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Abstract—In this paper1, we propose to analyze and combine
two of the main enabling features of cognitive radio: location
awareness and spectrum sensing with taking into account one
of the most challenging hardware limitation that cognitive radio
may suffer from: signal acquisition at a Nyquist rate. During
the problem formulation and when analyzing more deeply the
equations related to each question apart, we will make the link
between the formulation of spectrum sensing, location awareness
and the hardware limitation by describing those problems in a
unique compressed sensing formalism. Via the proposed frame-
work, and compared to what has already been proposed, we made
it possible to overcame another challenging postulate of fixed
frequency spectrum allocation by also estimating the spectrum
usage boundaries dynamically and in a fully blind way.
Index Terms—collaborative spectrum sensing; compressive

sampling; primary users localization

I. INTRODUCTION

Cognitive Radio (CR) as introduced by Mitola [1], is one
of those possible devices that could be deployed as SU (sec-
ondary user) equipments and systems in wireless networks. As
originally defined, a CR is a self aware and ”intelligent” device
that can adapt itself to the wireless environment changes. Such
device is able to detect the changes in the wireless network
to which it is connected and adapt its radio parameters to the
new opportunities that are detected. This constant track of the
environment change is called the ”spectrum sensing” function
of a cognitive radio device.
Recently, compressed sensing/compressive sampling (CS) has
been considered as a promising technique to improve and
implement cognitive radio (CR) systems. As,in wideband radio
one may not be able to acquire a signal at the Nyquist sam-
pling rate due to the current limitations in Analog-to-Digital
Converter (ADC) technology [3]. Compressive sensing makes
it possible to reconstruct a sparse signal by taking less samples
than Nyquist sampling . In general, signals of practical interest
may be only nearly sparse [3] and typically the wireless
signal in open networks are sparse in the frequency domain
since depending on location and at duration the percentage of
spectrum occupancy is low due to the idle radios [2], [4].

1The research work leading to these results has received funding from
the European Community’s Seventh Framework Programme (FP7/2007-2013)
under grant agreement SACRA Project n249060 and ICT-248894 WHERE2
Project.

In CS a signal with a sparse representation in some basis
can be recovered from a small set of nonadaptive linear
measurements [5]. A sensing matrix takes few measurements
of the signal, and the original signal can be reconstructed
from the incomplete and contaminated observations accurately
and sometimes exactly by solving a convex optimization
problem [3]. In [6] and [7] conditions on this sensing matrix
are introduced which are sufficient in order to recover the
original signal stably. In this paper, we will present a joint
spectrum sensing and PU localization algorithm for CRN (CR
networks). We will show how localization in CRN could be
viewed as a CS problem and formulated in terms of CS
equations. This algorithm is presented as a CS approach to
both problems. We will use a modified framework of the
orthogonal matching pursuit algorithm (OMP) that we feed
with some apriori knowledge of the CR spectrum usage and
thus derive a more appropriate OMP algorithm for CS and the
problem of localization. The rest of the paper is organized as
following: in Section II we will give the system model used
through this paper. In order to make the paper easier to read
and to apprehend, in Section III we start by giving an overview
of what will be done at the level of each CR individually
and still in Section III we will derive the CS algorithm to
be deployed. In IV, we will make the link between location
estimation and spectrum reconstruction. In Section V, we will
go through the analysis of the proposed technique and derive
its performances. Finally, Section VI will conclude about the
present work.

II. SYSTEM MODEL

In the considered system model, we will suppose that we
do dispose of Nch available channels in a wideband wireless
network. Over a large geographic area, let Np be the number
of deployed primary users using Np different channels. In
this large area, we disperse Nc cognitive radios that will
operate and detect all these channels and their states. The
measures made by these cognitive terminals will then be sent
to the fusion center. In order to enable CRs transmissions,
the secondary network have to be aware of the availability
and the state of each channel in the sense of hybrid under-
lay/overlay scheme. Thus, secondary users have to estimate



which channels are occupied and to identify the PUs (primary
users) transmission powers and locations.
Adopting the path loss model, we end up with a loss of:

L(f, d) = P0 + 20 lg(f) + 10n lg(d) [dB] (1)

where: P0 is a constant related to antennas gain; f is
the channel frequency; n is the path loss exponent; d is the
distance separating the transmitting and receiving nodes and
lg(.) = log10(.)
In our case, we dispose of Nch channels, thus f would

be assumed the central frequency of each band, i.e f ∈
{f0, f1..., fNch−1}.
Let’s keep in mind that the path loss is related to the

unknown channel and location of the PU. The received signal
power is a combination of the unknown transmit power with
the path loss expressed in Eq(1).
Our task is to infer from the received signal at the cognitive

terminals all these unknown, but valuable, information about
the primary users.
First of all we will describe what is exactly done at the level

of each terminal separately in the section III. Then, starting
from IV, we proceed with this system model.

III. SINGLE NODE SPECTRUM SENSING BASED ON
COMPRESSED SENSING

A. Discrete Spectrum Model
In cognitive radio networks, spectrum usage was summa-

rized in [8] in three main categories:
1) Spectrum bands with fixed boundaries to which the
PUs are always accessing such as local TV and radio
broadcasters.

2) Spectrum bands with fixed boundaries to which the PUs
rarely access like TVWS (TV White Space).

3) Spectrum bands with fixed boundaries which are par-
tially and randomly accessed like cellphone signals,
LTE...

In discrete notation, let’s denote by
−→
f the N × 1 discrete

spectrum vector containing the sampled values over B, repre-
sented by: −→

f = [f1 f2 ... fN ]T (2)

where T is the transpose operation and {f i} are the signal
values uniformly sampled over B by a B/N resolution and
{i} is the subset relate the frequencies locations. It is then
trivial that in noise free context, a frequency i is said to be
vacant or free if |fi|2 = 0.
The N×N normalized discrete Fourier Transform (DFT) ma-
trix, F, gives the relationship between the frequency samples
vector

−→
f and the time domain samples vector −→

t , by the
relation: −→

t = F−1−→f (3)

And in these three main CR spectrum usage scenarios,
spectrum boundaries are fixed and a priori known.
This strong assumption of knowledge of boundaries can be
overcame by processing as following:

B. Blind Spectrum Boundaries Estimation
In [9], [10], Guibene et al, developed a spectrum sensing

technique based on frequency edge location and exploiting
spectrum discontinuities detection. Inspired from the already
developed framework, we derive our edge location algorithm.
First we do suppose that the frequency range available in

the wireless network is B Hz; so B could be expressed as
B = [f0, fK ]. Suppose that the radio signal received by the CR
occupies N spectrum bands, whose frequency locations and
PSD levels are to be detected and identified. These spectrum
bands lie within [f1, fK ] consecutively, with their frequency
boundaries located at f1 < f2 < ... < fK . The n-th band is
thus defined by: Bn : {f ∈ Bn : fn−1 < f < fn, n =
2, 3, ..., K}. We do suppose that only f1 and fK = f1+B are
known to the CR and f2, ..., fK−1 (frequencies boundaries)
are unknown and to be determined by the CR.
The input signal for boundaries estimation is the amplitude

spectrum of the received noisy signal. We assume that its
mathematical representation is a piecewise regular signal:

X(f) =
K∑

i=1

χi[fi−1, fi](f)pi(f − fi−1) + n(f) (4)

where: χi[fi−1, fi]: the characteristic function of the inter-
val [fi−1, fi], (pi)i∈[1,K]: an N th order polynomials series,
(fi)i∈[1,K] : the discontinuity points resulting from multiply-
ing each piby a χi and n(f) :the additive corrupting noise.
Using the exact framework as in [9], [10], the frequency
boundaries estimation is casted as a change point fν detection
problem. After the calculation steps detailed in [9], [10], we
end up with fν verifying :

N−1∑

k=0

(Nk ).fN−k
ν .ϕk+1 = 0 (5)

where: ϕk+1 =

∫ +∞

0
hk+1(f).X(ν − f).df (6)

where: hk+1(f) =

{
(f l(b−f)N+k)(k)

(l−1)! 0 < f < b

0 otherwise
and b is

the filter hk+1 bandwidth.
So now on, the only assumptions are the ones we introduced
from [9], [10] and not the ones given in [8] which gives
to the algorithm lighter assumption and gives it some blind
processing properties. So finally, we adopt the following
assumptions:

• Only the two delimiting boundaries of the whole band of
interest are known and the rest are to be determined

• The PSD of the signals is almost flat in the used sub-
bands

• Noise is white gaussian with zero mean
Then, spectrum usage categories is still valid at the CR level

but after estimating the boundaries.

C. Spectrum Sensing based on Compressive Sampling
In the CS framework, we do consider the sampling of N×1

signal −→x = Ψ−→s , where −→s is an N × 1 sparse source vector
with L non-zero components si, so L << N andΨ is an N×



N dictionary matrix. In literature [11], [12] it was shown that
M samples of −→x can recover the whole vector, by projecting
−→x by an M ×N observation matrix, say Φ. This matrix has
to satisfy two conditions: L < M < N and the rows of the
sensing matrix Φ should be incoherent with the columns of
Ψ. Finally we obtain theM ×1 measurement vector −→y given
by: −→y = Φ −→x = ΦΨ −→s (7)
−→s can be fully reconstructed by adopting the basis pursuit
algorithm as shown in [13]. Its reconstruction is subject to a
convex optimization problem as shown in Eq(8):

−̂→s = argmin−→s
||−→s ||l1 subject to ΦΨ−→s = −→y (8)

where lp is the p-norm for p ! 1 given by :||−→s ||l1 =
(
∑

|si|p)
1
p .

Another way to reconstruct the signal could be the matching
pursuit algorithm (MP) derivatives as will be shown in next
paragraph.
Through a deeper look into equations Eq(3) and Eq(7), one

can intuitively say that the time domain vector −→
t can be

viewed as −→x and the inverse DFT matrix F could be seen
as the matrix substituting the dictionary matrix Ψ and

−→
f is

no more than the sparse vector −→s .
With this new formalism, if we can properly design a

measurement matrix Φ satisfying then incoherence constraint
with F−1, than we would be able to use the CS formalism as
a spectrum sensing technique and sub-Nyquist sampling rate
could be recovered by CS algorithms as well. Given the work
lead in [14], the use of M ×N Gaussian random matrix as a
measurement matrix Φ would guarantee good reconstruction
performance. Back now to the spectrum sensing model, which
in noise free environment is formulated as following:

−→y = Φ
−→
f (9)

and as results
−→
f reconstruction is solution of:

−̂→
f = argmin−→

f
||
−→
f ||l1 subject to Φ

−→
f = −→y (10)

and in a general additive white gaussian noise environment
(AWGN), the sensing model becomes:

−→y = Φ
−→
f +−→w (11)

and as results
−→
f reconstruction is solution of:

−̂→
f = argmin−→

f

1

2
||−→y −Φ

−→
f ||l1 + γ||−→f ||l1 (12)

where −→w is anM×1 noise vector with a normal distribution
and γ is determined by the noise level.

D. Modified Blind Orthogonal Matching Pursuit Algorithm
The original OMP (orthogonal matching pursuit) algorithm

is a greedy algorithm based on the basis pursuit algorithm that
reconstructs iteratively the original signal by the search of non
zero indices and performs least square estimation of the values
on the non zero indices.

The estimated frequency boundaries, {ν i, i ∈ [0..K]}, do
actually separate the spectrum in K consecutive sub-bands.
Keeping in mind, that in one hand B is actually divided
into K sub-bands and the fact that the frequency indices we
were using is of length N , this means that the indices set
we are using in frequency domain is actually divided into
K consecutive subsets. Let {bi} denote these indices in each
frequency boundary, i.e, ν0 " 1, ν1 occurs at the frequency
index b1 and so on until νK " N .
Let’s denote these subsets by :

u1 = 1, 2, .., b1
u2 = b1 + 1, b1 + 2, .., b2
...
uK = bK−1 + 1, bK−1 + 2, .., N

(13)

Now, let’s define three category sets {Sn}, according to the
following condition:

Sn = {ui | n = 1, 2, 3}
Ω = ∪Sn (Si ∩ Sj = Ø, for i '= j)

(14)

According to the measurement results of spectrum utiliza-
tion, we assume as in [8] that :

#{−→f }
N

≤ 10%

where #{−→f } is the number of non-zero values in −→
f

The iteration operation gives us the freedom to consider the
three already defined categories separately. Since, by construc-
tion, S1 do have at least a non zero value, the initialization
output, Λ0, could be set to S1. This particular initialization
guarantees us always counting the occupied indices. Then,
during the rest of the iterations, if we do find an index λ t,
satisfying: λt ∈ ui ⊂ S2, all elements in ui will be added in
Λt. This would enable us counting only the {u i} subset. The
other case is λt ∈ ui ⊂ S3, in which only λt is added to Λt

as in formal OMP.
The modified blind orthogonal matching pursuit is fully

describes by Algorithm 1.

IV. JOINT SPECTRUM SENSING AND PRIMARY USERS
LOCALIZATION BASED ON COMPRESSIVE SAMPLING FOR

COGNITIVE RADIO NETWORKS

A. Spectrum Reconstruction

For discrete signals, the time domain samples −→t are used to
construct the spectrum in frequency domain as shown before
in Eq(3). Thus we obtained:

−→
f = F−→t (18)

And as sufficiently detailed in Section III, on the level
of each node, this problem as formulated in a context of
wide-band and involving sparse signals can be casted as a
CS problem and spectrum can be reconstructed and spectrum
sensing task is thus achieved by all terminals.



Algorithm 1 Proposed Matching Pursuit Algorithm
Require: An M ×N matrix Θ = Φ

An M × 1 sample vector −→y
Minimum iterations number m
Error tolerance η

1: Estimate from the wideband observation the boundaries as stated
in III-B and then preselect the sets as in Eq (13) and (14)

2: Initialize: −−→res0 = −→y , Λ0 = S1, Θ1 = ΘS1 , iteration index: t
= 1

3: Solve the least-squares problem in Equation:
−→xt = argmin−→x

(||Θt
−→x −−→y ||2) (15)

4: Compute the new residual given by:

−−→rest =
−→y −Θt

−→xt (16)

5: Increment: t ←− t+ 1
6: Find λt satisfying:

λt = arg max
j=1...N

|〈−−−−→rest−1, θj〉| (17)

where θj is the jth column vector of Θt and < ., . > is the
inner vector product operator.

7: Increase the index set Λt = Λt−1
⋃
{λt}

if {λt ∈ ui ⊂ S2}
then Λt = Λt−1

⋃
{ui}

end
8: Set the atom to: Θt = ΘΛt

9: Solve the least square problem in Equation (15) and get the new
estimate of −→x .

10: Calculate the new residual using Equation (16)
11: if {t < m or ||−−→rest||2 > η}

then return to step (5)
end

12: Finally:
−̂→
f ←− −→xt and its non zero indices are listed in Λt

13: return An estimate N × 1 vector
−→
f of the ideal signal

An index set Λt containing t elements from {1..N}
An M × 1 residual vector −−→rest

B. Primary Users Location Reconstruction

Once spectrum reconstructed and spectrum sensing
achieved, more information can be derived while looking
deeper into channels occupied by primary users.
Let’s assume that in a certain wide area, PUs are located

at coordinates (xpm, ypn); where xpm ∈ {0,∆xp, ...(M −
1)∆xp} are M possible x axis positions (abscissæ) of the
PUs 2; ypm ∈ {0,∆yp, ...(N − 1)∆yp} are N possible
y axis positions (ordinates) of the PUs; ∆xp and ∆yp are
respectively the resolutions over x and y axis. Here, we do
impose and suppose to the PU coordinates to be in discrete
M×N dictionary (which, actually, is always true !). It is good
to remind at this level that the exact positions of the Np PUs
{(xpi, ypi) ; i ∈ [1..Np]} are unknown to our problem.
The Nc CRs positions in the network are located at po-

sitions: {(ai, bi) ; i ∈ [1..Nc]} (on which we do not impose
being in a finite set, even if they necessarily are).

2When we say xpm ∈ {0,∆xp, ...(M−1)∆xp}, that does not mean that
there are M PUs, but it means that Np primary users abscissæ (for ordinates
as well) do actually have a finite ”dictionary”

For the kth CR, sensing the ith channel, the contribution
of the PU located at the (xpm, ypn) position on the received
PSD is:

Rk,i(m,n) = P (m,n, i)× 10L(fi,d(m,n,k))/10

d(m,n, k) =
√
(xpm − ak)2 + (ypn − bk)2

(19)

where P (m,n, i) is the power transmitted by a PU using the
ith channel, located at (xpm, ypn); fi is the center frequency
of the ith channel; d(m,n, k) represents the distance between
the kth CR and the the PU located at (xpm, ypn).
The total received power over all the existing PUs, i.e over

the M ×N possible positions of the PUs, can be formulated
as following:

Yk,i =
∑

m

∑
n Rk,i(m,n)

Yk,i =
∑

m

∑
n 10

L(fi,d(m,n,k))/10 × P (m,n, i)

Yk,i =
−→
L T (k, i)

−→
P (i)

(20)

where
−→
P (i) is the vector containing the transmission power

of the over all M ×N grid over the ith channel; and
−→
L (k, i)

is the path loss vector computed according to Eq(1) from all
PU possible positions at the level of the kth CR, on the ith

channel.
−→
L (k, i) = 10

−→
L dB(k,i)/10

and :
−→
L dB(k, i) = [L(fi, d(0, 0, k)), L(fi, d(1, 0, k)),
..L(fi, d(m,n, k)), ..L(fi, d(M,N, k))]T

(21)

Let’s denote by
−→
Y k = [Yk,1..Yk,Nch ]

T , the received signal
power vector at the level of the k th CR over the Nch available
channels. This according to Eq(20), and adopting the previous
notation can be expressed as:

−→
Yk = Lk

−→
P (22)

where
−→
P is the vector containing the transmission power of the

M ×N grid of PU locations over the Nch available channels
of the NC deployed CRs:

−→
P k = [

−→
P T (i1),

−→
P T (i2), ..,

−→
P T (iNC )]

T (23)

The matrix Lk, is the fading gain matrix grouping at the level
of the kth CR the loss path contributions of the M ×N PU
positions. The jth row of Lk is:

Lk(j) = [
−→
0 ,

−→
0 , ...,

−→
L T (k, j),

−→
0 , ..,

−→
0 ] (24)

Combining all the equations describing the NC CR system,
we do obtain: −→

Y = L
−→
P (25)

Where
−→
Y = [

−→
Y1

T , ...,
−−→
YNC

T ]T and L = [L1, ...,LNC ]
The equation we ended with in Eq(25), reminds us of the

CS formalism we introduced previously: as
−→
P is an unknown

but sparse vector because over the M × N area we’ve been
considering, only NP PUs are deployed in this area.



Since the two stages, spectrum sensing and localization,
seem to be attached to the same CS framework we’ve intro-
duced before, it is easy then to combine both of them in only
one process.

V. SIMULATIONS AND RESULTS

In this section we propose to investigate the performances
of the proposed technique in terms of spectrum sensing and
PUs location.
We propose the following evaluation scenario: PUs do

dispose of 10 channels that they will randomly select in the
range of 50+[1, 2.., 10]MHz. We propose deploying 2 primary
users in a 15× 15 (M = N = 15) unit area with a resolution
of ∆xp = ∆yp = 0.1 having randomly generated power
transmits. In this area we also deploy 5 CRs that will achieve
the sensing and the localization task.Figures 1 and 2 do report
the MSE of the spectrum reconstruction and PU positions
reconstruction using the suggested technique. These figures
report how efficient the recovery of the sparse spectrum and
position model is.

VI. CONCLUSION

This paper presents a first look towards a combined spec-
trum sensing and localization task. These two tasks are funda-
mental in order to really enable cognition in wireless networks.
With the combination of the two tasks, we also considered a
realistic data acquisition constraint, which is sparsity due to the
ADC technology limits. In order to make the algorithm and the
over all system a real stand-alone one and blindly operating,
we suggested removing the apriori knowledge of the channels
and spectrum use by blindly and accurately estimating the
frequencies boundaries. Simulation results of the proposed
technique show promising and interesting results.

REFERENCES

[1] J. Mitola and G. Maguire, “Cognitive radio: making software radios more
personal,” Personal Communications, IEEE, vol. 6, no. 4, pp. 13–18,
1999.

[2] S. Haykin, “Cognitive radio: brain-empowered wireless communications,”
Selected Areas in Communications, IEEE Journal on, vol. 23, no. 2,
pp. 201–220, 2005.

[3] E. J. Cands, “Compressive sampling,” in Proceedings of the International
Congress of Mathematicians, (Madrid, Spain), 2006.

[4] Z. Tian and G. Giannakis, “Compressed sensing for wideband cognitive
radios,” in Acoustics, Speech and Signal Processing, 2007. ICASSP 2007.
IEEE International Conference on, vol. 4, pp. IV–1357–IV–1360, 2007.

[5] M. A. Davenport, M. B. Wakin, and R. G. Baraniuk, “Detection and
estimation with compressive measurements,” technical, Rice University,
2007.

[6] E. Candes and T. Tao, “Decoding by linear programming,” math/0502327,
Feb. 2005.

[7] E. J. Candes and T. Tao, “Near-Optimal signal recovery from random
projections: Universal encoding strategies”, IEEE Transactions on Infor-
mation Theory, vol. 52, no. 12, pp. 5406–5425, 2006.

[8] P. Zhang, R. Qiu, “Modified Orthogonal Matching Pursuit Algorithm
for Cognitive Radio Wideband Spectrum Sensing”, Cornell University
Library, http://arxiv.org/abs/1102.2881v1

[9] W.Guibène, M.Turki, B.Zayen and A.Hayar, “Spectrum sensing for
cognitive radio exploiting spectrum sensing discontinuities detection”,
Published in EURASIP Journal on Wireless Communication and Net-
working, 2012.

−30 −25 −20 −15 −10 −5 0 5 10 15 20 25
10−3

10−2

10−1

100

101

SNR (dB)

Sp
ec

tru
m

 R
ec

on
st

ru
ct

io
n 

M
SE

 

 

Sparsity 10%
Sparsity 30%
Sparsity 50%

Fig. 1. Spectrum reconstruction MSE

−10 −5 0 5 10 15
10−2

10−1

100

SNR (dB)

Pr
im

ar
y 

U
se

rs
 lo

ca
tio

n 
re

co
ns

tru
ct

io
n 

M
SE

 

 

Sparsity 30% 
Sparsity 40%
Sparsity 50%

Fig. 2. PU position estimation MSE

[10] W. Guibene, M. Turki, A. Hayar and D. Slock, A Complete Framework
for Spectrum Sensing based on Spectrum Change Points Detection for
Wideband Signals, 2012 IEEE 75th Vehicular Technology Conference:
VTC2012-Spring, 6-9 May 2012, Yokohama, Japan..

[11] D. Donoho, Compressed sensing, IEEE Transactions on Information
Theory, vol. 52, no. 4, pp. 12891306, 2006.

[12] E. Candes and T. Tao, Near-optimal signal recovery from random pro-
jections: Universal encoding strategies, IEEE Transactions on Information
Theory, vol. 52, no. 12, pp. 54065425, 2006

[13] S. Chen, D. Donoho, and M. Saunders, Atomic decomposition by basis
pursuit, SIAM review, vol. 43, no. 1, pp. 129159, 2001.

[14] E. Candes, J. Romberg, and T. Tao, Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information,
IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 489509,
2006.


