frame of data, the Itakura-
1. INTRODUCTION Saito distance (ISD) and Optimally Weighted Spectrum Matching
L . o . . (OWSM) for matching the parametric observed spectrum and the ob-
Audio signal quasi-periodicity and spectral information have beengations periodogram. The third criterion is Gaussian Maximum
widely _epr0|ted to perfom? spe_ech enhancement. In f_act, n [l]*LikeIihood (GML cf.[17]). The gradients of these three criteria w.r.t.
Nehorai et al. propose a sinusoidal model based algorithm for enpe AR parameters and hence their extrema are shown to be identical.
hancement of speech corrupted by additive white Gaussian nois¢pe yeqyits in [16] are based on asymptotic frequency domain ex-
The enhance_ment IS .aCh'GVEd by estimating the smusou_jal model F?{3‘r’essions that are only valid for extremely long frames. In this paper,
rameters which consist of the fundamental frequency (pitch), amplig e eytend these results by accounting for the finite window length

tudes and phases. The fundamental frequency (nonlinear parpmetgy, gy introducing advantageously a non-rectangular window. Non-
is estimated using the recursive prediction error adaptive comb filtet:;, 12 windows were also introduced in [15], for the different pur-
amplitudes and phases are estimated using the recursive least sqUajESes of source extraction and parameter estimation, passing from
(RLS) algorithr_n. In_ [2], the si_nusoidal model, corrupt_ed by additive e 1o frequency domain. The approach in [15] was based on Vari-
broadband noise, is used with smoothness constraints imposed gf,na| Bayes, in which sources and their parameters are estimated
the model parameters. The smoothness condition is induced by t:P&ntly in an alternating optimization fashion. Here we estimate the
continuous and slow variations with time of the vocal tract transfef . - ~tars separately from the sources (e.g. after elimination of the
function gnd the pitch. T_herefore, this algorithm is rest'rictec_i Onl3}C)-3aussian sources from the likelihood function), as in [16]. Due to
to the voiced speech, while in [3], a more general algorithm is proyhe jniroduction of the window, which already limits temporal corre-
posed, using two filters jointly, one for enhancing voiced speech exgyian e propose to replace the LT AR correlation coefficient by its
ploiting harmonicity, another for unvoiced speech. _maximum value 1. We reconsider the equivalence of the three crite-
In audio source separation, periodicity has been used exhaustively, mentioned, but this time based on finite data vectors, for which
[4.5,6,7,8,09, 10, 11].Specifically, in [S, 4], the authors consi@er j, frequency domain we can no longer neglect the correlations be-
multipitch m_odel for VO'C‘?O' speech (referre_d to aI;o asthe _Iong't_emﬂmeen different frequencies (the goal of the window design will then
model) and introduce a time-warping function which describes pitcfyg ¢ jimit these correlations). The equivalence of multivariate 1SD

EURECOM's research is partially supported by its indusfpartners: and GML is stralghtforward [18]. as we Sh‘:a” see. In the. multivariate
BMW Group, Cisco Systems, Monaco Telecom, Orange, SAP, SFRi-ST ¢ase, the OWSM results in Optimally Weighted Covariance Match-

croelectronics, Swisscom, Symantec, and also by the FrendR pidject  ing (OWCM)[19].OWCM is again shown to be equivalent to ISD
DIONISOS and the EU FP7 project WHERE?2. and GML in terms of gradients.




2. WINDOWING FOR FRAME-BASED PROCESSING Time Window: 64 ms, Overlap 50% Time Window: 64 ms, Overlap 75%

The audio signals considered are by nature non-stationary. ! '
can consider the parameters constant during a short time, w 0.8 0.8
process the signal in frames (time segments), over which the ¢ 06 06
can be considered stationary, which corresponds to time-inve
filtering. Many of the signal processing operations (e.qg. linear ti 0.4 04
invariant filtering and filter computation) could be largely sim| 0.2 0.2
fied by passing to the frequency domain. However, transformi
frame of signal to the frequency domain directly via the DFT (F % 0.05 0.1 % 0.05 0.1
leads to approximations due to the periodic extension of the fi Time (s) Time (s)
assumption inherent in the DFT. We shall see later how we cal Hann window w(t) Spectrum of w(t) and w2(t)
prove these approximations. Just like the original data signuiill 1
be cut into a series of windowed frames of lengih a bit like in AR 20
the Welch method, a processed signal (e.g. extracted source 08 ) R 10
be reconstructed by superposing its reconstructed windowed f 0.6 /! N 0
segments. Since the window needs to decay towards its edges ! | & 10
secutive frames need to overlap. Ldtbe the hop size (time jumg 0.4 / N
from one frame to the next, then a perfect reconstruction (PR) 0.2 S w() N —20
dow w,, requires S -wi( O -30 ,\/\‘ ‘{\A
% 200 400 -0.02 -001 0 001 0.02
° Time (samples) Normalized Frequency
Z Wn—iM = 1 5 Vn (l)
= oo Fig. 1. Perfect reconstruction windowing.

see the top figures in Fig. 1 for the cases of relative overlap of

(N—M)/N = 50%,75% (both the individual windows and their The |takura-Saito distance is obtained by taking the ratio of the two
sum are shown for a finite set of windows). Note that one could5trices to be comparedl = RR!:

consider extensions to non-PR windows, in which the superposition

of windowed signal frames could be followed by a zero-forcing ISD() = tr{ﬁ R — Iy} — lndet(ﬁ R™Y). ©)
rescaling with1 /(3°72 __ w;—sar) or (multi-window) MMSE ver-

sions thereof. An example of a PR window is a Hann (or raised . . oo

cosine) window 3.2. Gaussian Maximum Likelihood (GML)

1 y Assuming a circular complex Gaussian distribution, the negative log-
we =5 [1 — cos (%N” , t=0,1,....N—1. (2 likelihood becomes (apart from constants)

o . . GML() = Indet(R) + Y'R™'Y . 4)
The continuity of the window at its edges can be expected to be

reflected in the continuity of the reconstructed signal and help reducRow note that using a property of the trace operator,

blocking artifacts (musical noise). The motivations for the windowy-Hg-1y _ ¢ (YHR™'Y} = w{YYHR} = tr{FAz R}
design will be different however in the parameter estimation part a8 the other handn det(ﬁ R 1) =1n det(ﬁ) _Indet(R). Hence
we shall see. In a separate approach for parameter estimation and ~ ’ '

source extraction, as considered here, different windows could b art fro_m gonsta_ntslr(fiet(R_) bei_ng one of them), thdS and
used in both parts. ML criteria are identical (in their dependence &n Note that

the GML criterion only has an estimation motivation, whereas the IS
(and hence GML also) performs jointly approximation and estima-
3. EQUIVALENCE OF ISD, GML AND OWCM CRITERIA tion. The approximation part refers to the fact that the true covari-
ance matrix off” may not be of the fornR(6) for some#, in which

In what follows we consider a vector of zero mean detaf length  case minimizing the ISD will lead to @that best approximates the
N, with covariance matriR, and estimation on the basis of the sim- gata.

ple sample covariand® = YY . We consider the dat¥ to be
circular complex Gaussian distributed. The covariance m&rig
parameterized by the vectér R = R(0). In this paper the super-
scripts.”,.”, . denote complex conjugate, transpose and HermitiapWCM is in fact optimally weighted least-squares applied to a

3.3. Optimally Weighted Covariance Matching (OWCM)

transpose respectively. sample covariance. Consider thec(.) operator which stacks the
consecutive columns of a matrix into a vector. Ther(R) =
3.1. Itakura-Saito Distance (ISD) vec(YYH) = Y* ® Y where® denotes the Kronecker product.

The mean oft * ® Y is of coursevec(R). Using expressions for

The multivariate Itakura-Saito distance is based on the observatiog rth moments of complex Gaussians, we get for its covariance
that for a nonnegative definite matil, the tangent hyperplane to atrix R* ® R. The OWCM criterion is then

IndetA atA = Iy is tr{A — Ix}, where tr denotes trace and

| v is the identity matrix of sizeV. The concavity oin det(.) then OWCM/(0)

leads to =(Y*"®Y —vec(R)F(R*@R)HY*®Y —wvec(R)) (5)
tr{A—Iy}—IndetA>0. =tr{R-RR'(R-RR'}



Now, it is well-known that the weighting matricé&~* can be re-

where we zeropadded the finite window to infinity. Now we get

placed by consistent estimates without modifying the asymptotic co-

variance matrix of the estimation errors resulting from minimizing
the OWCM criterion. Once th& ! are replaced by a consistent

estimate, they are no longer a functionéf Now, taking the gra-
dient of OWCM w.r.t. a parameték; by only considering th&®(6)
appearing in the quadratic "numerator”, we get

dOWCM(0)

30, = -21tr{

6

OR __1,5 -1
0. R (R-RR'}.

On the other hand we get f6#M L(0) = Indet(R) + tr {RR™'}
that

8 GML(6)

50, = tr{R'F}-tr{RR'JER™}

—tr { SRR R-RR7'}. "

Comparing (6) and (7), we see that the extrem@®uf C' M (6) and
GM L(0) coincide.

4. GML APPLIED TO THE DATA DFT

Working in the time domain, we have a full covariarikeo work

EY™(f1) Y (f2)
=E[W(Hi =HY(H)df [W*(f2— fo) Y™ (fo)dfo

= [dfW(fr = f) [dfoW*(f2 — fo) EY(/)Y*(fo)
= [df W(f1 = f) [ dfoW™(f2 = fo) Syy(f) 61(f — fo)
= fde(fl —f)W*(fQ _f)Syy(f)

(10)
whereY (f) = 320 ywe 7*™* is the DTFT of the stationary
random procesg,, with spectrumSy,(f), W (f) is the DTFT of
the windoww,,, andd: (f) = >";=_ 0(f — k) is the periodicized
delta function. Now let us introduce the vector of DFT frequencies
f=1[01---N—1]T/N and theN x 1 vector of oned, let W (f)
denote the column vector &F (.) evaluated at the componentsfof

then we can write for

R= / AW~ FOWE(F— 1Sy (). (A1)

We get in particular for the diagonal elemeRts, = [ df |W(%—

DI? Syy (f) which is the well-known spectrum smearing appear-
ing in the mean of the periodogram. Now, to limit complexity in
the frequency domain based methods, one should spdRsi&g
much as possible. Here is where the window design comes in.
For a properly designed window} (f) can be neglected outside
of its main lobe (see e.g. the lower right corner in Fig. 1). Note

with. By going to the frequency domain, one typically assumeghat from this point of view, a rectangular window is (again) not

to be able to work with a diagon& because asymptotically, dif-

a very good choice since the sidelobes are not much attenuated.

ferent frequency components are uncorrelated. We shall analydé Af is the doublesided width of the main lobe Bf(f), then
more precisely the nonasymptotic regime. Because of the correspofi-df W (f1 — f) W*(f2 — [) Syy(f) can be approximated to zero
dence of the three criteria above, we shall henceforth only considder |fi1 — f2| > Af. This means thaR can be approximated by

the GML criterion. Now, let the current frame df samples be

a banded matrix with only N A f7 non-zero diagonals. E.g. the

y = [yov1---y~—1]* and w.l.o.g. we assumed that the first sampleinversion of R can then be done efficiently using the LDU trian-
starts at time zero. Before applying the DFT, the data get windowedjular factorization oR in which the triangular factors will also be

Let W = diag{wo, w1, ...,wn—1} andF is the N x N discrete
Fourier transform (DFT) matrix, with inverse DF¥ F* = L F'".
Then we shall work with the transformed windowed data vector

Y=FWy. (8)

The data are assumed to have zero mean so that covariance aﬁ]

correlation matrices are equal. Note now tlyais real, butY is

complex due to the DFTY is strictly speaking non-circular as both

R = EYYH and EYYT are nonzero. Howevel/ is not a gen-
uine complex random vector as only the real vegtois random

and the complex aspect is due to a deterministic transformation. As

banded. Compared to classical frequency-domain asymptotics, the
spectrum gets smeared on the diagonal and spills onto the main sub-
and super-diagonals, leading to correlations between neighboring
frequencies (only). In those classical asymptotics, the smearing
effect of W (f) gets neglected, leading B= diag{S,,(f)}.

If Sy, (f) is sufficiently smooth, the integral in (11) can be ap-
rgximated by a sum over frequencies spaced more densgly at
containing multiples ot /N’, whereN’ > N. This can be obtained
by zeropadding the signal froV to N’ samples and applying the
DFT of sizeN’. We then geR’ of the form

R' = C(W(f") diag{Sy,(f")} " (W(f")) (12)

a result we can continue asf has a circular complex Gaussian \yherec denotes a circulant matrix constructed from the vector argu-

distribution (which corresponds to a real Gaussian distribution Withy,ant The entries d®’ can be downsampled to obtaif desired.
transposes replaced by Hermitian transposes). Now, all we need for

GML is R. Note that component; of Y = [Yo Y-+ Yn_1]"
is in fact the discrete-time Fourier transfotf(DTFT) Y (f) of
the windowed signal evaluated at frequerfcy= k/N. To consti-

5. FREQUENCY DOMAIN CRAMER-RAO BOUNDS
(CRBS)

tute R, we shall need the correlations between different frequencies

EY™(f1) Y¥*(f2). For this consider

=]
—j27fin
E wWne Yn

n=—oo

N-1
Yw(fl) — Z Wh yne—j27rf1n _
n=0

0 9
= Z hfnyn = hn *yTL'n:O ( )

n=-—oo

= A HOY (D df = [W( = )Y (D) df

For a Gaussian process with zero mean, the eletagfit(pertaining
to §; andé;) of the Fisher Information Matrix (FIM) are obtained as

_ yrtORg1OR
FIM,;; = tr{R 891-R 89]-} . (13)
Here,R is given in (11) and we get for the derivatives
IR — _ H¢p 8Syy (f)
G = [arw—rnwig - @



In the classical asymptotics, the FIM gets then approximated as

FIM;; = [ df Sy 25450 250
- fdf Oln Syy(f) 91n Syy (f) .
= 90, 20, '

(15)

J

6. PERIODIC SOURCES WITH ST AR SPECTRAL
ENVELOPE

The single microphone measurement sigpals considered to be
composed oK quasiperiodic sources; ,, plus noisev;,. Assuming
stationarity, the spectrui(f) of y,, can be written as

K

S(f) = So(f) +>_ Sk(f) -

k=1

(16)

In the case of white nois&(f) = o2. For quasiperiodic sources,

(5]

(6]

(7]

(8]

9]

which are observed over a limited time frame which is furthermore
windowed with reduced weight towards the edges, we can negle§10]
possible limited long-term correlation and model the source as a
Gaussian periodic signal with ST AR spectral envelope, leading to a

spectrum of the form

L]

Sif) = e 5(f -

+(f) |[Ax(f)I? mfithJ (Fomh) a7)
=T layy

1
7D G ooV )

whereo? adjusts the source power arfgl if the source pitch. We
have for the AR spectral envelope the ST filter

Ly
Ap(f) =D ar ™" with ago = 1 (18)

1=0

whereLy is the AR order of sourcg.
With the above signal model the paramet@ese
{6, ari,i=1,...,Lg, k=1,..., K} and we get foR(0)

R(O) =op [df W(f — fHW(f - f1)

+ i Y o W~ m ) WH(f —m fil) .
(19)
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