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1 Introduction

Recently, cognitive radio has become one of the hot topics that attracts a lot of
researchers from communication and signal processing societies. In some of its
proposed scenarios, the blind channel estimation constitutes an essential block
[45], [32], [33]. Hence, engineers exploit from the extensive research that has been
done during the last two decades in this field. Unfortunately, the performance of
many blind channel identification algorithms that were introduced in that era was
assessed only by simulation. This constitutes an obstacle that may hinder the im-
plementation of those algorithms in some applications due to an uncertainty in
their behavior. Encouraged by the importance of performing the analytical analy-
sis and by the recent interest in blind channel estimation, we present and analyze
in this paper previously introduced algorithms to solve the Deterministic Maxi-
mum Likelihood (DML) criterion for FIR multichannel estimation. Two solutions
are discussed that appear as a significant improvement of the popular Iterative
Quadratic ML (IQML) approach [8]. The algorithms considered here are generic
and could also be applied to frequency estimation for sinusoids in noise [16] or di-
rection of arrival (DOA) estimation for plane waves impinging on a uniform linear
antenna array [28].

In this paper, however, we shall concentrate on the application to the blind
identification of FIR multichannels [40].

DML considers the input symbols as deterministic unknown quantities. It does
not use any a priori statistical information on the input symbols, unlike other
methods which for example consider the input symbols as i.i.d. random variables,
such as covariance matching [20], linear prediction [35,1], or optimally weighted
subspace fitting [26]. Still other approaches model the input symbols as Gaus-
sian random variables such as Gaussian ML in [12], or as belonging to a discrete
alphabet such as ILSP [38]. These methods exploit more information and hence
may lead to better performance. However, compared to these methods, the deter-
ministic methods [15] offer the advantage of giving (asymptotically) convex cost
functions, thus avoiding local minima and often allowing closed-form (one-shot)
solutions. The other methods may theoretically be more efficient statistically, but
are often computationally more complex with typically local minima issues. In the
category of deterministic methods, we also find the Subchannel Response Match-
ing (SRM) method which will be elaborated below, methods based on the singular
part of linear prediction [34], (unweighted) subspace fitting [29], and LS smooth-
ing [41] or two-sided linear prediction [6]. Within the limitations of the informa-
tion exploited by a given approach, ML methods normally provide asymptotically
the best performance attainable. The asymptotic ML performance is usually the
Cramer-Rao lower bound (CRB). However, the CRB cannot be attained in deter-
ministic blind channel estimation due to the inconsistency of the symbol estimates
[12]. So the benchmark performance here is the DML performance, rather than
the CRB. The iterative algorithms considered here for optimizing DML require
solving quadratic problems at each iteration and converge in 1 or 2 iterations.
Furthermore, deterministic methods have the property of allowing the exact so-
lution for a finite amount of data in the absence of noise (consistency in SNR).
Methods that use the statistics of the input symbols often allow identifiability of
a larger part of the channel than what deterministic methods can identify, but
require an infinite amount of data to give the exact solution for these supplemen-

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Title Suppressed Due to Excessive Length 3

tary parameters (such as e.g. the channel magnitude). This “consistency in SNR”
property of deterministic methods will be exploited in the paper.

At high SNR, IQML performs very well and gives the DML estimate. At low
SNR however, it gives biased estimates due to the presence of noise and performs
poorly [37]. The two iterative methods we consider here are in fact the only meth-
ods solving DML with reasonable computational cost, as they involve structured
quadratic criteria at each iteration, and provide very good estimation performance
even at low SNR.

The first method, Denoised IQML (DIQML), subtracts the asymptotic noise
contribution in the DML criterion: it gives consistent estimates and outperforms
IQML. This method is proved to be asymptotically, in the number of data (or in
SNR), insensitive to the initialization and globally convergent. The second iterative
method, Pseudo-Quadratic ML (PQML) which has been used recently to estimate
the time delay in Ultra-Wideband (UWB) ranging applications [47] attempts to
null the actual gradient of DML in each iteration. PQML appears as a modification
of IQML from which the noise contribution is removed, but in a more efficient
way than in DIQML. An asymptotic performance study of the two algorithms is
presented. PQML is proven to give better performance than DIQML and gives the
same asymptotic performance as DML provided the initialization is consistent.
A complexity study is also provided: DIQML and PQML are computationally
attractive solutions with a complexity linear in the number of data samples.

To summarize our contributions, we introduced (in [3]) independently from
[26],[17] the denoising operation in IQML. Compared to [26], we introduced a
more judicious choice of the denoising parameter that leaves the Hessian of the
problem positive semidefinite. In [17] , a different problem formulation leads to the
same algorithmic result. We then applied our constraining approach for the Hessian
to PQML, which was first introduced in [30] in the context of sinusoids in noise
estimation and then applied to DML channel estimation in [22]. In contrast to these
references which only used simulations, we provide an asymptotic performance
analysis which shows that both DIQML and PQML are useful since only DIQML
allows global convergence while only PQML allows to reach the DML performance.
We also emphasize the role played by various noise subspace parameterizations and
provide a computational complexity analysis. These elements will be elaborated
below.

2 Problem Formulation and Notation

We first introduce some notation and acronyms:

(.)∗, (.)T , (.)H conjugate, transpose, conjugate transpose
(.)+ Moore–Penrose pseudo–inverse
tr(A), det(A) trace and determinant of matrix A

θ̂, θo estimate of vector θ, true value of θ
Re(.), Im(.) real and imaginary part
I Identity matrix with adequate dimension
w.r.t. with respect to
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We consider here linear modulation (nonlinear modulations such as GMSK can
be linearized with good approximation [42]) transmitted over a linear channel. The
received signal, after a linear receiver filter, is then the convolution of the transmit-
ted symbols with an overall channel impulse response. In wireless communications
terminology, we consider here the single-user case (as opposed to the multi-user
case in which the received signal contains a mixture of multiple users). The mul-
tichannel model results from the oversampling of the received signal and/or from
reception by multiple antennas. It can also come from the separation of the real
(in phase) and imaginary (in quadrature) part of the demodulated received signal
if the symbol constellation is real [27], [44].

Consider a sequence of symbols a(k) received through m channels of length N
and coefficients h(i):

y(k) =

N−1∑

i=0

h(i)a(k−i) + v(k), (1)

v(k) is an additive independent white Gaussian noise with rvv(k−i) = E v(k)
v(i)H = σ2

vIm δki and when v(k) is complex E v(k)vT (i) = 0 (circular noise).
Assume we receive M samples, concatenated in the vector Y M (k):

Y M (k) = TM (h)AM+N−1(k) + V M (k) . (2)

Y M (k) = [yT (k) · · ·yT (k−M+1)]T , similarly for V M (k), and AM (k) = [a(k) · · ·
a(k−M−N+2)]T . TM (h) is a block Toeplitz matrix with M block rows and[
H 0m×(M−1)

]
as first block row, where:

H = [h(0) · · · h(N−1)] and h =
[
h
T (0) · · ·hT (N−1)

]T
. (3)

We furthermore denote H(z) =
∑N−1

i=0 h(i)z−i = [H1(z) · · ·Hm(z)]T the SIMO
channel transfer function. We shall simplify the notation in (2) with k = M−1 to:

Y = T (h)A+ V . (4)

Note that due to the commutativity of convolution: T (h)A = Ah, where A =

A′ ⊗ Im and the Hankel matrix A′

is filled with the elements of A.

3 Preliminary Facts

3.1 Ambiguity and Constraints

It is well known that in the context of the SIMO systems, the channel can only
be estimated blindly up to a scale factor. In the complex signals case, a proper
approach requires to convert the problem with Nm complex parameters h into

a problem with 2Nm real parameters hR =
[
Re(h)T Im(h)T

]T
and in that case

a complex scale factor corresponds to two real parameters (amplitude or norm,
and phase). In the real case, hR = h. To make the estimation problem well posed,
constraints on the channel need to be introduced to fix its unidentifiable compo-
nents. We computed the asymptotic performance of DIQML and PQML under the
following constraints:
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(1) a quadratic constraint:

hHh = hoHho (5)

which allows to adjust the norm of the channel.
(2) in the complex case, an additional constraint is necessary to adjust the phase

factor:

ho T
S hR = ho T

S ho
R = 0 (6)

where hS =
[
−Im(h)T Re(h)T

]T
(= (jh)R).

The first constraint is a commonly used constraint in blind channel estimation and
we have already introduced it earlier. The particular constraints above were chosen
to characterize the asymptotic performance of blind DML in [12,9] because they
yield the minimal MSE, E‖ĥ−ho‖2, for a minimal number γ (γ = 2 in the complex
case, γ = 1 in the real case) of independent constraints. This property holds also
for PQML and DIQML. In both real and complex cases, these constraints leave a
sign ambiguity on the channel which does not lead to singularities in the matrices
involved in the performance derivation (see (53)) or in the CRB, as is the case
for any discrete valued parameter ambiguity. For practical MSE evaluation, the
ambiguity can be resolved by requiring hoHh > 0 (constraint (6) only forces hoHh
to be real).

The constraints (5), (6) are of the form K(hR) = 0, K : RγNm → R
γ . We

denote by Mho

R
the tangent subspace to the constraint set at the point ho

R:

Mho

R
=

{
Z ∈ R

γNm ;

(
∂KT (ho

R)

∂hR

)T

Z = 0

}
. (7)

For the constraints (5), (6), we get
∂KT (ho

R)

∂hR
= [ho

R ho
S ] in the complex case

(or just the first column in the real case). For the asymptotic performance, any
constraint set that leads to the same tangent subspace Mho

R
is equivalent. For

instance, we can consider also the following linear constraint for the complex
case: hoHh = hoHho which for the corresponding real parameters translates to
[ho

R ho
S]

ThR = [ho
R ho

S ]h
o
R = [hoT

R ho
R 0]. One may remark that this linear con-

straint set leaves no sign ambiguity, and has the same tangent subspace as the
constraints in (5), (6).

3.2 Linear Parameterization of the Noise Subspace

As we shall observe in the sequel, the DML criterion (10) is highly nonlinear
and its direct optimization would require cumbersome optimization techniques.
The key to a computationally attractive solution of the DML problem is a linear
parameterization of the noise subspace. We consider here a linear parameterization
of the noise subspace in terms of channel coefficients (a parameterization in terms
of prediction quantities was also presented in [36]).

LetH⊥(z) (p×m), p ≥ m−1, be such a parameterization: it verifiesH⊥(z)H(z) =
0 and T (h⊥)T (h) = 0; T (h⊥) is the convolution matrix corresponding to the fil-
ter H⊥(z) and the columns of T H(h⊥) span the noise subspace. For more details
about this issue, we refer the reader to [3].
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4 Various Deterministic Algorithms

4.1 Blind Deterministic ML

The Deterministic Maximum Likelihood (DML) method was introduced for blind
channel estimation in [35,24]. In DML, both channel coefficients and input symbols
are considered as deterministic quantities, and are jointly estimated through the
criterion:

max
A,h

f(Y |h) ⇔ min
A,h

‖Y − T (h)A‖2 . (8)

f(Y |h) is the complex probability density function (which exists as V is circular).
The derivations will be done in the complex case, the real case is similar.We assume
here that the blind deterministic identifiability conditions, which ensure T (h) to
have full column rank, are verified. Sufficient conditions are for the channel to be
irreducible (H(z) has no zeros), the number of input symbol excitation modes to
exceed N−1+2M and the burst length to exceed N−1+M [13]. M is the minimal

M for which T (h) has full column rank. In general

⌈
N − 1

m− 1

⌉
≤ M ≤ N−1 where

for a random channel the lower bound is attained w.p. 1. The channel is then
uniquely identifiable up to a scale factor. We impose the non-triviality constraint
‖h‖ = 1. This constraint is in fact not sufficient to completely identify the channel
as it leaves a phase ambiguity: a phase constraint will be imposed later, in the
performance study of the proposed algorithms. As for any deterministic method,
the channel length N has to be assumed known. If N is unknown, all values should
be tried and the best value should be determined on the basis of a criterion,
see e.g. [41],[5]. Alternatively, robustness to channel length overestimation may
be obtained by anchoring the first channel coefficient (similar to what occurs in
linear prediction). This can be done by replacing the constraint ‖h‖ = 1 with
‖h(0)‖ = 1 [4]. We shall not pursue this approach here. The effect of channel
length underestimation in DML has been analyzed in [11].

Optimizing (8) first w.r.t. A, we get:

A =
(
T H(h)T (h)

)−1
T H(h)Y (9)

which is the output of the (burst–mode) MMSE-ZF equalizer [14]. Substituting (9)
in (8), we get the following DML criterion for h (in which the nuisance parameter
A is now removed):

min
‖h‖=1

Y
HP⊥

T (h)Y . (10)

P⊥
T (h) = I−T (h)

(
T H(h)T (h)

)−1 T H(h) is the orthogonal projection on the noise
subspace. The signal subspace is defined as the column space of T (h) and the noise
subspace is its orthogonal complement.

4.2 Subchannel Response Matching (SRM)

The Subchannel Response Matching (SRM) algorithm, which was (re)invented four
times in [21,7,46,24], is based on a linear parameterization of the noise subspace
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in terms of the channel coefficients. Using the commutativity of convolution and
the linearity of h⊥ in h, we can write T (h⊥)Y as:

T (h⊥)Y = Yh (11)

where Y is a matrix filled with the elements of the observation vector Y .
In the noiseless case, Y = X = T (h)A and we have T (h⊥)X = Xh = 0: from

this relation, the channel can be uniquely determined up to a scale factor [46,
24], as the unique right singular vector of X corresponding to the singular value
zero. As for DML, SRM requires the channel to be irreducible; it has to be noted
that the burst length requirements are higher than for DML [15]: M ≥ N for
2 subchannels and M ≥ 2(N−1) for more than 2 subchannels. When noise is
present, Yh 6= 0 and the SRM criterion is solved in the least–squares sense under
the constraint ‖h‖ = 1 :

min
h: ‖h‖=1

hH YHY h . (12)

The solution is h = Vmin(YHY), the eigenvector of YHY corresponding to its
smallest eigenvalue. Different choices for the linear parameterization of the noise
subspace give different channel estimates. Note that EhH YHY h = hH XHX h +
σ2
vtr
{
T (h⊥)T H(h⊥)

}
. Hence a balanced h⊥ yields asymptotically unbiased and

consistent channel estimates whereas unbalanced h⊥ yield biased and inconsistent
estimates.

SRM may be viewed as a non-weighted version of the Iterative Quadratic ML
(IQML) algorithm described below, and was used in [24] to initialize IQML. We
will use it to initialize our algorithms also.

4.3 Iterative Quadratic ML (IQML)

Since P⊥
T (h) = PT H(h⊥) (only asymptotically true in case of h⊥

min), the DML
problem (10) can be written as:

min
h: ‖h‖=1

Y
HT H(h⊥)

(
T (h⊥)T H(h⊥)

)+
T (h⊥)Y (13)

where the Moore-Penrose pseudo–inverse needs to be introduced since T (h⊥)
T H(h⊥) is singular for m > 2 for any choice of h⊥ different from h⊥

min (unless T ⊥

is used).
The Iterative Quadratic ML (IQML) algorithm [8] solves (13) iteratively in

such a way that at each iteration a quadratic problem appears. Let R(h)
△
=

T (h⊥)T H(h⊥), then (13) becomes:

min
h: ‖h‖=1

Y
HT H(h⊥) R+(h) T (h⊥)Y . (14)

In iteration (i) of IQML, the “denominator” R(h) is computed based on the esti-
mate from the previous iteration/initialization ĥ(i−1) and is considered as constant
for the current iteration. Hence, T (h⊥) being linear in h, the criterion (14) becomes
quadratic. Denoting the constant denominator R(h) = R, the IQML criterion can
be rewritten as:

min
h: ‖h‖=1

hHYHR+Y h . (15)
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Under constraint ‖h‖ = 1, we get h = Vmin(YHR+Y).
In an alternative interpretation (which holds even if the columnspace of T H(h⊥)

is smaller than the noise subspace), IQML can be viewed as the optimally weighted
least-squares version of the SRM least-squares problem: the covariance matrix of
the noise contribution in T (h⊥)Y = Yh is indeed σ2

v R(h) and we use for h in
R(h) the best estimate available.

In the noisefree case, the IQML algorithm behaves very well: the IQML crite-
rion becomes indeed equivalent to:

min
h: ‖h‖=1

X
HT H(h⊥)R+T (h⊥)X (16)

where X = T (ho)A is the noise-free received signal. As T (ho⊥)X = Xho = 0,
ho nulls exactly the criterion, regardless of the initialization. At high SNR, a first
iteration of IQML gives a consistent estimate of the channel whatever the initial-
ization of R(h) (provided that Null(R+)∩Range(X ) = 0, which is guaranteed in
general).And it can be proven [24] (see Appendix A also) that a second iteration
gives the exact DML estimate.

At low SNR however, the IQML estimate is biased. Indeed, consider the asymp-
totic situation in which the number of data M grows to infinity. By the law of
large numbers, the IQML criterion becomes essentially equivalent to its expected
value, viz.

1
M

Y HT H(h⊥) R+(h) T (h⊥)Y = 1
M

tr{T H(h⊥)R+T (h⊥)E(Y Y H)}+Op(
1√
M

)

= 1
M

[
tr{T H(h⊥)R+T (h⊥)XXH}+ σ2

v tr{T H(h⊥)R+T (h⊥)}
]
+Op(

1√
M

)

(17)
since E(Y Y H) = XXH + σ2

vI. Hence

h1 = arg min
h:‖h‖=1

{
Y

HT H(h⊥) R+(h) T (h⊥)Y
}

= h2 +Op(
1√
M

) (18)

where

h2 = arg min
h:‖h‖=1

{
tr{T H(h⊥)R+T (h⊥)XX

H}+ σ2
v tr{T H(h⊥)R+T (h⊥)}

}
.

(19)
The true IQML minimizer h1 differs from h2 by an asymptotically vanishing es-
timation error. Now, considering the deterministic minimization problem in (19),
ho nulls exactly the first term, but is not in general the minimizer of the second
term, even if R = R(ho). More explicitely, in general

min
h:‖h‖=1

{
tr{T H(h⊥)R+(ho)T (h⊥)}

}
< tr{PT H(ho⊥)} = mM−(M+N−1) .

(20)
Hence, the first term in (19) gets minimized by ho but the second term gets
minimized by h 6= ho, so the sum of the two terms gets minimized by h2 6= ho

in general. See [37] for the corresponding issues in the DOA problem. Hence, due
to the presence of noise, ho is not asymptotically near a stationary point of the
algorithm and IQML performs poorly even if initialized by a consistent channel
estimate.

We propose here a method to “denoise” the IQML criterion: this denoised
criterion, solved in the IQML style, will correct the IQML bias and provide a
consistent channel estimate.
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4.4 Denoised Iterative Quadratic ML (DIQML)

4.5 Asymptotic Amount of Data

The asymptotic noise contribution to the DML criterion is σ2
v tr

{
PT H(h⊥)

}
(see

(17)). The denoising strategy simply consists in removing this asymptotic noise

term, or more exactly an estimate of it, σ̂2
v trPT H(h⊥), from the DML criterion

which becomes:

min
‖h‖=1

tr
{
PT H(h⊥)

(
Y Y

H − σ̂2
v I
)}

⇔

min
‖h‖=1

{
hHYHR+(h)Yh− σ̂2

v tr{T H(h⊥)R+(h)T (h⊥)}
}
.

(21)

Note that this operation does not change the optimizer of the DML criterion as

σ̂2
v tr{PT H(h⊥)} = σ̂2

v (M(m−1)−N+1) is constant w.r.t. h. We take σ̂2
v to be a

consistent estimate of the noise variance.
The denoised DML criterion (21) is now solved in the IQML way: considering

R(h) = R as constant, the optimization problem becomes again quadratic in h:

min
‖h‖=1

hH
{
YHR+Y − σ̂2

v D
}
h (22)

where the matrix D(h) is such that h“HDh
′

= tr{T H(h“⊥)R+(h)T (h
′ ⊥)}.

Asymptotically in the number of data, DIQML is globally convergent. Indeed,
asymptotically it is essentially equivalent to the denoised criterion:

1

M
hH
{
YHR+Y − σ̂2

v D
}
h =

1

M
X

HT H(h⊥)R+T (h⊥)X + Op(
1√
M

) (23)

if σ̂2
v − σ2

v = Op(
1√
M

). The denoised criterion (the first term of the RHS of (23))

corresponds to the IQML criterion in the noiseless case and hence leads to h = αho

for some scaling factor α, under the identifiability conditions of SRM. One iteration
of DIQML hence yields an estimate h = αho+Op(

1√
M

). So the DIQML algorithm

behaves asymptotically at any SNR like the IQML algorithm behaves at high SNR:

– the first iteration gives a consistent estimate of the channel,
– this behavior holds whatever the initialization.

The second iteration gives asymptotically the global minimizer of DIQML. Unlike
in the high SNR IQML case though, this global minimizer at an arbitrary SNR is
not the DML minimizer, as can be seen in Appendix A. As the SNR increases, the
difference between DIQML and IQML disappears and we have global convergence,
to the DML solution.

4.6 Finite Amount of Data

The choice of σ̂2
v turns out to be crucial. In practice, with large but finite amount of

data M , and the true noise variance value, the central matrixQ = YHR+Y−σ2
v D

in (22) is indefinite, and the minimization problem is no longer well posed. The
solution in this case would be Vmin(Q) corresponding to the smallest eigenvalue

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



10 Elisabeth de Carvalho, Samir-Mohamad Omar, and Dirk T.M. Slock

λmin(Q), which is negative. Simulations have shown that performance does not
improve upon IQML in this case. The central matrix Q should be constrained to
be positive semi-definite.

For the consistent estimate of σ2
v, we choose here a certain λ that renders

Q = Q(R+) = YHR+Y − λD exactly positive semi-definite with one singularity.
The DIQML criterion becomes:

min
‖h‖=1,λ

hH
{
YHR+Y − λD

}
h (24)

with the constraint thatQ be positive semi-definite. The solution is λ = λmin(YHR+Y ,D),
the minimal generalized eigenvalue of YHR+Y and D, and h = Vmin(YHR+Y ,D),
the corresponding generalized eigenvector. Asymptotically, the DIQML criterion
(24) becomes

1

M
hH
{
YHR+Y − λD

}
h =

1

M
X

HT H(h⊥)R+T (h⊥)X +

1

M
(σ2

v − λ)hHDh + Op(
1√
M

)

(25)

Optimization w.r.t. λ, subject to the non-negativity constraint, leads to λ = σ2
v +

Op(
1√
M

), regardless of channel initialization (in R and D), and the criterion (24)

in h and λ becomes equivalent to the criterion (23) in h. Hence, asymptotic global
convergence applies for h and for λ (to σ2

v), with the same properties as mentioned
earlier (independently from the initialization).

Other attempts have been undertaken to denoise the IQML strategy. Kristens-
son [26] independently applied the same strategy in the DOA context: as estimate
of the noise variance, he chooses the one which in the context of blind channel
estimation would correspond to the minimum value of the SRM criterion: it can
indeed be verified that asymptotically

λmin(YHY) = ĥH
SRM

(
YHY

)
ĥSRM = σ2

v α (26)

with ‖ĥSRM‖2 = 1 (ĥSRM = Vmin(YHY)), for balanced h⊥. For a finite amount
of data, the noise variance estimate given by SRM underestimates the true σ2

v on
the average: indeed, as ĥSRM minimizes the SRM criterion, ĥH

SRM

(
YHY

)
ĥSRM ≤

hoH
(
YHY

)
ho/‖ho‖2, taking the expected value on both sides, we get E σ̂2

vSRM ≤
σ2
v. The quadratic cost function of denoised SRM (in case a balanced h⊥ is used)

corresponds to Q(I) = YHY −λα I, the unweighted version of DIQML. Choosing
λα = λmin(YHY), the (ordinary) minimal eigenvalue of the first term in Q, allows
to guarantee Q(I) ≥ 0 and λ is a consistent estimate of σ2

v as is clear from (26).
However, with the weighting matrix R+ introduced in DIQML, the second term,
D, in the Hessian Q(R+) is no longer a multiple of identity, and λ needs to be
chosen as a generalized eigenvalue of the two matrix terms in order to guarantee
Q(R+) ≥ 0. Both λmin(YHY , αI) = 1

α
λmin(YHY) and λmin(YHR+Y ,D) are

consistent estimators of σ2
v which tend to underestimate σ2

v for finite amount of
data due to the non-negativity constraint on the respective Q. However, both are
different random quantities and hence λ = 1

α
λmin(YHY) can very well exceed λ =

λmin(YHR+Y ,D) in some realizations, making the Q(R+) of DIQML indefinite,
preventing the corresponding DIQML version to improve upon IQML.
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4.7 Pseudo-Quadratic ML (PQML)

The principle of PQML has been introduced in the context of sinusoids in noise
estimation [30] and then applied to DML channel estimation in [22]. The gradient
of the DML cost function may be arranged as P(h)h, where P(h) is ideally a
positive semi-definite matrix with a one-dimensional nullspace. The DML estimate
satisfies

P(h) h = 0, (27)

which is solved for h under the constraint ‖h‖ = 1. The DML gradient in (27)
is the same as the gradient of the (pseudo-)quadratic cost function hH P(ĥ)h
evaluated at ĥ = h. The PQML strategy is now the following. At iteration (i),
P(ĥ(i−1)) ≥ 0 is fixed. The problem minh: ‖h‖=1 hH P(ĥ(i−1))h is quadratic and

its solution is ĥ(i) = Vmin(P(ĥ(i−1))). This solution is used to reevaluate P(h)
and further iterations may be performed.

The difficulty consists in defining the right P(h) in the DML gradient, espe-
cially with the positive semi-definiteness constraint. In general, and in particular
for the DML problem at hand, the choice for P(h) is indeed not unique. Denoting

T
(
∂h⊥

∂hi

)
= ∆T ⊥

i , the gradient of the DML cost function consists of two terms

(here we write the gradient w.r.t. hi, which is also component i of the gradient
w.r.t. h):

(P(h)h) (i) = Y H∆T ⊥H
i R+(h)T (h⊥)Y

− Y HT H(h⊥)R+(h)
[
T (h⊥)∆T ⊥H

i

]
R+(h)T (h⊥)Y .

(28)

Here, we consider that h is complex and complex derivation w.r.t. h∗ is applied;
for a real h, the results are similar. We assume here also that the pseudo–inverse
(if R is singular) is computed by regularization so that we simply need to derive
w.r.t. a regular inverse. For a small regularization constant δ > 0 we get indeed

(R+ δ I)−1 = R+ − δ (R+)2 +
1

δ
P⊥
R +O(δ2) . (29)

Hence (R+δ I)−1T (h⊥) = R+T (h⊥)+O(δ). So we get the correct DML gradient
by regularization as the regularization factor δ → 0.

In each iteration, P(h) will be considered as constant. The question now is
which factors h should be considered as variable and which instances of h are con-
sidered as part of P(h). h in (28) designates those instances of h that we consider
as variable (on which minimization will be done) and h designates those instances
of h that are considered as part of the constant P(h). The first term of P(h)h is
YHR+(h)Yh, which is the IQML gradient, and the second term is BH(h)B(h)h,
with Y HT H(h⊥)R+(h)T (h⊥) = hTBT (h) (note that Y HPT H(h⊥)Y =

(
Y HPT H(h⊥)Y

)∗
).

Then P(h) has the following form:

P(h) = YHR+(h)Y − BH(h)B(h) . (30)

The second term of 1
M

P(h) asymptotically tends to its expected value by the

law of large numbers. In Appendix A, we prove that E
(
BH(h)B(h)

)
has a noise

component equal to σ2
vD, the asymptotic noise component of the IQML Hessian,
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12 Elisabeth de Carvalho, Samir-Mohamad Omar, and Dirk T.M. Slock

but it also has a non–zero signal component when P(h) is evaluated at h 6= ho.
This prevents PQML from being asymptotically insensitive to the initialization,
unlike DIQML. However, when P(h) is evaluated at a consistent h, the previously
mentioned signal component becomes negligible. PQML gives furthermore better
performance than DIQML, and in fact offers the same performance as DML.

The matrix P(h) is indefinite for a finite data length M , and applying the
PQML strategy directly will not work. In [22], h is chosen as the eigenvector cor-
responding to the smallest eigenvalue magnitude of P(h); it gives poor performance
except at high SNR.

PQML is closely related to DIQML as the first term of (22) and (30) are the
same and E(BH(ho)B(ho)) = σ2

vD(ho). By analogy with DIQML for which Q was

also indefinite for finite M if an arbitrary σ̂2
v were to be used, we introduce a

variable λ such that YHR+Y − λ BHB is exactly positive semi-definite. PQML
then becomes the following minimization problem:

min
‖h‖=1,λ

hH
{
YHR+Y − λ BHB

}
h (31)

with a semi-definite positivity constraint on the central matrix. The solution is
again
h = Vmin(YHR+Y ,BHB) corresponding to λ = λmin(YHR+Y ,BHB). Asymptot-
ically for a consistent initialization, there is global convergence for h, as described
previously, as well as for λ (→ 1). However, for a finite amount of data, and for
an arbitrary h,

λ = λmin(YHR+Y ,BHB) = min
ĥ

ĥHYHR+(h)Yĥ

ĥHBH(h)B(h)ĥ
≤ hHYHR+(h)Yh

hHBH(h)B(h)h = 1 (32)

which means that using λ = 1, as in the original PQML algorithm, systematically
leads to an indefinite P(h).

The identifiability conditions for both DIQML and PQML are the same as for
SRM: the channel has to be irreducible and the burst length should be sufficiently
large (see section 4.2).

4.8 Alternating Quadratic ML (AQML)

In addition to comparing the performance of DIQML and PQML to the optimal
DML performance, we will compare them to an algorithm we call Alternating
Quadratic ML (AQML), which was also introduced in [19,31,2]. AQML corre-
sponds in fact to the ILSP algorithm [43,38] in which the exploitation of the finite
alphabet gets dropped.

AQML proceeds by alternating minimizations w.r.t. A and w.r.t h of the DML
criterion:

min
h,A

‖Y − T (h)A‖2 (33)

(1) Initialization: ĥ(0).
(2) Iteration (i+ 1):
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– Minimization w.r.t. A, h = ĥ(i): min
A

‖Y − T (ĥ(i))A‖2

Â(i+1) =
(
T H(ĥ(i))T (ĥ(i))

)−1
T H(ĥ(i))Y (34)

– Minimization w.r.t. h, A = Â(i+1): min
h

‖Y − T (h)Â(i+1)‖2 = min
h

‖Y −
Âi+1h‖2

ĥ(i+1) =
(
Â(i+1)HÂ(i+1)

)−1
Â(i+1)H

Y (35)

(3) Repeat (2) until (Â(i+1), ĥ(i+1)) ≈ (Â(i), ĥ(i)).

At any iteration (i + 1), we assume that the algorithm gives a unique solution:
T (ĥ(i)) has full-column rank (i.e. Ĥ(z) is irreducible), as well as Â(i+1) (at least
N excitation modes), otherwise as suggested in [39], we take the minimum-norm
solution (i.e. the regular inverse is replaced by the pseudo-inverse). That case is
unlikely though if ho and Ao are well-conditioned.

5 Computational Complexity Analysis

5.1 Complexity of IQML

A complexity analysis of the IQML algorithm for blind multichannel estimation has
been provided in [24]. However, in [24] T (h⊥) has been constructed as a Toeplitz
block matrix instead of the block Toeplitz structure we use. As a result, the banded
structure of (our) T (h⊥) is overlooked and the complexity results provided in [24]
are not particularly attractive. By taking into account the bandedness of T (h⊥),
the complexity of IQML becomes of the same nature as for the case of sinusoids in
noise [23], and in particular is linear in the burst length M . So T (h⊥) is banded
block Toeplitz with p × m blocks when H⊥(z) is p × m (p is the number of
subchannel pairs used in the construction of H⊥(z)). The matrix R is banded and
block Toeplitz with 2N−1 block diagonals containing blocks of size p× p.

For h⊥ other than h⊥
min (or hence p > m−1) or for T (h⊥) other than T ⊥,

R is singular. The main implementation choice then is between computing the
pseudo-inverse R+ or the inverse of a regularized version such as in (29). Al-
though a vanishing regularization has no effect on the DML gradient, the use
of regularization in the iterative quadratic strategies slows down convergence for
small regularization factors δ (large 1

δ
): the projection matrix in (29) constrains

the next iterate to be close to the previous one (all the more so as δ is smaller).
Hence, using the exact pseudo-inverse is preferable. Note that on the other hand,
R + δ I has the same banded block Toeplitz structure as R. In the complexity
considerations below, we assume that M is much larger than N .

Computation of YHR+Y. The complexity of the Lower-Diagonal-Upper (LDU)
triangular factorization of R (+δI) = LDLH is of order O(p3MN2) using the
fact that R is banded. Now, using the block Toeplitz structure of R and the Schur
algorithm [25], the complexity can be lowered to O(p2MN). D is diagonal and L is
a unit diagonal banded lower triangular block matrix with p×p blocks and N non-
zero block diagonals. In the regular(ized) case, R−1 = L−HD−1L−1. Otherwise,
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14 Elisabeth de Carvalho, Samir-Mohamad Omar, and Dirk T.M. Slock

the singularity of R manifests itself in D in which the p×p diagonal blocks contain
only m−1 non-zero (positive) elements after an initial transient. Let D1 be a
diagonal matrix that contains only the non-zero diagonal elements of D and let L1

contain the corresponding columns of L: R = L1D1L
H
1 . L1 has the same structure

as L except that the size of the blocks changes from initially p × p to eventually
p × (m−1). The pseudo-inverse is then R+ = L1(L

H
1 L1)

−1D−1
1 (LH

1 L1)
−1LH

1 =
L1(L

H
1 RL1)

−1LH
1 . To compute R+, one computes the LDU decomposition of

LH
1 L1 or LH

1 RL1 (again banded) and proceeds as in the case when R is regular.
Computing the product Z = L−1Y is equivalent to solving Y = LZ. Because

L is lower triangular, each column of Z can be computed by backsubstitution
(and hence the complexity for multiplying with L−1 or L is the same). The com-
plexity for solving this system is O(p2mMN2). The complexity for computing
ZH D−1 Z = YHR−1Y is O(pm2MN2). So the total complexity to compute
YHR−1Y is O(p3MN2), which is O(m3MN2) if p = O(m), or O(m6MN2) if
p = O(m2). In the case of exact pseudo-inverse, the complexity is O(m3MN2)
(but with a higher coefficient than in the non-singular R case).

The term YHR−1Y could also be computed directly using the Schur algorithm

applied to partial Cholesky or LDU factorization [18] of the matrix

[
R Y
YH 0

]
which

has displacement structure, leading to overall complexity of O(p2MN). The dis-
placement rank only increases marginally when T ⊥ is used instead of T (h⊥).

The computation of h as the eigenvector associated with the minimal eigenvalue
of a mN ×mN matrix requires O(m3N3) computations.

5.2 Complexity of DIQML and PQML

For DIQML and PQML, the same computations as for IQML (and hence the
factorization of R) need to be performed. The computational complexity for a
generalized eigenvector is similar to that for an ordinary eigenvector. We further-
more get the following additional computations.

Computation of D. DIQML requires the computation of D of size Nm × Nm,
each entry of which is the sum of elements of R−1. The entries in R−1 that are
needed for D are limited to the main band, of the same size as the band in R.
This band can again be computed by partial Cholesky or LDU factorization of

the matrix

[
R I
I 0

]
. By limiting the computations in the (2, 2) block to the main

band, the complexity becomes O(p3MN2), which can be reduced to O(p2MN) by
exploiting the displacement structure. In the case of an exact pseudo-inverse, one

can work with

[
LH
1 RL1 LH

1

L1 0

]
which again leads to a complexity of O(m3MN2)

with a higher coefficient.
D is block Toeplitz with m×m blocks. The complexity for generating D cor-

responds to O(4p2

m
MN) entries of R+ that are involved in additions.

Computation of BHB. For PQML, the matrix B∗ is filled with elements of the
vector R+T (h⊥)Y . In the regular case, this becomes the computation of the
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vector L−HD−1L−1T (h⊥)Y which gets performed by executing the consecu-
tive matrix-vector multiplications from the right. The main complexity term is
O(p(m+2p)MN). In the singular case with exact pseudo-inverse, the complexity
becomes O(m2MN) with a higher coefficient. B is pre- and postwindowed block
Toeplitz with M × N blocks of size m × m. Hence BHB is block Toeplitz with
blocks of size m×m and its computation from B requires O(m3MN) operations.

6 Comparison of the Performance of DIQML and PQML

In Appendix A, we compute the asymptotic performance of DIQML and PQML
under constraints with the above tangent subspace, for the complex case. We find
for the channel estimation error covariance matrix:

CDIQML
∆h∆h = CRB+ CRB D 1

2P⊥
D

H

2 ho
DH

2 CRB ≥ CRB (36)

CPQML
∆h∆h = CRB+ CRBD

′′

CRB ≥ CRB (37)

= CDIQML
∆h∆h − CRB

[
I − DhohoH

hoHDho

]
D

′

[
I − hohoHD

hoHDho

]
CRB ≤ CDIQML

∆h∆h

(38)

where CRB = σ2
v (AHP⊥

T (ho)A)+ = σ2
v (XHR+X )+, D′

i,j = tr
{
∆T ⊥H

i R+∆T ⊥
j

PT H(ho⊥)

}
, D′′

i,j = tr
{
∆T H

i P⊥
T (ho)∆Tj(T H(ho)T (ho))−1

}
, ∆Ti = T

(
∂h

∂hi

)
,

D′ ≥ 0, D′′ ≥ 0, and D = D′

+ D′′

. CRB and D′′

, and hence CPQML
∆h∆h , are

independent of the choice of h⊥, whereas D and hence CDIQML
∆h∆h do depend on the

choice of h⊥. In the case of h⊥
max , D ho ∼ ho and CDIQML

∆h∆h = CRB+CRB D CRB.
The following conclusions can be drawn from this analysis:

– PQML has better performance than DIQML, and both exceed the CRB (in
terms of MSE = trC∆h∆h ). For both, C∆h∆h−CRB ∼ σ4

v whereas CRB ∼ σ2
v.

– PQML has the same asymptotic performance as DML. The PQML global
minimizer is different however from the DML global minimizer.

– Asymptotically the performance of PQML remains unchanged when λ gets
forced to λ = 1.

– At high SNR, DIQML, PQML and DML exhibit the same performance and
all attain the CRB. It was shown in [24] that the same is true for IQML.

The analysis suggests to use the various algorithms in the following sequence

– An initial estimate can be obtained with SRM, which is non-iterative. A bal-
anced h⊥ should be used to avoid bias.

– The SRM estimate can be used to initialize the asymptotically globally con-
vergent DIQML. Since the SRM estimate is consistent, asymptotically only
one iteration of DIQML is required to achieve the performance attainable by
DIQML. This performance is better than that of SRM since DIQML can be
viewed as an optimally weighted version of (the noise part in) SRM. The use of
T ⊥ is recommended since it avoids singularities in R and hence leads to lower
complexity. The use of a more elaborate h⊥ may lead to better performance
though.
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– The DIQML estimate is finally used to initialize PQML which is the only algo-
rithmic version discussed so far that attains DML performance asymptotically.
Asymptotically, only one iteration is required to attain this performance since
the initialization is consistent. Since the asymptotic performance of PQML is
insensitive to the choice of h⊥ as long as the full noise subspace gets spanned,
the use of T ⊥ is recommended.

7 Simulation Results

For the first set of simulations, we consider an irreducible channel H of length
N = 4 with m = 2 subchannels, complex and randomly generated:

H =

[
−0.8285− 0.1753i 0.0557− 0.2706i 0.3411− 1.2932i 0.5545− 0.7925i
−0.0681− 0.3266i 0.0594 + 0.2082i −1.6307− 0.1314i −0.2047 + 0.7507i

]
.

(39)
The input symbols are drawn from an i.i.d. QPSK symbol sequence. The initial-
ization of the DIQML/PQML algorithms is done by SRM.

In Figure 1, we plot the Normalized channel estimationMSE (NMSE): NMSE=
‖ho− ĥ‖2/‖ho‖2 (computed under constraints (5) and (6)), the DML cost function
(10), the generalized eigenvalue for PQML and the ratio between the generalized
eigenvalue and σ2

v for DIQML, averaged over 500 Monte-Carlo runs of the noise.

The burst length is M = 100. The SNR, defined as
σ2
a ‖h‖2
mσ2

v

(average SNR per

subchannel), is 10dB. We notice that the averaged minimal generalized eigenvalue
of DIQML tends to the noise variance σ2

v and that of PQML to 1, while remaining
smaller than these values in both cases. We note however a better convergence for
PQML than for DIQML. After 1 or 2 iterations, DIQML and PQML reach their
steady state.

In Figures 1 and 2, the NMSEs are shown for a burst length of 100 and 200
and SNR values of 10dB and 20 dB. They are compared to the theoretical perfor-
mance (derived in Appendix A) of DIQML and PQML, the last one being also the
DML performance. The deterministic Cramér–Rao bound (CRB) computed under
constraints (5) and (6) [3,9] is also shown; we recall that DML does not reach the
CRB asymptotically in the number of data, except at high SNR. An improvement
w.r.t. to SRM initialization can be observed for both algorithms, especially for
PQML which outperforms DIQML. Performance can be seen to be close to the
theoretical performance.

In Figure 3, we compare PQML and DIQML to AQML, to illustrate the slow
convergence of AQML.

In the next two simulations, NMSE averaging is performed over independent
channel realizations with i.i.d. channel coefficients. In Figure 4, we compare for
m = 2, N = 4 and M = 100 the NMSE as a function of SNR, for SRM, IQML,
DIQML with Kristensson’s denoising factor, our DIQML, the original PQML
(λ = 1), and our PQML. One can observe the bad performance of IQML, the
improved performance of PQML w.r.t. DIQML on one hand, and due to the im-
proved denoising factor on the other hand. In Figure 5, we compare for m = 4,
N = 4 and M = 200 the NMSE as a function of SNR, for SRM and various
versions of PQML: using h⊥

min, or h⊥
bal,min with λ being forced to 1 or not, and
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R regularized or not. At burst length M = 200, the suboptimality of using h⊥
min

is apparently still quite substantial. We also see that the regularized versions of
PQML fail to improve upon SRM, and that at burst length M = 200 the proper
choice of the denoising factor is still important at low SNR. Finally, we refer to
[6] for a simulation comparison between smoothing or two-sided linear prediction
and PQML. For the particular simulations shown there, the former algorithms are
able to attain performance close to the DML performance, but no performance
analysis to confirm such a trend is available.

8 Concluding Remarks

We have presented two methods, DIQML and PQML, to solve DML. These two
methods correct the IQML flaw which consists of giving biased estimates at low
SNR. DIQML is asymptotically globally convergent but does not reach the DML
performance. PQML reaches asymptotically the DML performance with a consis-
tent initialization, which can be provided by SRM or DIQML. Semi–blind exten-
sions of PQML were presented in [3] and are shown to give better performance than
their blind counterparts. A (blind and semi–blind) extension of PQML has also
been proposed in a multiuser context (Spatial Division Multiple Access (SDMA))
in [10].

Appendix A Asymptotic Performance Study of DIQML and PQML

A.1 Asymptotic behavior of PQML (M → ∞)

We prove here that PQML needs a consistent initialization in order to give a
consistent estimate of the channel.

A.1.1 Inconsistent Initialization

The element (i, j) of the “Hessian” P(h) of the PQML cost function with λ = 1
(introducing the generalized eigenvalue does not change the following arguments
much, see the next subsection also) can be written as:

P(h)(i, j) =
1

M
Y

H∆T ⊥H
i R+(h)∆T ⊥

j Y
︸ ︷︷ ︸

P1(h)(i, j)

(40)

− 1

M
Y

HT H(h⊥)R+(h)[∆T ⊥
j ∆T ⊥H

i ]R+(h)T (h⊥)Y
︸ ︷︷ ︸

P2(h)(i, j)

Recall that EY Y H = XXH + σ2
vI = T (ho)AAHT H(ho) + σ2

vI. Asymptotically
both terms P1(h) and P2(h) differ from their expected value by Op(

1√
M

), and

M EP1(h)(i, j) = tr
{
∆T ⊥H

i R+(h)∆T ⊥
j XX

H
}

+σ2
vtr
{
∆T ⊥H

i R+(h)∆T ⊥
j

}
(41)
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18 Elisabeth de Carvalho, Samir-Mohamad Omar, and Dirk T.M. Slock

M EP2(h)(i, j) =

tr
{
T H(h⊥)R+(h)

[
∆T ⊥

j ∆T ⊥H
i

]
R+(h)T (h⊥)XXH

}

+σ2
v tr

{
∆T ⊥H

i R+(h)∆T ⊥
j

}
. (42)

Let EPi(h) = EPi1(h) + EPi2(h) , i = 1, 2, be a decomposition in signal and
noise terms. Note that EP12(h) = EP22(h) so that we have cancellation of the
noise terms in EP(h). For h 6= αho, for any α ∈ C, EP(h) 6= EP11(h) (i.e. the
noise–free IQML Hessian) because of EP21(h), the signal contribution in EP2(h).
So, since EP21(h)h

o = O(1) if h−αho = O(1) for any α ∈ C, an iteration of PQML
yields asymptotically an inconsistent estimate for an inconsistent initialization.

A.1.2 Consistent Initialization

Assume h is a consistent estimate of ho, i.e. h = ho +∆h, where typically ∆h =
Op(

1√
M

). We get

EP21(h
o +∆h)(i, j) =

1
M

tr[AHT H(ho)T H(∆h⊥)R+(ho)∆T ⊥
j ∆T ⊥H

i R+(ho)

T (∆h⊥)T (ho)A] = O(‖∆h‖2) = Op(
1
M

) (43)

whereas the other term in EP(h), EP11(h), can be verified to be of order 1. So
P21(h) is asymptotically negligible: with a consistent initialization, the role of P2 is
to remove the noise contribution in P1. Apart from terms in Op(

1√
M

), P becomes

asymptotically equivalent to the noise–free IQML Hessian, so the estimation of h
is consistent. So an iteration of PQML yields asymptotically a consistent estimate
for a consistent initialization.

A.2 Performance of DIQML and PQML

We consider the following general generalized eigenvalue problem for blind channel
estimation:

min
h,λ

hH
{
F̂ (Y , hc)− λ Ĝ(Y , hc)

}
h (44)

subject to F̂ (Y , hc) − λ Ĝ(Y , hc) ≥ 0 and constraints on h. hc is a consistent

estimate of h. F̂ (Y , hc) = 1
M

YHR+(hc)Y = P1(h
c) for DIQML and PQML,

Ĝ(Y , hc) = 1
M

D(hc) for DIQML and Ĝ(Y , hc) = 1
M

BH(hc)B(hc) = P2(h
c) for

PQML. It can be shown that the channel estimation performance given by (44)

is asymptotically unchanged when one replaces F̂ (Y , hc) and Ĝ(Y , hc) by F̂ (Y ) =

F̂ (Y , ho) and Ĝ(Y ) = Ĝ(Y , ho) respectively (sinceO(||∆hc||2) = Op(
1
M

)). Asymp-
totically, we also have: {

F̂ (Y ) = F o +Op(
1√
M

)

Ĝ(Y ) = Go +Op(
1√
M

)
(45)

where F o(hc) = E F̂ (Y , hc), Go(hc) = E Ĝ(Y , hc) and F o = F o(ho), Go =
Go(ho). Although we will not need this, one may also remark that F o(ho) =

lim
M→∞

F o(ho) +O(
1

M
) and similarly for Go.
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A.2.1 Asymptotic Expression for ∆λ

The solution of (44) for λ and h is the minimal generalized eigenvalue and corre-

sponding eigenvector of F̂ (Y ) and Ĝ(Y ).

F̂ (Y ) ĥ− λ̂ Ĝ(Y ) ĥ = 0 ⇒ λ̂ =
ĥH F̂ (Y ) ĥ

ĥH Ĝ(Y ) ĥ
. (46)

We denote ĥ = ho + ∆h, and λ̂ = λo + ∆λ, where ∆h
M→∞−→ 0, ∆λ

M→∞−→ 0. We

have λo =
hoH F o ho

hoH Go ho
and, performing a series expansion, we get:

∆λ =
hoH [F̂ (Y )− λoĜ(Y )]ho

hoH Go ho
+ Op(

1

M
) . (47)

A.2.2 Asymptotic Expressions for ∆h and C∆h∆h = E(ĥ− ho)(ĥ− ho)H

After substitution of the solution for λ, the estimation problem for h becomes:

min
h

{
hH
{
F̂ (Y )− λ̂(Y )Ĝ(Y )

}
h = F(h)

}
. (48)

The estimation of h is performed under constraints K(hR) = 0 with tangent sub-
space Mho

R
at hR = ho

R. Let Vo
R be a matrix whose columns form an orthonormal

basis of Mho

R
. Then locally we can write ∆hR = Vo

R θ where θ are the uncon-
strained parameter variations. A Taylor series expansion of F(h) at ho in terms
of θ gives

F(h) = F(ho) + θTVo T
R

∂F(ho)

∂hR

+1
2θ

TVo T
R

∂2F(ho)

∂hR∂hT
R

Vo
Rθ +O(||θ||3)

(49)

Optimization of (49) up to second order w.r.t. θ gives for ∆hR = Vo
R θ

∆hR = Vo
R

(
Vo T
R

∂2F(ho)

∂hR∂hT
R

Vo
R

)−1

Vo T
R

∂F(ho)

∂hR

(50)

assuming that the matrix inverse exists (which will be the case here). The expres-
sion becomes easier to work with when expressed in terms of complex quantities
(see [12]):

∆h = Vo

(
VoH ∂

∂h∗

(
∂F(ho)

∂h∗

)H

Vo

)−1

VoH ∂F(ho)

∂h∗ . (51)

For the constraints (5), (6) or equivalent, the columns of Vo form a basis for the
orthogonal complement of ho. We shall also require





J
(1)
hh = E

(
∂F(ho)

∂h∗

)(
∂F(ho)

∂h∗

)H

J
(2)
hh = E

∂

∂h∗

(
∂F(ho)

∂h∗

)H

.

(52)
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Note that if F would have been the log likelihood function, then J
(1)
hh = −J

(2)
hh ,

but this equality does not hold here. We now obtain

∆h = Vo
(
VoHJ

(2)
hh Vo

)−1
VoH ∂F(ho)

∂h∗ +Op(
1

M
)

C∆h∆h =

Vo
(
VoHJ

(2)
hh Vo

)−1
VoHJ

(1)
hh Vo

(
VoHJ

(2)
hh Vo

)−1
VoH

+o( 1
M

) (53)

For the quadratic problem in (48), we have (using (47) and the fact that ∆F
and ∆G have zero mean):

J
(2)
hh = E

(
F̂ (Y )− λ̂(Y )Ĝ(Y )

)
= F o − λoGo +O(

1

M
) (54)

where we shall neglect the last term.

A.2.3 Application to DIQML and PQML

Specializing to DIQML and PQML, we get first of all F o − λoGo = 1
M

XHR+X .

To show the relation of this expression to the CRB, consider for any h, h
′

:

hHXHR+Xh
′

=

XHT H(h⊥)R+T (h
′ ⊥)X

= AHT H(ho)T H(h⊥)R+T (h
′ ⊥)T (ho)A

= AHT H(h)T H(ho⊥)R+T (ho⊥)T (h
′

)A

= hHAHP⊥
T (ho)Ah

′

(55)

where T (h)A = Ah. Hence σ−2
v XHR+X = σ−2

v AHP⊥
T (ho)A which is the Fisher

information matrix for deterministic ML. As F o − λoGo admits ho as unique
eigenvector corresponding to the eigenvalue zero, and Vo spans the orthogonal
complement of ho,

Vo
(
VoHJ

(2)
hh Vo

)−1
VoH = (F o − λoGo)+ , (56)

the Moore-Penrose pseudo-inverse of F o − λoGo. Hence

∆h = (F o − λoGo)+
∂F(ho)

∂h∗ (57)

neglecting Op(
1
M

) terms. Now, using (47), we also get

∂F(ho)

∂h∗ =
(
F̂ (Y )− λ̂(Y ) Ĝ(Y )

)
ho

=
(
F̂ (Y )− λo Ĝ(Y )

)
ho −Go ho ∆λ(Y )

=

[
I − Go ho hoH

hoH Go ho

] (
F̂ − λo Ĝ

)
ho

(58)
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which leads to

∆h = M
(
XHR+X

)+ [
I − Go ho hoH

hoH Go ho

] (
F̂ − λo Ĝ

)
ho (59)

neglecting Op(
1
M

) terms. For DML, the same kind of analysis gives [12]:

∆hDML = M
(
XHR+X

)+ (
F̂ − λo Ĝ

)
ho (60)

where F̂ (Y ) and Ĝ(Y ) are the same as in the PQML case. So the estimate ĥ
given by DIQML and PQML is different from the DML estimate (though the dif-
ference with PQML is only Op(

1
M

)). From (59), we see that the channel estimation
performance depends on the matrix

W = E

{(
F̂ − λoĜ

)
hohoH

(
F̂ − λoĜ

)H}
. (61)

Recall that for both DIQML and PQML, F̂ (Y ) = 1
M

YHR+(ho)Y , F o = 1
M

XHR+(ho)X+
σ2

v

M
D(ho).

Performance of DIQML

For DIQML, Ĝ(Y ) = 1
M

D(ho) = Go, λo = σ2
v and hence F o−λoGo = 1

M
XHR+(ho)X .

We have:

WDIQML =
1

M2

[
σ2
v XHR+X + σ4

v D
]

(62)

which leads to (36).

Performance of PQML

Now Ĝ(Y ) = 1
M

BH(ho)B(ho),Go =
σ2

v

M
D(ho), λo = 1 and F o−λoGo = 1

M
XHR+(ho)X .

We get:

WPQML
i,j =

σ2

v

M2

(
XHR+X

)
i,j

+
σ4

v

M2 tr
{
∆T ⊥H

i R+∆T ⊥
j PT (ho)

}

= WDIQML
i,j − σ4

v

M2D
′

i,j

(63)

whereD′

is defined below (38). Note thatD′

ho = D ho and for any h
′

, h
′ HWPQMLho =

σ2

v

M2 h
′ H XHR+X ho +

σ4

v

M2 tr
{
T H(h

′ ⊥)R+T (ho⊥)PT (ho)

}
= 0 + 0 = 0: WPQML
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has a null space spanned by ho. Now, for any h, h
′

, we have

hH(D −D′

)h
′

= tr
{
T H(h⊥)R+(ho)T (h

′ ⊥)
}

−
tr
{
T H(h⊥)R+(ho)T (h

′ ⊥)PT H(ho⊥)

}

= tr
{
T H(h⊥)R+(ho)T (h

′ ⊥)P⊥
T H(ho⊥)

}

= tr
{
T H(h⊥)R+(ho)T (h

′ ⊥)PT (ho)

}

= tr
{
T H(ho)T H(h⊥)R+(ho)T (h

′ ⊥)

T (ho)(T H(ho)T (ho))−1
}

= tr
{
T H(h)T H(ho⊥)R+(ho)T (ho⊥)

T (h
′

)(T H(ho)T (ho))−1
}

= tr
{
T H(h)PT H(ho⊥)T (h

′

)(T H(ho)T (ho))−1
}

= tr
{
T H(h)P⊥

T (ho)T (h
′

)(T H(ho)T (ho))−1
}
= hH D′′

h
′

(64)

or hence D′′

= D − D′

, where D′′

is defined below (38) and we used the
commutativity of convolution, leading to T (h⊥)T (ho) = T (ho⊥)T (h). (37), (38)

now follow. Note that the factor

[
I − Go ho hoH

hoH Go ho

]
in (59), which is due to ∆λ, has

asymptotically no effect on CPQML
∆h∆h . So asymptotically CPQML

∆h∆h = CDML
∆h∆h [12]. In

fact, for PQML, ∆λ = Op(
1

M
), whereas

(
F̂ − λo Ĝ

)
ho = Op(

1√
M

). Hence also,

forcing λ = 1 in PQML does not influence the performance asymptotically.
Recall that the various substitutions above of PT H(h⊥) by P⊥

T (h) are correct for

all versions of h⊥ with p ≥ m that include h⊥
bal,min, or for T ⊥, but for h⊥

min (p =
m−1) constitute an approximation that becomes justifiable only asymptotically
(in M).
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Fig. 1 NMSE, cost function, generalized eigenvalue for DIQML and PQML at 10dB, for a
burst length of 100.
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Fig. 2 NMSE for DIQML and PQML at 10dB and 20dB for a burst length of 100 and 200.
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Fig. 3 Comparison between DIQML, PQML and AQML at 10dB and 20 dB for a burst length
of 100.
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