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Dynamic Rate Allocation in Markovian Quasi-Static
Multiple Access Channels

Konstantin Avrachenkov, Laura Cottatellucci, Lorenzo Maggi

Abstract

We deal with multiple access channels in which the channel coefficients fol-
low a quasi-static Markov process on a finite set of states. Weaddress the
issue of allocating the rate to the users in each time interval, such that the
optimality and the fairness of the allocation are preservedthroughout the
communication, and moreover all the users are consistentlysatisfied with
it. We first show how to allocate the rates in a global optimal fashion. We
give a sufficient condition for the optimal rates to fulfil some fairness crite-
ria in a time consistent way. We then utilize the game-theoretical concepts
of time consistent Core and Cooperation Maintenance and we show that in
our model the sets of rates fulfilling these properties coincide, and they also
coincide with the set of global optimal rate allocations. The relevance of our
dynamic rate allocation to LTE systems is also shown.
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1 Introduction

In the last few years, the concepts of user fairness and satisfaction have received
significant attention. These notions will play an increasingly crucial role in future
networks, due to the paradigm shift that we are witnessing, from fully centralized
with dumb terminals to distributed networks with rational users able to pool re-
sources with each other.
In the literature, the notion of fair and satisfactory rate allocation has been dealt
with under manifold perspectives in static Gaussian or ergodically fading Multi-
ple Access Channels (MAC). In [1], the fairness of a rate allocation in a Gaussian
MAC is related to the economical concept of Lorenz order, used for measuring
disparity in income distributions. Such fair allocation always exists, it is Pareto
optimal, and also solution of a Nash bargaining problem withzero disagreement
payoff allocation. In the following [2], the authors show the existence of a unique
rate allocation which is max-min and proportional fair. Theresults in [1, 2] are
extended to the general framework ofα-fairness [3] in [4]. For MAC’s with poly-
matroid regions, allα-fair rate allocations collapse into a single point, which is
max-min and proportional fair, too. An analysis of rate allocations in the context
of constrained games points out that the normal Nash equilibrium [5] also coin-
cides with theα-fair and Pareto optimal allocations.
Furthermore, the issue of users satisfaction is addressed by Cooperative Game The-
ory (CGT) with non-transferable utility (NTU) (see [6] for an overview), which
provides powerful tools to derive efficient and stable allocations in a setting in
which the users can cooperate to reach a common goal. In [7], the capacity of the
Gaussian MAC is studied with a game-theoretical approach. In [8], the authors
expressed the rate allocation problem in static Gaussian MAC with jamming in a
cooperative game-theoretical setting. They found a satisfactory rate allocation ful-
filling the newly introduced concept of envy-free. The envy-free allocation exists,
is unique and Pareto optimal, but in general it does not coincide with theα-fair
solution.
In this contribution we study and extend for the first time theconcepts of optimal,
fair, and satisfactory rate allocations to adynamicscenario, described by a Gaus-
sian MAC where the channel evolves quasi-statically, according to a Homogeneous
Markov Chain (HMC) on a finite state space.
We stress the scenario that we consider is relevant for the modern LTE systems. In
fact, in LTE, the average channel state information is estimated by the receiver and
fed back to each transmitter at regular intervals. Hence, ineach of these intervals,
a different rate for each user needs to be allocated and it is desirable that fairness
and users’ satisfaction is guaranteed along the course of the communication.

The paper is structured into two main sections. The former isSect. 3, in which
we discuss thedesign of optimal and fair allocationsin a dynamic process. The
latter is Sect. 4, in which wecharacterize the optimal rate allocations as the allo-
cations which are also satisfactory throughout the communication, according to a
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Dynamic Cooperative Game Theory (DCGT) formulation. We study a bottom-up
(Sect. 3.1) and a top-down procedure (Sect. 3.2) to allocatea global optimal rate
in each state of the HMC. The former prescribes to allocate first the static allo-
cations and derive next the long-run ones; conversely, the latter suggests to select
first the long-run rate allocations. Though the top-down procedure would be more
useful since the user have a long-run perspective, it is not always feasible since
it is described by a non bijective mapping. We then suggest a procedure to over-
come this problem. In Sect. 4 we provide a sufficient condition under which there
exists a rate allocation which is fair, i.e. max-min, proportional, andα-fair, both
state-wisely and in the long-run process. Most importantly, the fairness property
of such allocation is time consistent, i.e. it is fair throughout the process, from any
intermediate step onwards. Conversely, a fair allocation always exists in the static
case [4], [9]. We remark that all our results in Sect. 3 apply to any communication
system characterized by a polymatroid capacity structure (see [4] for some exam-
ples).
In Sect. 4 we introduce a game formulation with jamming userssimilar to the one
in [8], but in a dynamic scenario. We then characterize the set of global optimal
allocations as satisfactory too, since it coincides with the set of rates for which two
crucial DCGT properties hold. These properties are the (time consistent) Core, in-
troduced in [10], and the Cooperation Maintenance property[11]. Such properties
formulate the concept of acceptable allocations throughout a dynamic process for
all users in two different, but equally appealing, manners.
We refer the reader to [12] for the proofs of all our results, omitted here to comply
with the space constraint.

2 System Model

We consider a wireless system in whichK terminals attempt to send information
to a single receiver or base station. LetK = {1, . . . ,K} be the set of all users.
Each userk has a power constraintPk. We assume a quasi-static channel, i.e.
the channel coefficients can be considered constant for the whole duration of a
codeword. Thus, thet-th signal block received by the unique receiver, fort ∈ N0,
can be written as

y[t] =

K∑

k=1

h(k)[t]x(k)[t] +w[t],

wherex(k)[t] is the codeword of userk, h(k)[t] is the complex channel coefficient
for userk at time stept, andw[t] is zero mean white Gaussian noise with variance
N0. We assume that the set of channel coefficients{h(1), h(2), . . . , h(K)} is finite
and it follows a discrete time HMC, which can change state at every new codeword.
In other words, ifSt is the channel state at time stept, where

St :=
[
h(1)[t], . . . , h(K)[t]

]
,
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then the random process{St, t ≥ 0} is a HMC. We defineS as the set of all the
N possible states of the HMC. LetP be itsN -by-N transition probability matrix,
such thatPi,j is the probability of transition from statesi to statesj.

We point out that the codeword length is supposed to be very long, such that
the conditions of applicability of the Shannon Capacity (i.e. infinite codeword)
are practically satisfied. This assumption is widely applied in quasi-static channels
(see e.g. [13]).

2.1 Markovian feasibility region

In each channel state, we consider a Gaussian MAC scenario, in whichK users
communicate with a single receiver. By relying on the classic quasi-static approx-
imation assumption (see e.g. [13]), we can compute the capacity rate region for all
users in states as the polymatroidR(K, s) with rank functiong(K) [14]:

R(K, s) =

{
r ∈ R

K :
∑

k∈T

rk ≤ g(K)(T , s), ∀ T ⊆ K

}

g(K)(T , s) := C

(∑

k∈T

|h(k)(s)|2Pk, N0

)
, ∀ T ⊆ K, (1)

whereC(a, b) = log2(1+a/b). When considering the channel dynamics, an HMC
evolves on a finite set of channel statesS = {s1, . . . , sN}. Since we consider the
channel to be constant during a codeword, the transition among states occurs at the
end of each coherence period of the channel.
We allocate a rate to each user in each of the state of the Markov chain. We assume
that the rate assigned in stateSt ∈ S at timet depends only on the value ofSt, and
not on the past history of state/allocations up to timet. In this sense, we say that
the dynamic allocation isstationary, and we callrk(s) the rate assigned to userk
in states. In our model the users prefer the current rate allocation over the future
ones, which are discounted by a factorβ ∈ [0; 1). This assumption has been widely
adopted in the literature on game theory for networks (see e.g. [15]). In this case,
theutility for userk over the whole stream of state-wise rate allocations equals

rk(Γs) = E

(
∞∑

t=0

βt rk(St)

)
, (2)

whereΓs is the Markov process starting at time0 in states. An alternative inter-
pretation of (2) is the actual expected long-run rate when the length of the com-
munication is finite, but of unknown duration;1− β is the probability that, at any
time step, the communication terminates. In the literatureon dynamic games it is
common to multiply expression (2) by the normalization factor (1− β). We antic-
ipate that both the normalization factor and the choice ofβ are irrelevant to all our
results. By recalling the relation

∑
t≥0 β

tPt = (I − βP)−1, we can write (2) in
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the following matricial form:


r(Γs1)

...
r(ΓsN )


 = (I− βP)−1



r(s1)

...
r(sN )


 , (3)

wherer(s) := [r1(s), r2(s), . . . , rK(s)] andr(Γs) is defined similarly. By defining
Φ := (I− βP)−1 and utilizing a compact matrix notation, we rewrite (3) as

[r(Γs)]s∈S = Φ [r(s)]s∈S (4)

Remark 1. Expression (4) defines an application from the set of stationary state-
wise rate allocations to the set of feasible long-run rates.In Sect. 3.2 we will show
that, in general, the application isnot invertible, since multiplying a set of long-run
allocations byΦ−1 does not always produce feasible state-wise allocations.2

It is natural to define the long-run rate regionR(K,Γs) as the set of all rates
r(Γs) that can be written as the long-run expected sum of stationary state-wise rate
allocations, as in (3). We now give a convenient expression for R(K,Γs), which
follows from [16], p. 241, Theorem 12.1.5, claiming that thesum of polymatroids
is still a polymatroids whose rank function is the sum of the rank functions of the
summands.

Lemma 21. For any sj ∈ S, the long-run rate feasibility regionR(K,Γsj ) is a
polymatroid with rank function:

g(K)(T ,Γsj) =

N∑

n=1

νn(sj) g(K)(T , sn), ∀ T ⊆ K,

whereν(sj) is thej-th row of the matrixΦ. 2

2.2 Relevance to LTE systems

In LTE systems, the statistics of the channel are estimated at regular intervals and
used for resource allocation. Under the common assumption of fast fading Gaus-
sian channel in additive Gaussian noise, in each periodt the state of the HMC
is given by the channel distribution, completely characterized by its second-order
statistics. The rate region in absence of instantaneous knowledge of the channel at
the transmitter is still a polymatroid, with rank functionEh[g(K)(T , s)], as shown
in [17]. Since the results presented in the following strongly rely on the polyma-
troid structure of the rate region in each state of the HMC, then they also hold
for LTE systems. Hence, our general results in particular address the issue of al-
locating the rate to users in a MAC LTE system at each feed-back time interval,
so that optimality, fairness, and the users’ satisfaction is preserved throughout the
communication.
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3 Optimal and fair rate allocation design

In this section we address the issue of allocating the rate toall users during the
transmission process, in each state of the channel Markov chain. We stress that all
the results in this section apply to any communication system in which the capacity
region in the single channel state has a polymatroid structure (see [4] for a list of
such systems).
For a classic result on polymatroids (see e.g. [16]), we knowthat the dominant
facet, or simply facet,M(R(K, s)) of the rate regionR(K, s) is maximum sum-
rate, i.e.

M(K, s) := M(R(K, s)) = argmax
r∈R(K,s)

∑

k∈K

rk. (5)

Similarly, the facetM(K,Γs) is maximum sum-rate in the long-run processΓs.
Hence, the global optimum rate design solution would be thatboth the state-wise
and the long-run rate allocations belong to the facetsM(K, s) andM(K,Γs), for
all s ∈ S. Hence, we will restrict our focus on the allocations insideM, defined
as in the following.

Definition 1 (M). M is the set of stationary state-wise allocations belonging to
the dominant facets of both state-wise and long-run feasibility regions, i.e.

M :=
{
{r(s)}s∈S : r(s) ∈ M(K, s),

r(Γs) ∈ M(K,Γs), ∀ s ∈ S
}
,

where [r(Γs)]s∈S = Φ [r(s)]s∈S . 2

Now, we will investigate two different approaches to selectan allocation inM.
The first, called bottom-up procedure (Sect. 3.1), is the most natural one, and it
prescribes to select a set of state-wise allocations inM(K, s), for all s ∈ S, and
then to derive the set of associated long-run allocations via multiplication byΦ.
Conversely, the second approach, dubbed top-down (Sect. 3.2), would be more
useful, but unfortunately it is not always feasible. It suggests to select first the
long-run allocations, inM(K,Γs), for all s ∈ S, and then to multiply byΦ−1 to
obtain the state-wise allocations. Clearly, the choice over the adopted procedure
depends on the priority that the designer gives to the state-wise/long-run alloca-
tion. By adopting the top-down procedure, one embraces a long-run perspective of
the process, by preferring to adhere to a specific fairness selection criterion in the
long-run process, rather than in the state-wise one. We anticipate from Sect. 3.3
that one can select the unique allocation point in the long-run process, that isα-
fair, proportional fair, and max-min fair, simultaneously. Clearly, the best scenario
would consist in being fair in each state, in the long-run process, and from each
intermediate step onwards. A sufficient condition to attainthis will be provided in
Sect. 3.3.
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3.1 BOTTOM-UP DESIGN: From single-stage to long-run allocations

In this section we investigate the feasibility of our first procedure to select an al-
location inM. It is calledbottom-uprate allocation approach, and it consists in
selecting a set of stage-wise allocations belonging to the dominant facet of each
state-wise feasibility region. Then, we need to compute therespective long-run al-
locations and check whether they belong to the dominant facets of the feasibility re-
gion of the respective long-run processes. By a linearity argument, it is easy to see
that the facetM(K,Γs) is obtained as the Minkowski sum

∑N
n=1 νn(s)M(K, sn).

Therefore, if the state-wise allocations all belong to the dominant facet in the re-
spective states, then their expected long-run sum also liesin the dominant facet of
the long-run process. Then, the bottom-up procedure alwaysproduces stationary
allocations belonging toM.

Proposition 31 (Bottom-up allocation procedure). Select a set of state-wise rate
allocations{r(s) ∈ M(K, s)}s∈S . Then, their associated long-run allocations
[r(Γs)]s∈S = Φ[r(s)]s∈S belong to the respective long-run dominant facets, i.e.
r(Γs) ∈ M(K,Γs), for all s ∈ S. 2

Then, the first positive result of Proposition 31 is that there exist allocations
belonging to the dominant facet of both state-wise and long-run processes, jointly,
i.e. M is non-empty. Secondly, it is easy to find them, since it suffices to select
a rate allocation on the dominant facet ofR(K, s), for all s ∈ S. Finally, as a
by-product of Proposition 31, we are allowed to simplify thedefinition ofM as:

M ≡
{
{r(s)}s∈S s.t. r(s) ∈ M(K, s), ∀ s ∈ S

}
.

Proof. If r(n) ∈ M(R(n)), for all n = 1, . . . , N , then trivially
∑N

n=1 r(n) ∈
M(R). Conversely, fixr ∈ M(R). We know from [16], p. 241, Theorem 12.1.5,
that there exist{r(n) ∈ R(n)}n=1,...,N such thatr =

∑N
n=1 r(n). If r(n) /∈

M(R(n)) for somen, then there would existr′ ∈ M(R) such that
∑K

k=1 r
′
k >∑K

k=1 rk, which is impossible. Hence, the thesis is proven.

3.2 TOP-DOWN DESIGN: From long-run to single-stage allocations

The bottom-up procedure always produces feasible allocations, but it is not what
really concerns us. Indeed, the users are endowed with a long-term perspective of
the communication process, hence one may wish to select firsta set of long-run
allocations in{M(K,Γs)}s∈S which adhere to a certain criterion in the respective
long-run processes (e.g. a fairness criterion, as in Sect. 3.3). Then, the state-wise
rate allocations{r(s)}s∈S are obtained via multiplication byΦ−1. Unfortunately
this method, dubbedtop-down, does not always produces feasible stationary state-
wise allocations. We interpret this fact by saying that the linear application defined
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by Φ in (4) is not always invertible in the space of feasible stationary allocations.
In Example 31 we show an instance of the described scenario.

Example 31. Setβ = 0.8, N0 = 0.1W . Consider two users, with power con-
straintsP1 = P2 = 2W . Consider two states. Ins1, |h(1)(s1)|2 = 0.1, |h(2)(s1)|2 =
0.2. In s2, |h(1)(s2)|2 = 0.15, |h(2)(s2)|2 = 0.15. The transition probability ma-
trix is P = [0.8 0.2; 0.3 0.7]. Choose the optimal allocations in the long-run
process

r(Γs1) = [0.5843; 1.1109] ∈ M(K,Γs1) bits/s/Hz

r(Γs2) = [0.8270; 0.8682] ∈ M(K,Γs2) bits/s/Hz.

The corresponding state-wise allocations, throughΦ−1, are both not feasible, be-
cause

r(s1) ∼= [0.0780; 0.2610] /∈ R(K, s1)

r(s2) ∼= [0.2236; 0.1154] /∈ R(K, s2). 2

Remark 2. One may argue that there is no need to select the whole set of long-run
allocations{r(Γs)}s∈S , but only the one corresponding to the actual initial state.
Indeed, since the channel stateS0 at time 0 is known, one could selectr(ΓS0

)
according to the desired criterion and then compute the state-wise allocations by
choosing one solutions among the infinite possible of the equation

r(ΓS0
) =

N∑

n=1

νn(S0) r(sn).

Finally, the remaining long-run allocations are automatically computed by re-
inverting the relation, asΦ[r(s)]s∈S . Of course, in this way there is no control
over the long-run allocationsr(Γs), with s 6= S0.
On the other hand, thanks to the stationarity of the payoff allocation, the long-run
sub-process starting at timeT > 0 is precisely theβT -scaled version ofΓST

, i.e.

E

(
∞∑

t=T

βtr(St)
∣∣∣ h(T )

)
= βT r(ΓST

),

whereh(T ) is the history of state/allocations from time 0 up to timeT . Therefore,
jointly choosing the long-run allocationsr(Γs) for all statess ∈ S is equivalent
to assign the long-run allocations that each user obtains ineach sub-process from
any intermediate time stepT ≥ 0 onwards. 2

Example 31 seems to discourage a top-down allocation procedure. Indeed in
general, if one chooses a set of long-run allocations, thereis no guarantee that the
allocation is actually feasible, since the associated stationary state-wise allocation
might be not feasible. Of course, this does not rule out the possibility to carry out a
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Figure 1: Example 31. r(Γs) ∈ M(K,Γs), for s = s1, s2, but r(s) /∈ R(K, s), for
s = s1, s2, where[r(s)]s∈S = Φ−1[r(Γs)]s∈S .

top-down allocation procedure successfully. Indeed, in Theorem 33 we will present
a top-down procedure guaranteeing the feasibility of the associated state-wise rate
allocations. Before, let us introduce a classic result on polymatroids (see [18]). Let
R be a polymatroid on the ground set{1, . . . ,K}, with rank functiong. LetΠ(K)
be the set of permutations of{1, . . . ,K}. The facetM(R) has at mostK! extreme
points, and each of them has an explicit characterization asa function of the rank
functiong. Indeed,w is a vertex ofM(R) if and only if there exists a permutation
π of {1, . . . ,K} such that, for allk = 1, . . . ,K,

wk = g({π1, . . . , πk−1, πk})− g({π1, . . . , πk−1}) := wk(π).

Proposition 32. Let an ≥ 0, for n = 1, . . . , N . LetR1, . . . ,RN beN polyma-
troids on the ground set{1, . . . ,K}. LetR =

∑N
n=1 anRn. Letw(π)(n) be the

vertex of the facetM(Rn) associated to the permutationπ ∈ Π(K). Letw(π) be
a vertex ofM(R). Then,

w(π) =

N∑

n=1

an w(π)(n), ∀π ∈ Π(N). 2

Proposition 32 claims that the vertex of the facetM(R) associated to the per-
mutationπ can be decomposed into the sum of the vertices associated to the same
π of each facetM(Rn), n = 1, . . . , N . Then, our idea is to chooseoneset of con-
vex coefficients, valid for anys ∈ S, and to define the set of long-run allocations
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{r(Γs) ∈ M(K,Γs)}s∈S as the same convex combination of the vertices of the
respective dominant facets. The associated state-wise allocations are then obtained
as thesameconvex combination of the vertices of the respective state-wise domi-
nant facets, hence they are feasible and optimal.

Theorem 33(Top-down allocation procedure). Choose a set of convex coefficients
{c(π)}π∈Π(K), such thatc(π) ≥ 0 and

∑
π∈Π(K) c(π) = 1. Letw(π)(Γs) be the

vertex ofM(K,Γs) associated to the permutationπ. Compute the set of long-run
allocations as

r(Γs) =
∑

π∈Π(K)

c(π)w(π)(Γs), ∀ s ∈ S.

Then,
[r(s)]s∈S = Φ−1 [r(Γs)]s∈S

is a set of feasible state-wise rate allocations, and moreover r(s) ∈ M(K, s), for
all s ∈ S. 2

Proof. Let us write



r(s1)

...
r(sN )


 = Φ−1




∑
π∈Π(K) c(π)w(π)(Γs1)

...∑
π∈Π(K) c(π)w(π)(ΓsN )




=
∑

π∈Π(K)

c(π)Φ−1



w(π)(Γs1)

...
w(π)(ΓsN )


 .

For Proposition 32, we can say that


r(s1)

...
r(sN )


 =

∑

π∈Π(K)

c(π)



w(π)(s1)

...
w(π)(sN )


 .

Hence, the thesis is proven.

The top-down allocation procedure provided in Theorem 33 isnot the only
possible of course, but it leads to an intuitive remark. Eachvertexw(π)(s) can
be achieved by letting the receiver decode sequentially, inthe reverse order ofπ,
the signals coming from each user in channel states ∈ S, and by considering the
signals not decoded yet as Gaussian noise (e.g. see [14]). Therefore, any rate allo-
cation onM(K, s) can be achieved by time sharing such decoding configurations,
andthe time-sharing procedure is independent of the states.
We suggest an interesting future research, which may study how to optimize the
convex coefficientsc(π) to make the resulting long-run allocations globally close
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to the set of long-run allocations fulfilling a certain criterion, e.g. the fairness cri-
terion that we will present in the next section.

3.3 FAIR ALLOCATION DESIGN: being fair throughout the pro-
cess

In this section we deal with a fairness criterion to select anallocation rate inside
M. In the static channel case, it is possible to find rate allocations which are fair,
under plenty of different criteria (see [4]). In the dynamiccase, the definition of
fairness is much more demanding, and not always there exist allocations fulfilling
it. Firstly, we demand an allocation to be fair in the long-run process, since users
are endowed with a long-term perspective of the transmission process. Then, the
top-down procedure would be best, because it would guarantee the rate allocations
to be fair in the long-run. However, in Sect. 3.2 we showed that this approach not
always produces feasible stationary rate allocations. Secondly, we demand that an
allocation respects the fairness criterion not only from the beginning of the trans-
mission onwards, but throughout it, i.e. it should be time consistent. Thirdly, we
wish that the rate allocation is also fair in each state of theHMC. We will see that
these three conditions are not generally satisfied, howeverwe provide a sufficient
condition for them to hold.

3.3.1 Fairness criteria: A review

Let us first introduce the fairness criteria that we will utilize in the next section. In
the literature, three fair allocations have been extensively studied:α-fair, max-min
fair, and proportional fair allocations. We now provide their general definition, by
considering a general rate feasibility regionR.

Definition 2 (max-min fairness). An allocationr(MM) is max-min fair whenever
no userj with rate r

(MM)
j can yield resources to a useri with r

(MM)
i < r

(MM)
j

without violating feasibility inR. 2

Definition 3 (α-fairness). Letu(α)(rk) = r1−α
k /[1 − α] be the utility function for

userk. Theα-fair allocation r(αF), withα ≥ 0, is defined as

r(αF) = argmax
r∈R

K∑

k=1

u(α)(rk). 2

Definition 4 (proportional fairness). The proportional fair allocationr(PF) coin-
cides with theα-fair allocation whenα → 1, i.e.

r(PF) = argmax
r∈R

K∏

k=1

rk. 2
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We point out that, in general, theα-fair allocation is also max-min fair for
α ↑ ∞ and proportional fair forα → 1.
If we consider the long-run processΓs, then in Definitions 2, 3, and 4 we should
interpretR ≡ R(K,Γs), while in channel states, R ≡ R(K, s).
In the special case in which the feasibility region is a polymatroid, as forR(K, s)
andR(K,Γs), for all s ∈ S, then the three fair allocations coincide.

Theorem 34 ( [4]). If the feasibility region is a polymatroidR, then max-min,
proportional, andα-fair allocations coincide for allα ≥ 0, and moreover belong
to the facetM(R) i.e.

r(MM) = r(PF) = r(αF) := r(F) ∈ M(R). 2

For Theorem 34, the three mentioned fair solutions coincideboth in the long-
run processΓs and in states, for all s ∈ S. Therefore, we can generally refer to
them asfair allocations, and we callr(F)(Γs) the fair allocation in the long-run
processΓs, andr(F)(s) the fair allocation in states. Moreover, a fair allocation be-
longs to the dominant facet of the associated feasibility region, hence it is a proper
criterion to select a set of allocations inM.

3.3.2 Fair allocation design

Finally, we are ready to deal with the design of fair rate allocations on quasi-static
channels. We will show under which conditions it is possibleto allocate a rate
which isfair (i.e. max-min, proportional, andα-fair at the same time) both in each
state and in the long-run process, and which is fair throughout the game, from each
intermediate step, i.e. it is time consistent. More formally, we look for a sufficient
condition for which the following holds:

{
Φ−1 [r(F)(Γs)]s∈S = [r(F)(s)]s∈S
Φ [r(F)(s)]s∈S = [r(F)(Γs)]s∈S .

(6)

We stress that property (6) is crucial, mainly for three reasons, that we list
below.

• The top-down procedure may fail, hence if we choose{r(F)(Γs)}s∈S , not
necessarily it is feasible among the stationary allocations, i.e. in general it
may happen that

∃ s ∈ S : r(s) /∈ R(K, s),

with [r(s)]s∈S = Φ−1 [r(F)(Γs)]s∈S .

11



• Though the bottom-up procedure always produces feasible allocations, if the
allocation is fair in each state, then not necessarily it is also fair in the long-
run processes. Indeed, it may happen that

∃ s ∈ S : r(Γs) 6= r(F)(Γs),

with [r(Γs)]s∈S = Φ [r(F)(s)]s∈S (7)

As an example, in Figure 2 we show an instance in which (7) is verified.

• Most importantly, if relation (6) holds, then the fairness property of the rate
allocation istime consistent(see Theorem 35).

The time consistency of fair allocations claims that the fairness criteria that in-
duces to enforce a certain rate allocation at time 0 should beconsistent in time, at
stepsT > 0 as well. More formally, at each time stepT , theβ-discounted sum
of allocations that each user obtains from timeT onwards should be fair in the
long-run processΓST

.

Theorem 35. If condition (6) holds, then the fairness of the stationary rate alloca-
tion {r(F)(s)}s∈S is time consistent, i.e. for all T ∈ N0,

E

(
∞∑

t=T

βtr(F)(St)
∣∣∣ h(T )

)
= βT r(F)(ΓST

),

whereh(T ) is the history of states/rate allocations up to timeT . 2

Proof. Thanks to the stationarity of the rate allocations, we claim

E

(
∞∑

t=T

βtr(F)(St)
∣∣∣ h(T )

)
= E

(
∞∑

t=T

βtr(F)(St)
∣∣∣ ST

)

= βT
E

(
∞∑

t=0

βtr(F)(St+T )
∣∣∣ ST

)

= βT r(F)(ΓST
). (8)

where (8) comes from condition (6). Hence, the thesis is proven.

After presenting the appealing properties of condition (6), we wish to find a
sufficient condition for (6) to hold. For this purpose, it is useful to present first an
algorithm, first studied in [9], that produces the fair allocation in a general poly-
matroidR with rank functiong. Of course, it can be utilized to compute the fair
allocation in any state-wise and long-run process.

Algorithm 36 ( [9]). Setq := 1. SetK′ := K, g′ := g.
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Figure 2: Example of situation in (7) with two users and two states, in which the state-

wise allocations are fair in the respective channel states but the relative long-run allocations
are not fair in the respective long-run processes. The allocations indicated with the asterisk are
fair, while the circle describes the actual computed allocations.

1) Compute

T ∗
(q) = argmin

T ⊆K′

g′(T )

|T |
, r

(F)
k =

g′(T ∗
(q))

|T ∗
(q)|

, ∀ k ∈ T ∗
(q).

2) If T ∗
(q) = K′, then stop. The rate allocationrF is fair for R. Otherwise, set

q := q + 1, K′ := K′\T ∗
(q),

g′(T ) := g′(T ∪ T ∗
(q))− g′(T ∗

(q)), ∀ T ⊆ K′,

and return to step 1) . 2

Finally, we are ready to provide a condition that ensures theexistence of a rate
allocation design which is fair both in each state and in every long-run process, as
described in (6), and for which the fairness criterion is time consistent, as shown in
Theorem 35.

Theorem 37(SC existence fair allocations). Let T (s) = [T ∗
(1)(s), . . . ,T

∗
(q(s))(s)]

be the sequence computed in the iterations of step 1, Algorithm 36, applied to
channel states. Suppose that

∃ T = T (s), ∀ s ∈ S,

i.e. T (s) does not depend ons. Then, condition (6) holds. 2

13



Proof. At step 1 of the first iteration of Algorithm 36 applied to the processΓs, we
obtain

T ∗
(1)(Γs) = argmin

T ⊆K

∑N
n=1 νn(s) g(K)(T , sn)

|T |
= T ∗

(1).

Hence, we can compute the fair allocation for the set of usersT ∗
(1) asrFk (Γs) =

∑N
n=1 νn(s)r

F
k (sn), for all k ∈ T ∗

(1). Then, at step 2, the update of the rank func-
tion:

g′(K)(T ,Γs) =

N∑

n=1

νn(s) g
′
(K)(T , sn), ∀ T ⊆ K\T ∗

(1)

preserves the linearity property of the rank function also in the next iteration.
Hence, by induction, the thesis is proven.

4 Optimal and Satisfactory allocations:
A game-theoretical approach

Sect. 3 dealt with thedesignof the rate allocation in each channel state for each
user. We restricted our focus solely on the set of global optimum rate regionM
(5), i.e. the set of stationary state-wise which are optimalboth in each state and in
the long-run process.
We now start the second part of the paper by turning our attention towards thechar-
acterizationof the set of ratesM in game theoretical terms. We will show indeed
thatM, besides being global optimum, also “satisfies” all the users throughout the
game, according to two important properties specific for dynamic CGT, namely the
time consistent Core and the Cooperation Maintenance property.

4.1 CORE characterization ofM

Generally speaking, Static Cooperative Game Theory (SCGT)with non-transferable
utility (NTU) studies one-shot interactions among different players who can col-
laborate with each other by coordinating the respective strategies. It is assumed
that grand coalitionK, composed by all the players, is formed, and the main chal-
lenge consists in devising a payoff allocation for each player, according to some
pre-defined criteria. To this aim, the typical procedure in SCGT consists in investi-
gating thepotentialscenario in which a sub-coalition (or simply, coalition)A ⊂ K
of players withdraws from the grand coalition and no longer coordinates its actions
with the excluded players; then, the set of feasible payoffsthatA can earn on its
own is computed (see [6] for a thorough survey). The payoff allocation is finally a
function of such feasible sets.
Let us then translate these preliminary few concepts into our scenario. We first
consider the static process in states, that we callstatic game. For the static game
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case we adopt the same model as in [8]. In our situation, the players are the users,
and the grand coalition is the set of transmitting usersK. We say that a coalition of
usersAJ := K\J ⊂ K forms when its members share the respective codes with
the receiver, which can then decode the signals transmittedby AJ . For us, the
payoff for a player is the assigned transmission rate. The SCGT literature provides
several ways to compute the set of rate allocations achievable by each subset of
usersAJ . One of the most utilized is the max-min method, originally introduced
by von Neumann and Morgenstern in [19], suggesting that the set of feasible al-
locationsR(AJ , s) should be defined as theset of rate allocations thatAJ can
achieve whatever is the transmission strategy employed by the remaining userJ .
Then, we need to take into account theworst possible scenario forAJ , i.e. when
the users inJ do not allow joint decoding and jam the network, and investigate the
set of ratesR(AJ , s) that the users inAJ can achieve in this hypothetical worst-
case scenario. When the users inJ jam, they sum coherently the respective signals
and transmit with an overall power:

Λ(J , s) =

(
∑

k∈J

|h(k)(s)|
√

Pk

)2

.

In this worst-case scenario, in [8] it is shown that, amongAJ , only the usersÂJ

whose associated received power level is high enough to overwhelm the jamming
signal can communicate, i.e.

ÂJ (s) :=
{
k ∈ AJ : |h(k)(s)|2Pk > Λ(J , s)

}
.

Then,R(AJ , s) is a polymatroid with rank function [8]:

g(AJ )(T , s) := C

(∑

k∈T

|h(k)(s)|2P̃k,Λ(J , s) +N0

)
, (9)

whereP̃k = Pk for k ∈ ÂJ (s) andP̃k = 0 for all k ∈ AJ \ÂJ (s). Please note
that, whenJ = ∅, (9) boils down to expression (1).
Now, let us consider the feasibility regionR(AJ ,Γs) for a coalitionAJ in the
long-run process (or game)Γs. Similarly to the static case, it is still defined in the
max-min fashion, as the set of long-run rate allocations that the usersAJ can guar-
antee, whatever is the transmission strategy adopted byJ , throughout the process.
Therefore, we have to consider the worst-case scenario in whichJ jams during the
whole processΓs and, analogously to Lemma 21, we claim thatR(AJ ,Γs) is a
polymatroid with rank function:

g(AJ )(T ,Γsj) =

N∑

n=1

νn(sj) g(AJ )(T , sn), ∀ T ⊆ AJ .

Our goal is now to further characterizeM, and we achieve this via the def-
inition of the Core set for NTU cooperative games. The Core isthe set of rate
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allocations that no coalitionAJ ⊂ K can improve upon when the remaining users
J jam. Let us define formally the Core of the static game in states. We say that
a rate allocation for the grand coalitionr ∈ R(K, s) is blockedby the coalition
AJ ⊆ K whenever there existsr′ ∈ R(AJ , s) such thatr′k > rk for all k ∈ AJ .
In other words, the rate allocationr is unacceptable by the set of users inAJ .

Definition 5. The CoreCo(s) is the set of unblocked rate allocations inR(K, s).

Remark 3. We can intuitively define theCore as the set of all “acceptable” rates
for all users: indeed, if an allocation does not belong to the Core, at least a subset
of users is dissatisfied with it, because they can all attain abetter rate allocation
even when the remaining users do not participate to the transmission and jam.2

Additionally, an allocation inCo(s) is also not blocked by the grand coalition
K. SinceR(K, s) is a polymatroid, it follows that it is a region with maximum
sum-rate, i.e.Co(s) ⊆ M(K, s), for all s ∈ S.

The CoreCo(Γs) in the long-run gameΓs is defined analogously to the static
case. We remark that it coincides with the set of long-run allocations that are
acceptable for each subset of usersat the beginning of the long-run game. This
definition of Co(Γs) relates to static CGT, in which the coalition structure holds
steady throughout the game and players do not change their preference over the
rate allocations over time. This is a naı̈ve perspective though, since the channel is
dynamic. Hence, we demand that a stationary rate allocations is not only “accept-
able” for each coalition at the beginning of the game, but also throughout the game.
This property is called, in dynamic CGT,time consistencyof the Core [10]. The
philosophy behind this definition is analogous to the time consistency of fair allo-
cations, in Theorem 35. Hence, if the Core property of an allocation is time con-
sistent, then ateachtime step, if any coalition faces the dilemma “do we withdraw
now or we cooperate forever?”, it always prefers the second option. Therefore, we
will focus our attention on the allocations inCo, defined as follows, and we will
prove thatCo = M.

Definition 6 (Co). Co is the set of stationary state-wise allocations belonging to
the Core of each static game, and that belong to the Core of long-run games in a
time consistent fashion throughout the game, i.e.

Co :=

{
{r(s)}s∈S : r(s) ∈ Co(s),

E

(
∞∑

t=T

βtr(St)
∣∣∣ h(T )

)
∈ βTCo(ΓST

), ∀T ∈ N0

}
,

whereh(T ) be the history of states/rate allocations up to timeT . 2
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Hence,Co is the set of stationary allocations that are maximum sum-rate, hence
optimum for the global network, and that are “acceptable” for each subset of users,
in both static and long-run games, throughout the game. Hence, we can already
claim thatCo ⊆ M. Let us show thatCo = M.

In [8], La and Anatharam computed the Core of the static game by relying on
SCGT with transferable utilities (TU). Their approach is not completely rigorous,
since the rate cannot be shared in any manner among the users,but only within
the capacity region. Nevertheless, NTU cooperative game theory yields the same
result as [8], as we show next.

Theorem 41. The CoreCo(s) coincides with the facetM(K, s) of the feasibility
regionR(K, s) for the grand coalition. 2

Proof. Is is known (e.g. [18]) that all the points inM(K, s) solve the linear pro-
grammax

r∈R(K,s)

∑
k∈K rk. Hence, all the points inM(K, s) are efficient forK.

Moreover, in [8] it is shown that, for allr ∈ M(K, s),
∑

k∈AJ

rk ≥ g(AJ )(AJ , s), ∀AJ ⊂ K.

Hence, we can say that, for allr ∈ M(K, s), there exists no allocation belonging to
M(AJ , s) that dominatesr for coalitionAJ . Since any rate allocations belonging
to R(AJ , s) is dominated by a rate allocation inM(AJ , s), thenM(K, s) ⊆
Co(s). If r /∈ M(K, s), either it is not feasible or it is not efficient forK. Then,
M(K, s) = Co(s).

In the light of Theorem 41 and Lemma 21, we can easily provide an expression
for Co(Γs) as well.

Corollary 42. The CoreCo(Γs) of the long-run gameΓs coincides with the facet
M(K,Γs). 2

Now, we are ready to claim thatM = Co.

Theorem 43. The set of stationary state-wise rate allocationsM coincides with
Co, i.e.M = Co. 2

Proof. We know thatCo ⊆ M. We have to prove thatM ⊆ Co. For Theorem 41,
if {r(s)}s∈S ∈ M, then{r(s) ∈ Co(s)}s∈S . Then, we just need to prove that, if
{r(s)}s∈S ∈ M, then the Core is time consistent in the long-run game. Similarly
to the proof of Theorem 35, we claim that for allT ∈ N0,

E

(
∞∑

t=T

βtr(St)
∣∣∣ h(T )

)
= βT r(ΓST

),
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where[r(Γs)]s∈S = Φ[r(s)]s∈S is the set of the associated long-run allocations.
Thanks to Proposition 31,r(ΓST

) ∈ Co(ΓST
). Hence, the thesis is proven.

Thanks to Theorem 43, the set of stationary state-wise rate allocationsM gains
further significance. Not onlyM is the maximal sum-rate region, but it also coin-
cides with the set of rates which are “acceptable” both in thelong-run and in the
static games, under the definition of Core. Moreover, the Core criterion is time
consistent, hence such rates are acceptable throughout thegame.
In the next section we provide a second characterization ofM, based on a Coop-
eration Maintenance property.

4.2 COOPERATION MAINTENANCE characterization of M

In this section we show that, by exploiting a crucial conceptin DCGT, called Coop-
eration Maintenance property, we are able to provide a further characterization to
the setM of the maximum sum-rate stationary state-wise allocations. The property
that we are going to define is an adaptation to our NTU scenarioof the Coopera-
tion Maintenance property defined in [11], [20]. It claims that, at each time step,
the maximum sum-rate that coalitionAJ expects to obtain if it withdraws (with-
out any chance of joining back) from the grand coalition in one step should be not
smaller than whatAJ obtains if it withdraws (still, without a second thought) at
the current step.

Remark 4. When we say, in a game-theoretical jargon, that a coalitionAJ is en-
ticed towithdraw from the grand coalition, we actually mean that it isdissatisfied
with its assigned rate, because, even in theworst-casescenario in whichJ jams,
AJ could achieve a better allocation. Hence, like in Sect. 4.1,we will utilize Game
Theory as a tool to measure users’ satisfaction with the assigned rate. 2

The set of allocations for which the Cooperation Maintenance property holds
is calledCM.

Definition 7 (CM). The set of (first step) Cooperation Maintaining allocations
CM is the set of stationary state-wise rate allocations{r(s) ∈ M(K, s)}s∈S such
that, for all coalitionsAJ ⊆ K and at each time stepT ∈ N0,

∑

k∈AJ

rk(ST )+β
∑

s′∈S

p(s′|ST )
[

max
r(Γs′ )∈R(AJ ,Γs′ )

∑

k∈AJ

rk(Γs′)
]
≥

max
r(ΓST

)∈R(AJ ,ΓST
)

∑

k∈AJ

rk(ΓST
). (10)

2

18



The intuition behind the definition ofCM is that, if a coalition faces the
dilemma “do we withdraw now or in one step?”, it should prefer the second option,
at any instant. In this way, by induction, no coalition is ever enticed to withdraw
and the grand coalition is cohesive throughout the game.

It follows from Definition 7 thatCM ⊆ Co. Also, it is not difficult to show
that, if the (first step) Cooperation Maintenance property holds, then then-tuple
step Cooperation Maintenance property also holds (see [20]for a more general
case), i.e. if a coalition faces the dilemma “do we withdraw now or inn steps?”,
it prefers the second option. Forn ↑ ∞, such property suggests that whenever a
coalition faces the dilemma “do we withdraw now or cooperate forever?”, then it
prefers to stick with the grand coalition forever. Not surprisingly, this notion co-
incides with the time consistency property of the Core that any allocation inM
possesses, as illustrated in Theorem 43.
We remark that, in more general settings,CM is smaller than the set of the station-
ary distributions belonging to the Core of long-run games (see [20]). Hence, the
definition ofCM requires a “higher level of satisfaction” for the players than the
Core. We now state that actually, in our scenario,M = CM. Through this result,
we provide a second dynamic characterization of the setM.

Theorem 44. The maximum sum-rate set of stationary state-wise allocationsM
coincides with the Cooperation Maintaining setCM, i.e.M = CM. 2

Proof. For Proposition 31,CM ⊆ M. Conversely, if an allocation{r(s)}s∈S ∈
M, then it also belongs toCo. So,

∑
k∈AJ

rk(s) ≥ g(AJ )(AJ , s), for allAJ ⊆ K,
s ∈ S. Then, thanks to Lemma 21, we can say that for allAJ ⊆ K, s ∈ S:

∑

k∈AJ



rk(s1)

...
rk(sN )


 ≥ Φ−1



g(AJ )(AJ ,Γs1)

...
g(AJ )(AJ ,ΓsN )


 ,

which is an expression equivalent to (10). Hence,M ⊆ CM and the thesis is
proven.

Therefore, in this section we have provided two game-theoretical characteriza-
tions for the global optimal set of allocationsM, i.e.

M = Co = CM.

Hence,M coincides with the set of ratesCo which are acceptable for all coalitions
throughout the game, and with the set of ratesCM that make the grand coalition
cohesive at every step of the game.

5 Conclusions

In this paper we considered a quasi-static Markovian multiple access channel. We
studied how to allocate the rate for each user in each channelstate. Our work is

19



motivated by the fact that, in the LTE technology, the statistics of the channel are
estimated by the receiver and used at regular intervals to perform rate allocation.
Hence, in each possible channel state, a different rate for each user needs to be
allocated. We focused on the setM of allocations which are maximum sum-rate,
both in each state and in the long run process. In Sect. 3 we investigated two rate
allocation procedures, namely bottom-up and top-down. Though the latter is more
useful under a long-run perspective, it does not always produce feasible allocations.
Theorem 33 offers a remedy for this. In Sect. 3.3 we demanded the existence of an
allocation which is fair both in each state and in the long-run process. Moreover,
we demanded the fairness property to be time consistent. Theorem 37 provides a
sufficient condition for this.
While in Sect. 3 we dealt with the issue of selecting a rate allocation inside the
optimal setM, in Sect. 4 we turned our attention towards a characterization of the
setM in dynamic game-theoretical terms. Firstly, in Theorem 43 we claim thatM
coincides with the Core setCo of allocations which are, in a sense, “acceptable”
for all the users, both in the static and in the long run game, in a time consistency
fashion. Secondly, in Theorem 44 we state thatM also coincides with the set of
Cooperation Maintaining allocationsCM that makes the coalition of all players
cohesive throughout the game. Therefore, all allocations in CM are both global
optimal and satisfy the users throughout the process, according to the criteria de-
fined byCo andCM.
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