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ABSTRACT
We consider interference alignment in the partially con-
nected K-user MIMO interference channel (IC). Conversely
to the fully-connected case, we show that interference
alignment can be achievable for an arbitrary number of users
K in the network, while the per-user signaling dimension
remains fixed, provided that the number of interference links
per user is bounded. For this class of channels, which we
denote by L-interfering K-user MIMO IC, we provide a
criterion applicable to symmetric systems for the system
of IA equations to be proper, according to the framework
introduced earlier by Yetis et al. Properness is a necessary
condition for IA to be feasible. Interestingly, this criterion
is independent from the number of users K. Furthermore,
we propose an iterative algorithm to solve the alignment
problem for this class of channels.

I. INTRODUCTION

Interference Alignment (IA) over the K-user interference
channel (IC) was introduced in [1]. The method, based only
on linear precoding at the transmitters and zero-forcing at
the receivers, enables the simple removal of interference
through zero-forcing filtering, thanks to the alignment of all
interfering signals in the same subspace from the point of
view of each receiver. IA was shown in [1] to achieve almost
surely a sum-rate multiplexing gain of K

2 per time, frequency
and antenna dimension. In comparison, independent opera-
tion of K isolated point-to-point links would incur a sum-
rate multiplexing gain of K per dimension. This indicates
that IA allows virtually interference-free communications,
at the cost of halving the multiplexing gains with respect
to what the users could achieve over isolated point-to-point
links.

In the K-user Gaussian MIMO IC, under mild assump-
tions on the distribution of the channel coefficients, the
existence with probability 1 of a solution to the IA problem
depends only on the dimensions of the problem (number
of users K and number of antennas at each node). The
existence of an IA solution was considered in [2], where the
notion of a proper system of equation provided a necessary
condition on the size of the channel matrices for the almost
sure (a.s.) existence of a solution. This criterion was later
shown in [3] and [4] to be sufficient as well under certain
conditions. In particular, properness has been shown to
ensure a.s. feasibility in the case of square channels for
K > 3 in [3], and for symmetric systems when all users seek
to achieve the same DoF, and this number evenly divides
the number of antennas at all nodes [4].

An iterative algorithm was introduced in [5] to find

numerically the precoding matrices achieving IA. Closed-
form solutions are available for certain particular cases
(e.g. when all nodes have N = K − 1 antennas, see [6]).
An extension of IA to the case where the interference-free
subspace at the receiver is strictly larger than the dimension
of the signal to decode (enabling receive diversity) was
introduced in [7].

One important consequence of the achievability results
from [2], [7] is that, in the case of the K-user MIMO IC
with a fixed number of antennas at each node, IA is only
achievable among a finite number of users K, because of
the finite number of degrees of freedom offered by the
spatial dimension at the transmitter and at the receiver.
There exists a few approaches to allow for a scaling of
IA across a growing number of links or cells: (i) let the
number of signaling dimensions (antennas, or time in the
case of the compound channel) grow arbitrarily large with
the number of cells, (ii) apply a power control scheme,
which effectively reduces the number of active nodes to
preserve the feasibility of IA over the network, or (iii)
assume a network-wise channel model exhibiting a limited
connectivity between the various nodes.

Although interesting from an analytical point of view,
approach (i) is not realistic in practice. Approach (ii) is
more practical and was considered e.g. in [8], nevertheless,
power control results in deactivating certain links and goes
at the expense of the total multiplexing gain of the network.

This paper considers the situation (iii) in which natural
attenuation effects (path loss, fading) cause the (at least
partial) loss of connectivity between certain receivers and
interfering transmitters. This scenario arises for instance in
the cellular network context where the distance between
non-neighboring cells causes a strong attenuation on
far-away interference signals. On-off models are typically
considered in order to approximate this situation, in
which each receiver is assumed to be receiving non-zero
interference from a bounded set of transmitters only. This
model is referred to as partially connected IC in the
following.

The partially connected MIMO IC has been considered
in [9], where an achievable scheme is proposed for certain
problem dimensions. We revisit this channel model, and
show that under mild conditions on the connectivity of the
interference links in the model, IA can be feasible among
an arbitrary number of users while keeping the signaling
dimension bounded. Specifically, our key contributions are
as follows:



• We extend the properness criterion of Yetis et al. [2], to
the case of the symmetric L-interferer K-user MIMO
IC (see Definition 1 below), which is a special scenario
of partially connected K-user MIMO IC.

• We show that 1 degree of freedom (DoF) per user is
achievable through alignment among K users having
each 2 transmit and 4 receive antennas, and where
each user has 4 interferers, irrespective of K. This
means that the total DoF scales unbounded with K.
Note also that this represents exactly one half of
the achievable interference-free DoF. This results is a
concrete example of a network where the number of
links can scale unbounded while interference can be
ideally cancelled from IA despite the finite number of
antennas.

• We provide an algorithm for how to compute precod-
ing matrices and receiver beamforming vectors that
achieves good performance, and, at convergence, re-
alizes IA over the network.

II. THE L-INTERFERING K-USER MIMO IC

Let us introduce the L-interfering K-user MIMO IC. This
model is a special case of the partially connected K-user
MIMO IC model, where each user receives interference
only from a limited subset of the K transmitters, and
where each transmitter interferes with a limited subset of
receivers (see Fig. 1). Formally, for any k ∈ {1, . . . ,K},
let I(k) ⊂ {1, . . . ,k − 1,k + 1, . . . ,K} denote the set of
transmitters which interfere with receiver k. We also let
I−1(l) = {k/l ∈ I(k)} for l ∈ {1, . . . ,K}, i.e. I−1(l) is the
set of receivers which are affected by interference from
transmitter l. In the example pictured in Fig. 1, I(1) = {2}
while I−1(1) = {2,3}. For simplicity, we assume that all
channels have the same dimension, i.e. all transmitters and
receivers are equipped respectively with N and M antennas.

In the partially connected K-user MIMO IC, the M-
dimensional signal at receiver k is therefore

y(k) = H(k,k)x(k) + ∑
l∈I(k)

H(k,l)x(l), (1)

where x(l)
k denotes the N-dimensional vector signal at

transmitter l, and H(k,l) is a M×N matrix representing the
channel between transmitter l and receiver k.

We now introduce the model used in the remainder of
this work:

Definition 1 (L-interfering K-user MIMO IC): The par-
tially connected K-user MIMO IC described above is L-
interfering for some L < K, iff

∀k ∈ {1, . . . ,K}, |I(k)| ≤ L and
∣∣I−1(k)

∣∣≤ L, (2)

where | · | denotes the cardinality operator.

II-A Interference Alignment
We are concerned with the feasibility of IA over the L-
interfering K-user MIMO IC introduced above. We define
alignment as follows: assume that each user is transmitting
a signal of rank D < N, and let V(l) denote the N ×D
precoding matrix at transmitter l. We can write x(l) =

Tx 1

Tx K

Tx 2

Tx 3

Rx 1

Rx K

Rx 2

Rx 3

Fig. 1. Example connectivity graph of the L-interfering K-user IC. Lines
represent channels with non-zero coefficients.

V(l)s(l) where s(l) is a vector containing D transmitted
symbols.

We wish all interference at receiver k to be restricted
to a subspace of dimension M − D′, where D′ < M
denotes the dimension of the interference-free subspace1.
This is equivalent to finding a M×D′ projection matrix
U(k) which suppresses all interference, i.e. such that
U(k)H

∑l∈I(k) H(k,l)V(l)s(l) = 0. Since this must be true for
all values of s(l), this yields the following definition of IA:

Definition 2: IA with parameters (D,D’) is achieved in
the L-interfering K-user MIMO IC iff there exist full
column-rank M×D′ matrices U(k), k = 1, . . . ,K, and N×D
matrices V(l), l = 1, . . . ,K, s.t.

∀k ∈ {1, . . . ,K}, ∀l ∈ I(k), U(k)H
H(k,l)V(l) = 0. (3)

II-B Achievability of IA over the L-Interfering IC
We now investigate the achievability of IA over the con-
sidered channel using the framework introduced in [2].
The method is based on the comparison of the number of
variables and constraints in the system of IA equations (3).
Let us first paraphrase the definition of a proper system of
equations from [2]:

Definition 3 (Proper system): A system of equations is
proper iff, for any subset of its equations, the number of
variables involved is at least as large as the number of
equations.

As outlined in [2], in a proper system, and in the absence
of particular structure in the channel coefficients, IA is
achievable almost surely (a.s.) at least for the case D =

1Note that this is a generalization of the original definition of IA [1] in
which D′ = D. Clearly, the DoF achievable per user under this scheme can
not be higher than min(D′,D). However, in cases where DoF maximization
is not the sole objective, choosing D′ > D might be desirable [7]. The
achievable DoF is considered in more detail in Section II-C.



D′ = 1 (see the remarks in [2, Section VII]). For D > 1 or
D′ > 1, having a proper system of IA equations is sufficient
to guarantee the achievability of IA under certain conditions
– see the recent results on sufficiency of this condition
in [4] and [3]). It is therefore important to characterize
whether a considered system is proper in order to assess
the achievability of IA. For the fully connected K-user
interference channel treated in [2], it has been shown that
the amount of equations involved in (3) is the limiting factor
for the system to be proper. Indeed, in the fully connected
MIMO IC, |I(k)|= K−1 ∀k, and the number of equations
in (3) scales quadratically with K. Conversely, in the case
of the L-interfering K-user MIMO IC, the constraint in
(2) ensures that the number of scalar equations involved
in (3) scales linearly with K. Intuitively, this means than
the feasibility conditions for IA will be relaxed in the L-
interfering K-user MIMO IC, in particular for large K.

We next give formal feasibility conditions for the system
of IA equations (3) to be proper.

Theorem 1: The system of equations (3) is proper if

D(N−D)+D′(M−D′)−LDD′ ≥ 0. (4)

Furthermore, (4) is also a necessary condition if
∀k ∈ {1, . . . ,K}, |I(k)|= L.

Proof: We first prove that (4) is necessary in the
case |I(k)| = L ∀k. For this, we consider the total number
of equations and variables involved in (3). The number
of distinct tuples (k, l) involved in (3) is trivially KL, and
each one of the matrix equalities contains D′ ×D scalar
equations. This yields a total of Ne = KLDD′ equations.
The total number of variables Nv in the V(l) and U(k)

matrices must be counted while paying attention to the
fact that multiple parameterizations of the same choice of
a subspace are possible, and must be counted only once.
As shown in [2], each V(l) must be counted as D(N−D)
variables, while each U(k) represents D′(M−D′) variables.
Therefore, we have Nv = KD(N − D) + KD′(M − D′).
Notice now that if (4) is not fulfilled, we have immediately
that Nv < Ne, i.e. the system is not proper. Therefore, (4)
is necessary.

We now prove the sufficient part. Due to the
lack of symmetry in the interfering connections
as defined by I(k), comparing Nv and Ne is not
sufficient to guarantee that the system is proper.
Therefore, we have to check that the inequality between
number of equations and variables is verified for all
possible subsets of equations. Let us introduce some
formalism. Let S = {(d′,k, l,d) ∈ {1, . . . ,D′}×{1, . . . ,K}
×{1, . . . ,K}×{1, . . . ,D} s.t. l ∈ I(k)}. Each tuple in S
corresponds to one scalar IA equation from eq. (3). Let
A⊂ S an arbitrary subset of S. Let NA

v denote the number
of variables involved in any of the equations designated by
A, and NA

e = |A| the number of those equations. We need
to prove that NA

v ≥ NA
e .

We need the following definitions:

K =
{

k s.t. ∃(d′, l,d) s.t.(d′,k, l,d) ∈ A
}

, (5)

L =
{

l s.t. ∃(d′,k,d) s.t.(d′,k, l,d) ∈ A
}

, (6)

D(l) =
{

d s.t. ∃(d′,k) s.t.(d′,k, l,d) ∈ A
}

, (7)

D′(k) =
{

d′ s.t. ∃(l,d) s.t.(d′,k, l,d) ∈ A
}

, (8)

KL =
{
(k, l) s.t. ∃(d′,d) s.t.(d′,k, l,d) ∈ A

}
. (9)

Intuitively, K is the set of indices c which appear in at least
one tuple in A; D(l) is the set of indices d which appear in
at least one tuple in A together with l; etc.

Using these definitions, the number of variables involved
in the beamformer at transmitter l is

∣∣D(l)
∣∣(N− ∣∣D(l)

∣∣),
while the number of variables involved in the projection fil-
ter at receiver k is

∣∣D′(k)∣∣(M− ∣∣D′(k)∣∣). We have therefore

NA
v = ∑

k∈K

∣∣D′(k)∣∣(M− ∣∣D′(k)∣∣)
+ ∑

l∈L

∣∣D(l)
∣∣(N− ∣∣D(l)

∣∣) (10)

≥ ∑
k∈K

∣∣D′(k)∣∣(M−D′)+ ∑
l∈L

∣∣D(l)
∣∣(N−D) (11)

since the cardinalities of D(l) and D′(k) are upper bounded
respectively by D and D′ by definition of those sets.

Let us now fix k and l, and consider the tuples (d′,k, l,d)
that appear in A. Clearly there are at most

∣∣D(l)
∣∣ ∣∣D′(k)∣∣

such tuples. Therefore, summing over all possible (k, l),

|A| ≤ ∑
(k,l)∈KL

∣∣D(l)
∣∣ ∣∣D′(k)∣∣ . (12)

Since
∣∣D′(k)∣∣≤ D′ ∀k, we have

|A| ≤ ∑
(k,l)∈KL

∣∣D(l)
∣∣D′ (13)

≤ ∑
l∈L

∣∣I−1(l)
∣∣ ∣∣D(l)

∣∣D′ (14)

≤ ∑
l∈L

L
∣∣D(l)

∣∣D′ (15)

where (14) stems from the fact that (k, l) ∈KL implies k ∈
I−1(l), and that I−1(l) has at least as many elements as its
restriction to those appearing in A. (15) stems directly from
Definition 1. Starting again from eq. (12), and bounding∣∣D(l)

∣∣ instead of
∣∣D′(k)∣∣, we obtain symmetrically

|A| ≤ ∑
k∈K

LD
∣∣D′(k)∣∣ . (16)

Combining (11), (15) and (16) yields

NA
v ≥ |A|

(
M−D′

LD
+

N−D
LD′

)
. (17)

Finally, we note that the condition (4) ensures that the
second term in the right-hand side of (17) is greater or equal
to 1, yielding NA

v ≥ |A|= NA
e .

Remark 1: Note that condition (4) is independent of K.
This means that we can potentially let the number of users
K grow unbounded, and achieve IA all the while keeping
the number of antennas at each node fixed. This is in sharp
contrast with previous feasibility results obtained for IA,



where at least one of the signaling dimensions had to grow
unbounded with K. Note that this property stems directly
from our assumption on the limited number of outgoing
interfering links at the transmitters, and incoming interfering
links at the receivers.

II-C DoF analysis of IA on the L-interfering MIMO-IC
Using the IA transmission scheme outlined in Section II-A,
i.e. after transmission along the beamforming vectors V(l),
and zero-forcing of the interference using U(k), the channel
available to user k is U(k)H

H(k,k)V(k). The DoF achievable
by this user is equal to the rank of this matrix. Furthermore,
under mild assumptions on the channel fading statistics
(e.g. if all channel coefficients are selected independently
from a continuous distribution such as the Gaussian one
– see [5]), this matrix can be shown to be full rank a.s.
Therefore, each user achieves min(D,D′) DoF. Taking D′ =
D, eq. (4) yields D ≤ M+N

L+2 . Furthermore, since D ≤ N
and D′ ≤ M, the DoF per user achievable using IA is
min

(
M,N, M+N

L+2

)
, independently of K. In comparison, the

DoF per user achievable in the interference-free case would
be min(M,N).

Note that this indicates that if either M ≥ (L + 1)N or
N ≥ (L + 1)M, the interference-free DoF is achievable.
However, this is trivial since this can be achieved using a
simple scheme whereby the L+1 interferers (or interferees)
are zero-forced.

Cases where M+N
L+2 < min(M,N) are less trivial but poten-

tially more interesting: for instance, for N = 2 transmit and
M = 4 receive antennas per user, and L = 4 interferers per
users, IA with D = 1 DoF per user is achievable regardless
of the number K of users. In that case, the 1 DoF per user
achieved by IA represents half of the interference-free DoF
(min(M,N) = 2), whereas without alignment, interference
would occupy the whole receive space since DL = M.

III. SIMULATIONS

In order to experimentally verify the feasibility of IA as
outlined in Section II-A, we introduce now an algorithm to
compute the matrices V(k) and U(k) for the L-Interfering
K-user MIMO IC . The following algorithm is adapted from
the one in [5]:

Algorithm 1 Iterative computation of the IA solutions for
the L-Interfering K-user MIMO IC

initialize the V(k) by truncating independent Haar-
distributed matrices to D columns.
repeat

for k ∈ {1, . . . ,K} do

U(k)← EVminD′

(
∑

l∈I(k)
H(k,l)V(l)V(l)H

H(k,l)H
)

end for
for l ∈ {1, . . . ,K} do

V(l)← EVminD

 ∑
k∈I−1(l)

H(k,l)H
U(k)U(k)H

H(k,l)


end for

until max
k∈{1,...,K}

∑
l∈I(k)

∣∣∣∣∣∣U(k)H
H(k,l)V(l)

∣∣∣∣∣∣2 ≤ ε .

The EVminn(·) operator denotes the selection of the
eigenvectors associated with the n eigenvalues of lowest
magnitude. ε is a small value below which the interference
leakage is deemed negligible. The difference with the
algorithm in [5, Section V] lies in the sets over which the
sums are taken in the above algorithm.

Remark 2: Note that for any k ∈ {1, . . . ,K}, Algorithm 1
only requires channel and precoding/interference
suppression matrix information for the users in I(k) and
I−1(k). The algorithm is naturally distributed, and global
channel state information knowledge is not required at any
point of the network. Note also that, for the same reason,
its global complexity per iteration scales linearly with K,
i.e. the complexity per user and per iteration of the main
loop remains constant, regardless of the size of the network.

We verified that the algorithm converges reliably to an
IA solution, provided that it is known to exist. When no
solution exists, the algorithm converges to a fixed point
which does not achieve the target maximum interference
leakage ε . Figure 2 shows a histogram of the convergence
times (in terms of the number of iterations of the outer loop
to reach ε = 10−3, with Gaussian i.i.d. channel coefficients
with unit power) of the algorithm for the case of the L-
Interfering K-user MIMO IC with K = 15 users with 4×2
channel matrices, |I(k)|= |I−1(k)|= 4 ∀k, and D = D′ = 1.
According to Theorem 1 this system is proper, and therefore
IA is feasible a.s. according to [2]. Indeed, Algorithm 1
converges reliably to an IA solution. The mean convergence
time is 794 iterations.
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Fig. 2. Convergence times for IA over the 15 user L-Interfering MIMO
IC with 4×2 antennas per user, histogram over 300 channel realizations.

IV. CONCLUSION

We have considered IA in a particular case of the K-
user MIMO partially connected interference channel (IC),
namely the L-interferer K-user MIMO IC. We have shown
that, under a mild condition on scaling on the number of
interference links in the network, interference alignment
can be achievable among an arbitrary, potentially infinite
number of users, while the per-user signaling dimension (i.e.



the dimension of the MIMO channels) remains bounded.
We provided a necessary and sufficient criterion for the
system of IA equations to be proper, as well as an iterative
algorithm capable of solving the alignment problem when
it is feasible.
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