
FLEXIBLE FRONT-END PROCESSING FOR

SOFTWARE DEFINED RADIO APPLICATIONS USING APPLICATION SPECIFIC

INSTRUCTION-SET PROCESSORS

C. Schmidt-Knorreck, R. Pacalet*, A. Minwegen†, U. Deidersen†, T. Kempf†, R. Knopp, G. Ascheid†

Mobile Communications Department, EURECOM, Sophia Antipolis, France

* System-on-Chip Laboratory, TELECOM ParisTech, Sophia Antipolis, France

†Institute for Communication Technologies and Embedded Systems, RWTH Aachen University, Germany

ABSTRACT

High computational demands of today’s wireless communi-

cation standards require the design of highly flexible Soft-

ware Defined Radio (SDR) platforms like the OpenAirInter-

face ExpressMIMO platform. A DSP engine of major im-

portance is the Front-End Processor (FEP) which deals with

the different air-interface operations at the transceiver side.

In this paper we propose an Application Specific Instruction-

Set Processor (ASIP) architecture for front-end processing

and compare it to a programmable DSP engine as well as to

other ASIP solutions. For design comparison we mainly fo-

cus on architectural differences and the runtime performance

in terms of processing time. The synthesis results are pro-

vided for different target technologies.1

Index Terms— SDR, ASIP, flexible HW platform

1. INTRODUCTION

Recently, we have witnessed a significant change in the use

of mobile phones and other mobile devices. A few years ago

these devices focused solely on providing voice communica-

tion. In contrast, today’s smartphones support a wide range

of applications and high data-rate access becomes of major

importance. In addition, the requirements of different ap-

plications and the variable environment requests the support

of multiple wireless communication standards. For example,

available smartphones typically include GSM, 3GPP UMTS,

WLAN 802.11a/b/g, Bluetooth and most likely LTE in the

near future. It is expected that this number increases due to

upcoming standards like LTE Advanced and WiMAX, while

at the same time updates of existing standards need to be sup-

ported as well.

The high computational demands of such wireless communi-

cation standards, especially in the physical layer, have com-

monly been answered by a dedicated subsystem per standard.

1The research work leading to this paper has been supported by the Euro-

pean FP7 project ACROPOLIS (Advanced coexistence technologies for radio

optimization and unlicensed spectrum)

To allow the execution of the different modes of the given

standard, each of them has been implemented by a set of

configurable hardware accelerators. By nature, these systems

have limited flexibility and can mostly support only the stan-

dards they were intended for. Therefore, changes in existing

standard specifications or the implementation of new stan-

dards require a time-consuming and costly redesign of the

hardware architecture. These issues have given birth to the

concept of Software Defined Radio (SDR). Key idea is to

provide a flexible SDR platform that can support multiple

wireless communication standards in a multimodal fashion.

Unfortunately, adding flexibility to a hardware design usually

comes with the cost of increased area, increased energy con-

sumption and/or reduced computational performance. Earlier

investigations [1] have illustrated that a large amount of com-

putational complexity can be efficiently implemented by a

vector processing unit and SIMD (Single Instruction Multiple

Data) instructions. This paradigm is also visible in recently

released SDR platforms in commercial products like Femto-

cells from TI [2] and Freescale [3], as well as in SDR plat-

forms from academia [4]. In contrast to these solutions, the

baseband processing of the OpenAirInterface ExpressMIMO

platform [5] is split over several independent subsystems, as

depicted in Fig. 1.

In this paper we focus on the design of a flexible Front-End

Processor (FEP) for the ExpressMIMO platform. For this pur-

pose, a thorough comparison between a programmable tool-

based Application Specific Instruction-Set Processor (ASIP)

denoted as the A-FEP, a previously designed programmable

DSP engine (the Custom FEP (C-FEP)) and two other ASIP

solutions from academia ([6], [7]) is carried out.

For our ASIP design we used the Language for Instruction-

Set Architectures (LISA) [8] which has gained commercial

acceptance over the last years. Like the C-FEP, the A-FEP

achieves the required real time requirements of latest wire-

less communication standards when executing the front-end

processing part of the physical layer.

The paper is structured as follows: after presenting the re-

lated work in Section 3 and a brief introduction of the un-

Pre−processor

VCIInterface

Interconnect (AVCI Crossbar)

b
rid

g
e

Custom

b
ri

d
g
e

A
H

B
/C

u
st

o
mC

u
sto

m
/V

C
I

VCIInterface

VCIInterface

processor

Front−end

VCIInterface

Interleaver /

deinterleaver

VCIInterface

Channel

encoder
Mapper

VCIInterface

LEON3

uprocessor

Peripherals

Ethernet,
UART,
JTAG ...

DDR,

Flash ...

PCI Express

Interface

Radio

Front−end

VCIInterface

Channel

decoder

Detector

GPIO

GPIO

GPIO

Baseband Processing

Control and MAC Interface

Fig. 1. OpenAirInterface ExpressMIMO Platform - System Overview

derlying front-end processing algorithms and the functional

specification of the A-FEP in Section 4.1, the architecture of

the A-FEP is enhanced in Section 4.2. Usually, architectures

are evaluated in terms of frequency, area, power consumption

and the number millions of operations or instructions per sec-

ond. As the latter does not provide clear information about the

processing time of different operations executed on ASIPs,

we will provide processing time results based on the actual

amount of cycles instead. Two recent academic solutions pro-

viding this information are the ones developed by ETH Zürich

[7] and by the Cairo University [6]. In Section 3, details of

their architectures are provided before we finally present the

results of the runtime comparison in Section 5.

2. SYSTEM OVERVIEW

The ExpressMIMO platform is a flexible open-source SDR

platform that supports a wide range of different wireless com-

munication standards. To simplify upgrades to future ones

like LTE the baseband processing implemented on a Xilinx

Virtex 5 LX330 FPGA is split over different independent

programmable DSP engines that are connected via a generic

Advanced Virtual Component Interface (AVCI) crossbar [9].

The platform further embeds a SPARC LEON3 processor

from Gaisler - Aeroflex [10] as main CPU which runs on a

Xilinx Virtex 5 LX110 FPGA. The chosen Operating System

(OS) is MutekH [11] whose flat function call convention, flat

registers and simplified interrupt handling reduce the laten-

cies significantly when compared to other OS like eCos or

RTEMs. The design of each DSP engine on the baseband

FPGA follows the general structure shown in Fig. 2. This

standardized DSP shell is composed of a Control Sub-System

(CSS), a DMA engine, a Processing Unit (PU) and a Memory

Sub-System (MSS). MSS and PU are custom defined and

depend on the functionality of the DSP. Currently all DSP

engines are controlled by the main CPU which results in a

centralized control flow on the platform. To decrease the

resulting communication overhead, an 8 bit micro-controller

(UC) coming with a 2 kB data memory can be included in

the DSP shell to enable a distributed control flow. During our

ongoing work we experienced, that for standards operating on

small vector lengths like IEEE 802.11a the communication

overhead leads to a significant performance drop. Therefore

we decided to extend the functionality of the A-FEP by a

set of General Purpose (GP) instructions to overcome this

drawback. The UC can still be kept in the design but only for

the programming of the DMA engine.

xx
xx
xx
xx
xx

x
x
x
x
x

Control and

status registers

AVCI initiator
interface

AVCI target
interface

Micro-

controller

Micro-

controller

memory

Direct

memory

access

engine

MSS

(Memory Sub-

System)

...

UC memory

64
VIA

DMA

UC

UCA

64

CTRL
8

CSS

Arbiter

Interrupts

AVCI requests FIFO

AVCI responses FIFO

DSP unit

64 bits AVCI crossbar

: custom component / interface

: standard component / interface

Arbiter

IP core (processing unit)

Fig. 2. Standardized DSP shell

3. RELATED WORK

In the context of SDR platforms, one promising design so-

lution are ASIPs that can be seen as a class of microproces-

sors coming with a specialized Instruction-Set Architecture

(ISA). For SDR platform design, ASIPs tend to be suitable

candidates as they are meant to fill in the gap between Gen-

eral Purpose Processors (GPPs) and Application Specific In-

tegrated Circuits (ASICs) [12]. Being tailored to a specific

application, ASIPs exhibit a lower energy consumption than

GPPs or Digital Signal Processors (DSPs) while offering a

higher flexibility than ASICs at the same time. During the

past years, different solutions for front-end processing ASIPs

have been proposed. Some of the architectures focus only on

some air-interface algorithms like packet synchronization or

channel estimation (e.g. [13]) while other designs are tailored

to the processing of a specific group of standards. One ex-

ample is [14] where the proposed ASIP solution supports the

execution of the IEEE 802.15.4a standard only. Instead, the

A-FEP presented in this paper supports a wide range of dif-

ferent air-interface operations for different air-interfaces like

OFDM/A or SDMA and is not tailored to a specific standard

but to wireless communication standards in general. For per-

formance evaluation, the A-FEP is compared to three differ-

ent solutions which are

• the C-FEP which is a programmable DSP version of

the FEP and the ancestor of the A-FEP. The compar-

ison of C-FEP and A-FEP illustrates the performance

gain obtained on the ExpressMIMO platform when us-

ing the latter instead.

• the IEEE 802.11a/n ASIP solution for single and multi-

ple antennas implemented at ETH Zürich and presented

in [7] is a well known ASIP architecture of high perfor-

mance. It is further denoted as ASPE A.

• the recently published ASIP solution developed by the

Cairo University [6] used for synchronization and ac-

quisition in OFDM receiver systems which is called

Sync-ASIP.

3.1. C-FEP

A first architecture of the C-FEP has already been presented

in [15]. Since then, its design has been continuously improved

to get a higher performance and a higher runtime flexibility.

Like the A-FEP, the C-FEP is embedded in the standardized

DSP shell but instead of using a Program Memory, the DSP

engine is programmed through the control registers being part

of the CSS. Other differences are listed in the following:

• Processing Unit: Besides the vector processing unit

the C-FEP additionally embeds a DFT / IDFT unit and

supports a component-wise look up table operation to

approximate non-linear operations like invert or sine.

The processing core is split over two identical pro-

cessing units, each embedding twenty-four 25 x 18 bit

signed multipliers and twelve 43 bit accumulators,

which can either be used to implement two radix-4

butterflies for DFT / IDFT computation or to execute

the different vector operations. The resulting pipeline

consists of 15 stages and has to be emptied before the

next vector operation can be executed. This results in

an overhead of 11 to 16 cycles needed for initialization

and termination of each vector operation.

• MSS: For DFT / IDFT support, the MSS is extended

by twiddle factor and temporary data memories with an

overall size of 52 kB.

On large vectors the ratio between the communication over-

head and the processing time is close to zero while it results

in a significant performance drop when processing standards

operating on short data sets. Overcoming this drawback was

the main motivation in designing the A-FEP solution being

presented in the context of this paper.

The current target architecture of the baseband processing en-

gine is a Xilinx Virtex 5 LX330 FPGA with a speed grade of

-2. Although, an ASIC target technology may be considered

for a future release2. For the FPGA target, processing engine

and MSS of the C-FEP have been synthesized with Precision

RTL from Mentor Graphics. The design obtains a frequency

of 96 MHz by requiring 20119 function generators, 5030 CLB

slices, 10945 DFFs, 33 block RAMs and 24 DSP48E slices.

For the ASIC target, only the processing engine of the C-FEP

has been synthesized as the new design of the MSS is still part

of our ongoing work. The maximum achievable frequency in

this case is about 450 MHz and the area is 0.48 mm2.

3.2. ASPE A

The ASIP solutions presented in [7] are based on the Adap-

tive Stream Processing Engine (ASPE) [16] which is a coarse-

grained ASIP architecture being optimized for data process-

ing. Main advantages are the shortened design time and the

limited runtime reconfigurability for bug fixes resulting in

lower costs than other solutions. The ASPE is connected to a

GPP taking care of the control and of performance uncritical

tasks. In contrast to the ExpressMIMO platform, ASPE de-

signs include three different types of building blocks whose

quantity and type can be selected from a library at design

time.

1. Functional Units (FU) contain the arithmetic opera-

tions and can be combined to implement more complex

ones. The number of internal pipeline stages is flexible

and can be chosen at design time.

265nm target library, low power and high voltage threshold, character-

ized for a typical manufacturing process at 1.2 Volts power supply and 25◦C

temperature

2. Storage Units (SU) are used for local data storage.

They are connected to the FUs via a runtime config-

urable network.

3. Sequencer Units (SEQ) control the configurable net-

work between FUs and SUs. They further support con-

trol related tasks like zero-overhead loops or data de-

pendent control flow.

In [7], two different ASIP solutions are presented that are

both tailored to the processing of the IEEE 802.11a/n stan-

dard. The first one is a Single Input Single Output (SISO) re-

ceiver while the second one supports a 2x2 MIMO (Multiple

Input Multiple Output) configuration. Table 1 illustrates the

common ASPE configuration (ASPE A) for both designs. By

combining the different FUs, the functionality of the ASPE A

has been enhanced by a set of different vector operations like

CORDIC for instance.

For a 0.13 µm CMOS target process, the SISO receiver con-

figuration obtains a frequency of 160 MHz and requires a

silicon-area of 1.9 mm2. Instead the MIMO receiver has been

synthesized for a 0.18 µm CMOS target process. For a target

frequency of 160 MHz the silicon area is 7.6 mm2, while the

maximum achievable frequency is 250 MHz.

3.3. Sync-ASIP

The ASIP solution presented in [6] covers synchronization

and acquisition of different OFDM standards. The design in-

cludes six 12 bit real adders, three 13 bit real multipliers, two

12 bit rounder, two 24 bit accumulators, ten 13 bit multiplex-

ers and two 24 bit shifters that are distributed over three dif-

ferent pipeline stages. The maximum vector length supported

is 256. Like ASPE A, the Sync-ASIP allows the processing

of the CORDIC algorithm as well as maximum likelihood or

correlation functions. The MSS is built of 286 word dual-port

banks à 24 bit which is based on the choice of the maximum

correlation length of 256 which is required for IEEE 802.16e

and LTE. The instruction-set is composed of program flow in-

structions, optimized instructions to facilitate the implemen-

tation of the synchronization tasks and vector instructions.

For a 0.18 µm CMOS target process, the obtained frequency

is 120 MHz and the area is 1.1 mm2.

4. A-FEP ARCHITECTURE

4.1. Processing Engine Requirements

The front-end processing requirements for the support of

OFDM/A, SC-FDMA, W-CDMA and SDMA have already

been detailed in [1] and [15]. These papers state that the

operations to be performed by the FEP on the transceiver side

comprise among others channel estimation and synchroniza-

tion which can be build up from component-wise vector

operations and a DFT / IDFT unit. The latter is neglected for

Table 1. ASPE A Configuration

Ressource Quantity Comments

SEQ 1 program memory to store

- the program control flow

- the 16 bit command words

FU 1 complex-valued multiply

and accumulate unit

2 complex-valued arithmetic

logic units

SU 1 registerfile (16 registers)

1 input data buffer (64x32 bit)

6 data storage (256x32 bit)

Table 2. A-FEP Vector Operations

Component-Wise Addition Z[i] = X[i] + Y [i]
Component-Wise Product Z[i] = X[i] × Y [i]
Component-Wise Square Absolute Z[i] = |X[i]|2

Move Z[i] = X[i]
Component-Wise Division Z[i] = X[i]/Y [i]
Vector Sum Z =

∑
X[i]

the A-FEP and kept as a separate processing engine in the

baseband design of the ExpressMIMO platform.

The basic set of vector operations to be supported by the

A-FEP is listed in Table 2. Besides, shift, max/min and

argmax/argmin operations are provided that can operate in-

dependently on the real and imaginary parts of the vector ele-

ments being processed. In addition, pre- and post-processing

value modifications are applied, comprising absolute value,

negation, zeroing, rescaling and saturations. The input and

output vector elements can be of four different data types: 8

or 16 bit signed integers and complex numbers with a size of

16 or 32 bit. Type conversions between them are specified

through parameters being part of the instruction word.

One major challenge when supporting a wide range of dif-

ferent standards is to ensure that all of them meet their

real-time constraints. Therefore, the A-FEP comes with a

programmable Address Generation Unit (AGU) that allows

to build input vectors from non-contiguous data sets in the

connected MSS. Symmetrically, the AGU can also be used

to store result vectors at non-contiguous locations, allowing

component skipping or (periodic) value repetition. Moreover,

programmable self-wrapping mechanisms allow to turn MSS

sections into circular buffers. Major parts of the MSS are

the 4 kB program memory and the input-output data space

which has been designed for the support of standards which

operate on large vector sizes like LTE or DAB. It is split over

four different memory banks, each with a size of 4096 32 bit

entries. The maximum vector length that can be processed

depends on the data type. For vector elements with a size of

32 bit the maximum length is 4096 while it is 16384 for a

size of 8 bit.

GP GPGP GP GP

Execute 2 Execute 3 Execute 4 Execute 5 Execute 6 Writeback

Memory SubSystem (MSS)

ALU EX3

mult

extend

Writeback

value

modification

ALU WB

Execute 1FetchPre−Fetch Decode Execute 0

Cntrl

Program

Memory

instruction

decode

AGU

(read)

(config)

AGU

AGU

(read)

ALU EX1

value

modification

ALU EX2

force to 0

negate

extend

absolute

ALU EX4

max/argmax

min/argmin

shift right

shift left

invert

(write)

AGU

(write)

AGU

(write)

AGU

ALU EX5

truncate

ALU EX5

extend

add

REGISTERFILE

BYPASS

Instruction

Decoding

Vector Operation

Processing

Address

Generation Unit

General Purpose

Instruction Processing

Fig. 3. A-FEP Pipeline

4.2. HW Architecture and Instruction-Set

The instruction-set of the A-FEP comprises three different in-

struction types:

1. AGU configuration instructions: These instructions

carry the necessary parameters for programming the

AGU. Six different instructions have been implemented

whose quantity in the program code may vary depend-

ing on the amount of parameters to be modified for the

subsequent arithmetic vector processing instruction.

2. Arithmetic Vector Processing (AVO) instructions:

To fulfill the processing engine requirements, the A-

FEP supports nine different AVO instructions which are

vector multiplication, addition, square, square modu-

lus, sum, shift, move, division and max,min. Maximum

supported vector length is 16384 entries for a vector

composed of 8 bit vector elements.

3. General Purpose (GP) instructions: The GP instruc-

tion-set is based on a load-store architecture and sup-

ports common instructions like compare, branch or

ALU operations. It comes with a registerfile possess-

ing a size of 16 x 32 bit. Further included is an IRQ

instruction used to signal the main CPU the end of a

scheduled task. Tasks can represent a single instruction

or more complex algorithms like packet synchroniza-

tion. Letting the main control to the main CPU comes

with the advantage of a simplified scheduling when

processing different standards in a multimodal fashion.

The pipeline structure is illustrated in Fig. 3. It consists of

eleven stages and comes with a throughput of two vector ele-

ments per cycle. Usually, one instruction per cycle is fetched

from the program memory. An exception are the multicycle

AVO instructions which may operate on vectors with variable

length. While executing these instructions, the pipeline regis-

ters between Pre-Fetch, Fetch and Decode are stalled.

Synthesizing the A-FEP for the FPGA target, it obtains a fre-

quency of 105 MHz by requiring 13122 function generators,

3281 CLB slices, 6433 DFFs, 17 block RAMs and 8 DSP48E

slices. For the ASIC target, only the processing engine has

been synthesized as the new design of the MSS is part of our

ongoing work. The maximum achievable frequency is about

550 MHz, the area is 0.18 mm2.

5. RUN-TIME PERFORMANCE COMPARISON

The runtime performance depends on two different factors:

the processing time required for the communication between

the main CPU and the baseband DSP engines and the pure

data processing time of the DSPs. For a standard operating

on small vector lengths (e.g. IEEE 802.11a/p), the first fac-

tor is of major importance while it is more or less negligible

for standards like LTE that operate on large vectors. Table 3

lists the A-FEP execution times for different front-end pro-

cessing algorithms of a IEEE 802.11p receiver for a frequency

of 100 MHz. Packet structure and the applied OFDM decod-

ing procedure have recently been presented in [17].

Table 3. A-FEP Execution Times (802.11p Receiver)

algorithm cycles execution time

energy detection 302 3.06 µs

channel estimation 45 0.45 µs

data detection (16-QAM, init) 172 1.72 µs

data detection (16-QAM) 114 1.14 µs

data detection (64-QAM, init) 219 2.19 µs

data detection (64-QAM) 342 3.42 µs

For demonstration and to compare the performance of the dif-

ferent presented solutions we will further take the example of

two different packet detection algorithms for OFDM signals.

5.1. Auto-correlation Based Packet Detection (A-PD)

In [7], packet detection is performed over the Short Training

Sequence (STS) of the IEEE 802.11a/n packet illustrated in

Fig. 4. The STS is composed of ten repetitions of a 16 sam-

ples sequence. The applied algorithm correlates L samples of

the received sample stream r[d] (d is the time index) with the

subsequent L ones. For a single antenna receiver this can be

expressed via the auto-correlation function

PL[d] =

L−1∑

m=0

(r∗[d + m] · r[d + m + L]) (1)

To obtain a high accuracy, L is set to half of the size of

the STS which corresponds to a vector length of 80 samples.

Next, the average energy of the received sample stream in the

actual window is calculated as

RL[d] =

L−1∑

m=0

|r[d + m + L]|2 (2)

In case

|PL[d]|2 >
|RL[d]|2

2
(3)

the beginning of the packet is found. Otherwise the window

over the incoming sample stream is shifted by a predeter-

mined number of samples. Extending this algorithm to the

2x2 MIMO case, (1) and (2) are performed for both receive

chains. The comparison is performed over the average results

stated as

PL,avg[d] =
1

2

2∑

j=1

PjL[d] (4)

and

RL,avg[d] =
1

2

2∑

j=1

RjL[d] (5)

For the A-FEP, the set of instructions to be executed and the

cycle counts for each of them for the SISO case are shown

in Table 4. The total amount of cycles are 6 · L
2 + 72 when

including the GP instructions and 6 · L
2 + 24 if only the data

processing is taken into account. When using the C-FEP in-

stead the implementation can be simplified as illustrated in

Table 5. Considering only the pure data processing without

the communication overhead, the resulting amount of cycles

in this case is 4 · L
2 + 46.

STS LTS SIGNAL DATA_1 DATA_N...

t1 t10...

160 samples 160 samples 80 samples 80 samples 80 samples

Fig. 4. IEEE 802.11a Packet Structure

Table 4. A-FEP Instructions (A-PD)

instructions cycles

PL[d] agu cfg (6x) 9

vec move L/2 + 4

agu cfg (4x) 4

vec mult L/2 + 4

agu cfg (2x) 2

vec sum L/2 + 4

RL[d] agu cfg (2x) 2

vec square modulus L/2 + 4

agu cfg (2x) 2

vec sum L/2 + 4

agu cfg (2x) 2

vec square modulus L/2 + 4

|PL[d]|2 > |RL[d]|2

2 nop (7x) 7

lw 5

nop 1

lw 5

nop 1

bgt 8

Table 5. C-FEP Operations (A-PD)

operations cycles

PL[d] move L/2 + 11

multiplication + sum L/2 + 12

RL[d] square modulus + sum L/2 + 12

|PL[d]|2 > |RL[d]|2

2 square modulus + sum L/2 + 11

Table 6. Design Comparison (A-PD)

Solution cycles cycles execution time comm. overhead execution time comm. overhead

(SISO) (MIMO) (SISO) (SISO) (MIMO) (MIMO)

ASPE A 296 650 2.96 µs - 6.5 µs -

A-FEP 264 572 2.64 µs 0.48 µs 5.72 µs 0.64 µs

C-FEP 312 465 3.12 µs 1.2 µs 4.65 µs 1.2 µs

To get an idea about the time required for the communication

overhead, different measurements have been carried out on

the ExpressMIMO platform for a frequency of 100 MHz.

• The time required by the main CPU to program one

vector operation of the C-FEP takes 420 ns. The com-

munication overhead can be reduced when program-

ming the subsequent vector processing operation dur-

ing the execution of the previous one.

• Using polling, the time till the main CPU reacts on the

end of a C-FEP vector operation is 436 ns.

• The time necessary to copy two values to the main CPU

and to compare them is 350 ns.

To sum up, Table 6 gives the resulting cycles counts and pro-

cessing times for a frequency of 100 MHz. Based on these

results it can be observed that for this algorithm, the A-FEP

performs slightly better than ASPE A although the architec-

ture of the latter is optimized for the processing of the IEEE

802.11a/n standard. Compared to the C-FEP, the A-FEP re-

duces the communication overhead significantly due to re-

duced pipeline delays and due to the GP instructions. The

development of algorithmic implementations is thus simpli-

fied using the A-FEP as no explicit synchronization between

the processing unit and the main CPU is needed. Considering

only the data processing time, the C-FEP performs better as

the sum is not an extra operation.

5.2. Energy Based Packet Detection (E-PD)

In the first example, we compared the A-FEP to two powerful

ASPE A solutions that are able to execute the whole base-

band processing of the applied standard. Now, the A-FEP

is compared to a specialized ASIP for synchronization and

acquisition that has recently been published in [6]. The ap-

plied packet detection algorithm is slightly different than the

previously presented one. To get a first estimate of the proba-

bility that the beginning of the packet is detected, two energy

values a and b are calculated over L = 64 elements and di-

vided through each other. In case the result is beyond a cer-

tain threshold, the exact beginning of the packet is detected

using auto-correlation functions. The energy values can be

computed as

a =

L−1∑

n=0

|rn−L|
2 (6)

and

b =

L−1∑

n=0

|rn+L|
2 (7)

while their relation is expressed as

m =
a

b
(8)

For the A-FEP, the set of instructions to be executed is il-

lustrated in Table 7. Including the GP instructions, the total

amount of cycles is 3 · L
2 + 68 and 3 · L

2 + 12 if only the

data processing is taken into account. When using the C-FEP

instead the implementation can be simplified as illustrated in

Table 8 and the processing times for a frequency of 100 MHz

are provided in Table 9. As expected, the typical phenomenon

can be observed that a weakly programmable ASIP special-

ized for a specific task performs far better than a flexible ASIP

solution that is capable to perform a wide range of different

operations. Comparing the A-FEP with the C-FEP solution it

can be seen, that the A-FEP drastically reduces the communi-

cation overhead for short data sets.

Table 7. A-FEP Instructions (E-PD)

instructions cycles

a,b agu cfg (6x) 9

vec abs square L/2 + 4

agu cfg (2x) 2

vec abs square L/2 + 4

agu cfg (2x) 2

vec sum L/2 + 4

m agu cfg (4x) 2

vec cwl 7

agu cfg (3x) 3

vec mult 4

nop (7x) 7

lw 5

nop 1

lw 5

nop 1

bgt 8

Table 8. C-FEP Operations (E-PD)

instructions cycles

a,b vec abs square + sum L/2 + 12

vec abs square + sum L/2 + 12

m vec cwl 15

vec mult 11

Table 9. Design Comparison (E-PD)

Solution cycles execution time communication

overhead

Sync-ASIP 31 0.31 µs -

A-FEP 108 1.08 µs 0.56 µs

C-FEP 114 1.14 µs 2.29 µs

6. CONCLUSION

In this paper we focused on the comparison of two new de-

signs for the Front-End Processor for the OpenAirInterface

ExpressMIMO platform with existing ASIP solutions. Com-

paring the A-FEP to the C-FEP, we have shown that the A-

FEP performs better in terms of processing time due to the re-

duced communication overhead with the host system and due

to reduced internal latencies. Although the A-FEP supports a

wide range of different wireless communication standards, we

have shown that it performs slightly better for a packet detec-

tion algorithm than a solution presented by ETH Zürich that

is tailored to the processing of the IEEE 802.11a/n standard.

On the other hand the performance is still worse when com-

pared to an ASIP solution designed for synchronization and

acquisition that comes with a reduced instruction-set and is

therefore less flexible than the presented A-FEP. Future work

includes the design analysis with regards to energy consump-

tion and power dissipation as well as the final integration of

the A-FEP on the ExpressMIMO platform.

7. REFERENCES

[1] K. van Berkel, F.k Heinle, P. Meuwissen, et al., “Vector

processing as an enabler for software-defined radio in

handheld devices,” EURASIP Journal on Applied Signal

Processing, vol. 2005, pp. 2613–2625, January 2005.

[2] Texas Instruments Inc., C6000 High Performance Mul-

ticore DSP.

[3] Freescale Semi. Inc., MSC8156: Six Core High Perfor-

mance DSP, 2011.

[4] “http://www2.imec.be/be en/press/imec-

news/cobra.html,” .

[5] N.-u.-I. Muhammad, R. Rasheed, R. Pacalet, et al.,

“Flexible baseband architectures for future wireless sys-

tems,” in Digital System Design Architectures, Methods

and Tools, 2008. DSD ’08. 11th EUROMICRO Confer-

ence on, Sept. 2008, pp. 39–46.

[6] M. Said, O. Nasr, and A. Shalash, “Embedded reconfig-

urable synchronization & acquisition ASIP for a multi-

standard OFDM receiver,” Eurasip Journal on Em-

bedded Systems, vol. 2012, 2012, 10.1186/1687-3963-

2012-2.

[7] S. Eberli, Application-Specifc Processor for MIMO-

OFDM Software-Defined Radio, Ph.D. thesis, ETH

Zürich, 2009.

[8] A. Hoffmann, O. Schliebusch, A. Nohl, et al., “A

methodology for the design of application specific in-

struction set processors (ASIP) using the machine de-

scription language LISA,” in Proceedings of the 2001

IEEE/ACM international conference on Computer-

aided design, Piscataway, NJ, USA, 2001, ICCAD ’01,

pp. 625–630, IEEE Press.

[9] “Vsia consortium: http://www.vsi.org/,” .

[10] “http://www.gaisler.com/leonmain.html,” .

[11] “http://www.mutekh.org,” .

[12] O. Schliebusch, G. Ascheid, A. Wieferink, et al., “Ap-

plication specific processors for flexible receivers,” in

Proc. of National Symposium of Radio Science (URSI),

Poznan (Poland), Apr 2005.

[13] M. Hamdy, O. Nasr, and A. Shalash, “ASIP design of

a reconfigurable channel estimator for OFDM systems,”

in Microelectronics (ICM), 2011 International Confer-

ence on, Dec. 2011, pp. 1–5.

[14] C. Bachmann, A. Genser, J. Hulzink, et al., “A low-

power ASIP for IEEE 802.15.4a ultra-wideband impulse

radio baseband processing,” in Design, Automation

Test in Europe Conference Exhibition, 2009. DATE ’09.,

April 2009, pp. 1614–1619.

[15] N.-I. Muhammad, K. Khalfallah, R. Knopp, and

R. Pacalet, “Reconfigurable DSP architectures for SDR

applications,” in Electronics, Circuits and Systems,

2007. ICECS 2007. 14th IEEE International Conference

on, Dec. 2007, pp. 971–974.

[16] T. Bösch, Adaptive stream processor for network multi-

media consumer electronic devices, Ph.D. thesis, ETH

Zürich, 2004.

[17] C. Schmidt-Knorreck, D. Knorreck, and R. Knopp,

“IEEE 802.11p Receiver Design for Software Defined

Radio Platforms,” in Digital System Design Architec-

tures, Methods and Tools, 2012. DSD ’12. 15th EU-

ROMICRO Conference on, Sept. 2012.

