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Abstract—In this work, we discuss the joint precoding with
finite rate feedback in the so-called network MIMO where the
TXs share the knowledge of the data symbols to be transmitted.
We introduce a distributed channel state information (DCSI)
model where each TX has its own local estimate of the overall
multi-user MIMO channel and must make a precoding decision
solely based on the available local CSI. We refer to this channel
as the DCSI-MIMO channel and the precoding problem as
distributed precoding. We extend to the DCSI setting the work
from Jindal in [1] for the conventional MIMO Broadcast Channel
(BC) in which the number of Degrees of Freedom (DoFs) achieved
by Zero Forcing (ZF) was derived as a function of the scaling in
the logarithm of the Signal-to-Noise Ratio (SNR) of the number
of quantizing bits. Particularly, we show the seemingly pessimistic
result that the number of DoFs at each user is limited by the
worst CSI across all users and across all TXs. This is in contrast
to the conventional MIMO BC where the number of DoFs at
one user is solely dependent on the quality of the estimation of
his own feedback. Consequently, we provide precoding schemes
improving on the achieved number of DoFs. For the two-user
case, the derived novel precoder achieves a number of DoFs
limited by the best CSI accuracy across the TXs instead of
the worst with conventional ZF. We also advocate the use of
hierarchical quantization of the CSI, for which we show that
considerable gains are possible. Finally, we use the previous
analysis to derive the DoFs optimal allocation of the feedback bits
to the various TXs under a constraint on the size of the aggregate
feedback in the network, in the case where conventional ZF is
used.

Index Terms—Network MIMO, Degrees of freedom, finite
rate feedback, Zero Forcing, Broadcast Channel, Distributed,
Imperfect CSI

I. I NTRODUCTION

Network MIMO channel, or multicell MIMO channels,
whereby multiple interfering transmitters (TXs) share user
messages and allow for joint precoding (downlink), are cur-
rently considered for next generation wireless networks [2]–
[4]. With perfect message and channel state information
(CSI) sharing, the different TXs can be seen as a unique
virtual multiple-antenna array serving all receivers (RXs), in
a multiple-antenna broadcast channel (BC) fashion.

Although the sharing of user data symbols can be made
possible in certain situations, such as cellular networks with
a pre-existing backbone infrastructure where user packetscan
be routed to several base stations simultaneously, the obtaining
of accurate CSI at the TXs is made difficult due to the
finite quantizing effects over the feedback channels and the
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limited capability of signaling between TXs to exchange the
CSI. In addition, CSI exchange necessarily introduces further
degradation due to latency effects over inter-TX links [5].

This situation gives rise to an interesting information theo-
retic framework whereby a MIMO broadcast channel is formed
(due to the assumed perfect user message sharing among the
various TXs), yet the individual TXs composing the distributed
multiple-antenna array have access to individual CSI estimates,
possibly different from each other, and possibly of different
quality (statistically). In this paper, we refer to this channel as
thedistributed CSI (DCSI)-MIMO channel. We emphasize the
difference between this CSI model and the previously studied
CSI models such as the so-called imperfect limited CSI [1] or
the delayed CSI model [6] where the TX antennas are assumed
to share ideally thesameimperfect channel knowledge.

Note that the sharing of the symbols via finite capacity links
between the cooperating TXs has been discussed in recent
works [7]–[10]. This problem represents in itself a challenging
topic, and we consider in the sequel perfect sharing of the users
symbols.

For the conventional MIMO BC, the impact of limited
feedback [1], [11]–[16] and the derivation of robust solutions
[17], [18] have been investigated, with later extensions tothe
multicell coordinated beamforming case [19] and the multicell
MIMO case [20]–[22].

More recently, the optimization of the feedback allocations
to the different users has been the focus of a large interest.It
has been studied in conventional MIMO BCs [23], in multicell
settings with coordinated beamforming [24]–[27], in multicell
MIMO networks [28]–[30] and in interfering BCs [31], [32].

Yet, as mentioned before, these papers always consider
perfect sharingbetween the TXs precoding jointly the signal.
In contrast, we consider here that each TX has its own
imperfect estimation of the multi-user channel but all the TXs
jointly precode the user’s data symbols. This gives rise to a
very different transmission setting which can be seen as a
team decision problem[33]. Indeed, the precoder must cope
not only with the inaccuracy of the CSI due to the limited
feedback channel capacity but also with the distributiveness
of the CSI and the precoding. Each TX emits one component
of the transmit signal vector which it computes based on
its own channel estimate. As is pointed out in this work,
the discrepanciesbetween the channel estimates obtained by
the different TXs are particularly detrimental to the channel
capacity, and even to the Degrees of Freedom (DoFs), if not
accounted for in the precoding design.

The DCSI-MIMO scenario has meaningful applications to
network MIMO schemes in cellular networks or MIMO based
multi-TX cooperation in general. It was first studied in [34],
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and a tractable discrete optimization at finite SNR was derived.
However, the approach in [34] does not lend itself to a more
general performance analysis, thus giving limited insightfor
an improved design.

In this paper, we consider the performance of precoding
schemes over the DCSI-MIMO channel from a DoFs perspec-
tive. The number of DoFs represents the slope with which
the rate increases with the SNR in the high SNR regime.
Even though it is based on the high SNR analysis, it has been
used widely used to gain insight into the wireless transmission
thanks to its analytical tractability [6], [35]. By essence, the
DoFs analysis is not impacted by the unequal pathloss, which
can put in question its practical signification in some settings.
When all the wireless links present the same pathloss as it
is the case in this work, this does not represent an issue.
To extend the DoFs analysis to settings with large pathloss
differences, it is then more adequate to use the notion of
generalized DoFs[36] which takes the pathloss differences
into account. We also assume that our system model is isolated
from the rest of the world. In a practical scenario, it follows
from the impossibility to serve jointly all the users that there
is inevitably interference coming from outside the cooperation
area. This implies that the number of DoFs is always zero [37].
The number of DoFs derived inside the cooperation cluster is
then representative solely up to an SNR at which point the
interference from outside the cooperation area leads to the
saturation of the rate.

Our work generalizes to the case of distributed CSI the
finite rate feedback study by Jindal [1] for the conventional
multiple-antenna BC. In [1], the author derives the number of
DoFs as a function of the number of feedback (quantizing) bits
exploited by each RX and shows that the number of bits must
grow with the logarithm of the SNR in order to preserve the
full number of DoFs, using ZF precoding arguments. We also
consider ZF schemes as they are known to achieve maximum
number of DoFs in wide settings1. Particularly, a necessary and
sufficient feedback of the CSI estimation error for achieving
the maximum number of DoFs is derived in [11] for the
compound multiple-antenna BC. This condition is the same
as the sufficient condition provided in [1]. Thus, no other
precoding scheme can achieve the maximal number of DoFs
with a lower feedback scaling. This confirms the efficiency of
ZF in terms of number of DoFs. As a consequence, we aim
in this paper at answering the fundamental questions”Does
conventional ZF also perform well in the distributed MIMO
setting?”, and ”How can we make it more robust in that
setting?”

Specifically, the main contributions read as follows. Let
the number of bits quantizing the estimate at TXj of the
normalized channel̃hH

i of useri beα(j)
i (K−1) log2(P ) with

α
(j)
i ∈ [0, 1] andK the number of users. Then, we show that

in a block fading Rayleigh channel:

• The number of DoFs achieved at RXi with conventional

1Note that the selection of the set of users actually transmitting during one
time slot is not considered in this work. In fact the formula forthe number
of DoFs provided in this work can be used to derive a set of transmitting
TX achieving a good number of DoFs, i.e., to use a good combination of ZF
precoding and time sharing.

ZF is equal tomini,j∈{1,...,K} α
(j)
i . Hence, the worst

accuracy across all the estimates limits the number of
DoFs at each user. This is a pessimistic result and shows
a different behavior compared to the conventional MIMO
BC.

• We provide a precoding scheme improving the number of
DoFs. In the two-user case, the number of DoFs with the
novel precoding scheme is limited by the best accuracy
of the CSI across the two TXs instead of the lowest with
conventional ZF.

• To improve the number of DoFs achieved with more
users, we introduce a concept of hierarchical quantization
of the CSI and we show that this leads to a dramatic
improvement of the number of DoFs.

• Under a total feedback constraint and with ZF schemes,
we derive the number of DoFs maximizing allocation of
the feedback bits toward each TX.

Note that this paper serves to generalize preliminary results
that were presented in [38].

Notations:We denote byΠA(•) andΠ⊥
A
(•) the orthogonal

projectors over the subspace spanned by the matrixA and over
its orthogonal complement, respectively.ī denotes the com-
plementary indice ofi when only two users are considered,
i.e., ī = i mod 2 + 1. ‖ • ‖F designates the Frobenius norm
while N (µ, σ2) denotes the complex circularly symmetric
Gaussian distribution with meanµ and varianceσ2. We also
denote theith element of a vectora by {a}i and the(i, j)th
element of a matrixA by {A}ij . Additionally, we use the
notation . to denote a relation of order which holds true
asymptotically. We also writef(x) = o(g(x)) (resp.f(x) =
O(g(x))) to represent the fact thatlimx→∞ f(x)/g(x) = 0
(resp. limx→∞ |f(x)|/|g(x)| ≤ a, with a > 0). We also
write f(x) ∼ g(x) to denote the fact thatf(x) = g(x) +
o(g(x)).

II. SYSTEM MODEL

A. Multicell MIMO

We consider a joint downlink transmission fromK TXs
to K RXs using linear precoding and single user decoding.
For ease of exposition, the TXs and the RXs are equipped
with only one antenna, but the principal elements of our
approach could extend in principle to more antennas at the
TXs. Similarly, we consider a Rayleigh fading scenario but
the approach derived should be valid in many other fading
scenarios. The transmission can be described as
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where y , [y1, . . . , yK ]T ∈ C
K×1 contains the received

signals at the RXs, the vectorx , [x1, . . . , xK ]T ∈ C
K×1

is defined such thatxj is the signal transmitted by TXj, and
η , [η1, . . . , ηK ]T ∈ C

K×1 contains the noise realizations at
the RXs and has its entries i.i.d. asN (0, 1).

The vectorhH
i ∈ C

1×K is the channel from all TXs to
the i-th RX and define the normalized channel to useri
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as h̃i , hi/‖hi‖. We also define the multi-user channel
matrix H , [h1, . . . ,hK ]H and its normalized counter-
part H̃ , [h̃1, . . . , h̃K ]H.

The channel is assumed to be block fading and the entries
of the channel matrixH to be i.i.d. asN (0, 1), modeling a
Rayleigh fading channel. The transmitted signalx is obtained
from the vector of transmit symbolss , [s1, . . . , sK ]T ∈
C

K×1 (whose entries are taken as i.i.d.N (0, 1)) as

x = Ts =
[

t1 . . . tK
]







s1
...
sK






(2)

where T ∈ C
K×K is the multi-user precoding matrix and

ti ∈ C
K×1 is the beamforming vector used to transmitsi.

Even though a per-TX power constraint is the most relevant
power constraint in the multicell setting, we consider a sum
power constraint‖T‖2F = P . We also assume for simplicity
and symmetry that all data streams are allocated with an equal
amount of power so thatti =

√

P/Kui with ‖ui‖2 = 1.
These choices can be done without restricting the scope
of this work because they do not have any impact on the
number of DoFs2. We will study the ergodic rate averaged
over the random codebooksW(j)

i used for the CSI Random
Vector Quantization (RVQ), as detailed in Subsection II-B.
The ergodic rate for RXi reads then as

Ri(P ) , E
H,{W

(j)
i }i,j

[

log2

(

1 +
|hH

i ti|
2

1 +
∑K

ℓ=1,ℓ 6=i |h
H
i tℓ|

2

)]

.

(3)
To achieve the maximal number of DoFs we aim at removing
completely the interference at all the RXs, i.e., at having

∀i ∈ {1, . . . ,K},
K
∑

ℓ=1,ℓ 6=i

|hH
i tℓ|

2 = 0. (4)

From (4) and the equal power allocation, there is no coupling
between the optimizations of the beamforming vectorsti
which can then be carried out in parallel. The number of DoFs
achievedat RX i is defined as

DoFi, lim
P→∞

Ri(P )

log2(P )
. (5)

and the total number of DoFs isDoF ,
∑K

i=1 DoFi. From
the above definition of the number of DoFs and definition (3),
we can directly obtain that∀i ∈ {1, . . . ,K},

DoFi = 1− lim
P→∞

E
H,{W

(j)
i }i,j





log2

(

∑

ℓ 6=i |h
H
i tℓ|

2
)

log2(P )



 .

(6)

B. Distributed CSI

1) CSI Scaling Coefficients:We assume a limited CSI
setting where channel estimate inaccuracies are modeled using

2Indeed, it is always possible to scale the total power used when considering
the sum power constraint so as to fulfill the per-TX power constraint without
impacting the number of DoFs. Similarly, optimally allocating the power does
not change the number of DoFs.

quantized feedback. Furthermore, adistributedCSI model is
defined here in the sense that each TX has its own individual
estimate of the normalized channelh̃i to RX i. Moreover,
the estimates for the different channel vectorsh̃i are also a
priori of different qualities at each TX, i.e., quantized with
codebooks of different sizes. We denote byh̃

(j)
i the estimate

of the normalized channel vector̃hi acquired at TXj. The
quantized feedback consists ofB(j)

i bits which are used to
index a vector in the codebookW(j)

i made of2B
(j)
i elements.

We also definẽH(j) , [h̃
(j)
1 , . . . , h̃

(j)
K ]H as the estimate of the

total normalized multi-user channel at TXj.
This setting arises in the context of multi-TX cooperation

(e.g. Network MIMO [4]) where either(i) all TXs obtain a
version of the whole CSI matrix through independent feedback
channels (in which case the quality of the uplink feedback
channel determines the quality of the individual CSI estimates)
or (ii) each TX obtains some portion of the CSI and exchange
it through limited rate links or/and with some latency to the
other TXs.

In the conventional MIMO BC, it is shown in [1] that the
number of quantization bits should scale indefinitely with the
logarithm of the SNR in order to achieve a strictly positive
number of DoFs when using ZF precoding. Thus, we also
focus on thescaling in the logarithm of the SNRof the number
of quantization bits of all the channel estimates. We introduce
the CSI scaling matrixα ∈ R

K×K with its (i, j)-th element
defined as

α
(j)
i , lim

P→∞

B
(j)
i

(K − 1) log2(P )
. (7)

Hence,α(j)
i denotes the scaling of the number of bits used to

describe the channel of useri at TX j. SinceB(j)
i is a design

parameter, the limit in (7) can be seen to always exist. We
furthermore assume that the CSI scaling matrixα is known
to all the TXs.

Remark: We will always consider for notational clarity
α
(j)
i ∈ [0, 1] as the range of interest. This follows from

the fact that ifα(j)
i = 1, it then holds|hH

i t
(j)
ℓ |2 = O(1)

for ℓ 6= i [1]. The accuracy of CSI resulting from a CSI scaling
coefficient equal to one is sufficient for the interference to
remain bounded. Thus, increasing the number of CSI feedback
bits to getα(j)

i > 1 does not increase the number of DoFs. This
corresponds to a well known result for the conventional MIMO
BC in [1]. It follows that in all the subsequent results, the
scaling coefficientsα(j)

i should be replaced bymin(α
(j)
i , 1)

so as to be valid for arbitrary values for the CSI scaling
coefficients. This is not done to keep the notations as clear
as possible.

2) Random Vector Quantization for the DCSI-MIMO Chan-
nel: We consider RVQ where random codebooks are used
to quantize the channels. This follows a result in [1] for
the conventional MIMO BC, stating that in the case of two
antennas at the TX, no codebook can achieve a better number
of DoFs than the number of DoFs achieved with RVQ. RVQ
is also shown to be optimal for the point-to-point MIMO link
as the number of antennas tends to infinity both at the TX and
the RX [39]. Finally, RVQ is interesting because it gives an
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achievable lower bound.
In most of the works regarding the conventional MIMO

BC, a codewordw is selected for quantizing the unit-norm
vector h̃i if it maximizes the amplitude of the inner product
|h̃H

i w|. However, in the DCSI-MIMO channel, this quantiza-
tion scheme is less adequate because the objective is invariant
by multiplication of the codeword by a unit-norm complex
number. This represents a problem since a different estimate
is received at each TX, and this phase invariance creates an
ambiguity between the estimates. This is very harmful for the
transmission scheme and, in fact, if such a quantization scheme
is used, it can be easily shown that the channel estimate
obtained is essentially useless for joint precoding.

Thus, another quantization scheme is preferred and the
quantized channel̃h(j)

i is instead obtained in the optimum
L2 norm sense:

h̃
(j)
i = argmin

w∈W
(j)
i

‖w − h̃i‖. (8)

Using directly (8) leads to lower performance as the phase of
the channel also impacts the performance, which is different
from the quantization in a Grassmannian space. To recover
similar performance as the quantization scheme convention-
ally used, we multiply each element of the codebooks as
well as each normalized channels by a complex unit-norm
number in order to let their first coefficient be real valued. A
detailed analysis of this quantization scheme is provided in
Appendix X-A.

C. Distributed Precoding

In the DCSI-MIMO channel, each TX has a different
estimate of the multi-user channelH and controls only one
antenna. Thus, each TX uses its CSI to compute a certain
precoding matrix from which it extracts the coefficient cor-
responding to its antenna. We denote the overall multi-user
precoder computed at TXj asT(j) ,

[

t
(j)
1 . . . t

(j)
K

]

where

t
(j)
i is the beamforming vector designed to transmit symbolsi.

Note that although a given TXj may compute the whole
precoding matrixT(j), only thej-th row eT

jT
(j) will be used

in practice, since TXj transmits onlyxj = eT
jT

(j)s. Finally,
the effective precoder is then given by

T ,
[

t1 . . . tK
]

,


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KT

(K)


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. (9)

The main elements of the transmission in the distributed CSI
MIMO channel are illustrated in Fig. 1.

III. R EVIEW OF THE RESULTS IN THECONVENTIONAL

MIMO BC

In this section, we recall briefly the main results from [1] on
the number of DoFs achieved with finite rate feedback in the
conventional MIMO BC. This will be helpful to understand
the differences between the conventional MIMO BC and the
distributed CSI setting which is the main focus of this work.
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Fig. 1. Distributed precoding in the DCSI-MIMO channel.

Hence, we consider in this section a conventional MIMO
BC whereM TXs are colocated and share thesamechannel
estimate. For this setting, we need to use notations which are
different from the ones previously introduced for the DCSI-
MIMO channel. We denote bŷhi the channel estimate of̃hi

obtained withBi bits. Following [1], the channel estimate is
obtained from

ĥi = argmax
w∈WBC

i

|wHh̃i|
2 (10)

whereWBC
i is a random codebook containing2Bi unit-norm

vectors isotropically distributed inCK×1. We provide now the
main result.

Theorem 1. [1] In the MIMO BC with M antennas, if
the channel estimatêhi is obtained from the quantization
scheme(10) with Bi = αi(M − 1) log2(P ), the number of
DoFs achieved with ZF is given by

DoFBC =

M
∑

i=1

αi. (11)

This result was given in [1] forαi = α but the extension
to different αi follows directly from the proof in [1]. The
extension to Theorem 1 has been suggested in [40] where the
same formula for the number of DoFs is derived in the case
where DPC is used instead of ZF.

We will now derive the equivalent result of Theorem 1 for
the DCSI-MIMO channel where the TXs do not share the same
channel estimates.
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IV. Z ERO FORCING IN THE DCSI-MIMO CHANNEL WITH

TWO USERS

As a starting point we consider the particular configuration
with only two users. This setting is interesting for two main
reasons. Firstly, the exposition is simpler in that case while
most of the insights are the same as in the general case, and
secondly this scenario makes it possible to obtain stronger
results.

In the conventional multiple-antenna BC with imperfect
CSI, the number of DoFs with ZF has been derived and shown
to be defined by the CSI scaling. In the DCSI-MIMO channel,
the CSI scaling of each channel vectorh̃i is different at each
TX. One central goal of our work consist in determining how
the formula for the number of DoFs in the conventional MIMO
BC generalizes to the DCSI-MIMO channel. This would then
lead us to evaluate whether ZF is in that case a performing
solution and if not, whether one can find better solutions.

A. Conventional Zero Forcing

In the DCSI-MIMO channel, the conventional ZF precoder
is made of the beamformertcZFi , [eT

1t
cZF(1)
i , eT

2t
cZF(2)
i ]T to

transmitsi, with its elements defined in an intuitive way as

t
cZF(j)
i ,

√

P

2

Π⊥

h̃
(j)

ī

(

h̃
(j)
i

)

‖Π⊥

h̃
(j)

ī

(

h̃
(j)
i

)

‖
, j ∈ {1, 2}. (12)

The interpretation behind conventional ZF is that each TX
applies ZF using its own CSI implicitly assuming that the
other TX shares the same CSI estimate. Our first result given
in the following theorem relates the number of DoFs achieved
with such a precoding strategy.

Theorem 2. Conventional ZF achieves the number of DoFs

DoFcZF = 2 min
i,j∈{1,2}

α
(j)
i . (13)

Proof: A detailed proof is provided in Appendix X-B.
We can observe that in the case of distributed CSI, the

number of DoFs is limited by the worst quality of the CSI
across the channels to the RXs and across the TXs. Comparing
this result with the number of DoFs achieved in a conventional
MIMO BC given in Theorem 1, it is remarkable that the num-
ber of DoFs atboth users is limited by the worst estimation
error whether it is done relative tõh1 or h̃2. This is contrast
to the formula for the conventional MIMO BC in (13) where
the accuracy of the estimation ofh̃i impacts only the number
of DoFs of RX i.

Note that when all the CSI scaling coefficients are equal,
the setting considered is still different from the conventional
multiple-antenna BC. Indeed, the estimates at the different
TXs have statistically the same accuracy since the CSI scaling
coefficients are equal, but the realizations of the estimation
errors are still different.

One can conclude from Theorem 2 that the additional
interference due to the CSI inconsistency between the TXs
does not lead to any loss in number of DoFs compared to the
conventional multiple-antenna BC if and only if the channel
estimates are of the same quality.

B. Robust Zero Forcing

Robust precoding schemes have been derived in the lit-
erature either as statistical robust ZF precoder or precoder
optimizing the worst case performance to reduce the harmful
effect of the imperfect CSI. Since we consider the average
sum rate, the most relevant approach is the statistical one.
Thus, we model the quantization error at TXj by an additive
white Gaussian noise∆(j) , [δ

(j)
1 , δ

(j)
2 ]H of variance equal

to P−α
(j)
i for the estimation errorδ(j)i resulting from the

quantization ofh̃i at TX j. The varianceP−α
(j)
i is obtained

from the analysis of the scaling of the estimation error which
is given in Appendix X-A.

The covariance matrix of the estimation error at TXj is then
R

(j)
∆

, E[∆(j)(∆(j))H] = diag([P−α
(j)
1 , P−α

(j)
2 ]). Using

this model, we can extend the approach from [17] and the
beamformer transmitting symbolsi at TX j is obtained from
solving the following minimization:

argmin
ti

E∆(j) [‖ei − H̃
(j)ti‖

2], subject to‖ti‖
2 =

P

K
.

(14)
Writing the Lagrangian of the minimization problem with the
Lagrange variableλ for the power constraint and taking the
derivative according tot∗i yields the equation

(

R
(j)
∆

+H
(j)H

H
(j) + λI

)

ti −H
(j)Hei = 0. (15)

The factorλ improves the performance at intermediate SNR
by striking a compromise between the orthogonality constraint
and the power consumption but it cannot improve the number
of DoFs. Thus, we can letλ be equal to zero and normalize
the beamformer to fulfill the power constraint. The robust
ZF beamformer transmitting symbolsi is denoted bytrZFi ,
[eT

1t
rZF(1)
i , eT

2t
rZF(2)
i ]T and∀j ∈ {1, 2}

t
rZF(j)
i ,

√

P

K

(R
(j)
∆

+H
(j)H

H
(j))−1

H
(j)Hei

∥

∥

∥
(R

(j)
∆

+H(j)HH(j))−1H(j)Hei

∥

∥

∥

. (16)

We then derive the number of DoFs achieved by this robust
precoder.

Proposition 1. The robust ZF precoder defined in(16)
achieves the same number of DoFs as conventional ZF.

Proof: Considering strictly positive CSI scaling coeffi-
cients, the variances of the estimation errors tend to zero so
that the inverse term in (16) can be approximated and we can
write at RX ī:

|h̃H
ī t

(j)
i |2 =

P

K

|h̃H
ī (R

(j)
∆

+H
(j)H

H
(j))−1

H
(j)H

ei|
2

∥

∥

∥
(R

(j)
∆

+H(j)HH(j))−1H(j)Hei

∥

∥

∥

2 (17)

=
P

K

|h̃H
ī (H

(j))−1((H(j)H)−1
R

(j)
∆

(H(j))−1 + I)−1
ei|

2

∥

∥

∥
(R

(j)
∆

+H(j)HH(j))−1H(j)Hei

∥

∥

∥

2 (18)

=
P

K

(

|h̃H
ī (H

(j))−1(I−(H(j)H)−1
R

(j)
∆
(H(j))−1)ei|

2

∥

∥

∥
(R

(j)
∆

+H(j)HH(j))−1H(j)Hei

∥

∥

∥

2 +o(‖R
(j)
∆

‖2F)

)

.

(19)
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The difference with conventional ZF is the
term (H(j)H)−1

R
(j)
∆

(H(j))−1 which can be shown to
lead to no reduction of the interference and introduces
actually an additional error term. Yet, it converges to zeroas
P−min(α

(j)
1 ,α

(j)
2 ) sinceR

(j)
∆

= diag([P−α
(j)
1 , P−α

(j)
2 ]). This

is also the rate at which the remaining interference tends to
zero when using conventional ZF. Thus, the regularizing term
vanishes and the number of DoFs achieved is the same as
conventional ZF.

Hence, even the existing designs of robust ZF precoders do
not improve the number of DoFs in the DCSI-MIMO channel.
Note that the extension of the definition of the statistical robust
precoder as well as the extension of proposition 1 to the
general setting withK users is trivial and will not be given
explicitly.

C. Beacon Zero Forcing

Robust ZF schemes from the literature do not bring any
DoFs improvement which leads to investigate other alternative
schemes more adapted to the DCSI-MIMO channel. As a
result, we now propose a modification of the conventional
ZF scheme which improves the number of DoFs when the
estimates for̃h1 and h̃2 are of different qualities. We call it
Beacon ZF(bZF) because it makes use of an arbitrary channel-
independent vector known beforehand at both TXs (abeacon
signal).

The beamformer used to transmit symbolsi is thentbZFi ,
[eT

1t
bZF(1)
i , eT

2t
bZF(2)
i ]T, with its elements defined from

t
bZF(j)
i ,

√

P

2

Π⊥

h̃
(j)

ī

(ci)

‖Π⊥

h̃
(j)

ī

(ci)‖
(20)

whereci is any non-zero vector chosen beforehand and known
at the TXs. Due to the isotropy of the channel, the choice ofci
does not influence the performance of the precoder.

Corollary 1. The number of DoFs achieved with beacon ZF
is

DoFbZF = min
j∈{1,2}

α
(j)
1 + min

j∈{1,2}
α
(j)
2 . (21)

Proof: The number of DoFs follows easily from Theo-
rem 2. Indeed, when using beacon ZF, no error is induced by
the projection of the direct channel which is replaced by a
fixed given vector. In terms of number of DoFs, there is no
difference between projecting the direct channel or any given
vector. Thus, it is possible to apply the formula for the number
of DoFs in Theorem 2 considering that the direct channel is
perfectly known, which yields the result.

The key idea behind beacon ZF is to reduce the impact
of the differences in CSI quality by using only the CSI
necessary to fulfill the orthogonality constraint. Thus, the
direct channel, which does not change the number of DoFs
but only improves the finite SNR performance, is not used. It
follows then thattbZF1 does no depend on the estimates ofh̃1,
and symmetricallytbZF2 does not depend on the estimates of
h̃2.

D. Active-Passive Zero Forcing

Beacon ZF improves the number of DoFs but it is still
the worst CSI scaling across the TXs (although no longer
across the RXs) which defines the number of DoFs. To
improve further the number of DoFs, we propose a scheme
calledActive-Passive Zero Forcing (AP ZF). Assuming w.l.o.g.
that α(2)

ī
≥ α

(1)

ī
, AP ZF consists in the precoder whose

beamformertAPZF
i transmitting symbolsi is given by

tAPZF
i ,

√

P

2 log2(P )





1

−
{h̃

(2)

ī
}1

{h̃
(2)

ī
}2



 (22)

=

√

P (1+ρ
(2)
i )

2 log2(P )
uAPZF
i (23)

where

uAPZF
i ,

[

1
−{h̃

(2)

ī
}1

{h̃
(2)

ī
}2

]T

∥

∥

∥

∥

∥

[

1
−{h̃

(2)

ī
}1

{h̃
(2)

ī
}2

]T
∥

∥

∥

∥

∥

(24)

andρ(2)i , |{h̃
(2)

ī
}1|

2/|{h̃
(2)

ī
}2|

2.
AP ZF is based on the idea that each beamforming vector

has to fulfill only one orthogonality constraint so that onlyone
free variable is necessary. Thus, one coefficient can be set to a
constant while still fulfilling the ZF constraints. Moreover, the
only way to achieve the number of DoFs stemming from the
best CSI estimate is if TX2 (which has the best knowledge of
h̃1) can adapt to the coefficient transmitted at TX1 to adjust
its beamforming vector and improves the accuracy with which
the interference are suppressed. This is possible only if TX2
knows the transmit coefficient at TX1.

Using this precoding scheme, the number of DoFs is then
given in the following proposition.

Proposition 2. Active-Passive ZF achieves the number of
DoFs:

DoFAPZF ≥ max
j∈[1,2]

α
(j)
1 + max

j∈[1,2]
α
(j)
2 . (25)

Proof: By symmetry, we consider w.l.o.g. the number of
DoFs at RX1, and we assume that the beamformerst1 andt2
are given by (23). We still assume w.l.o.g. thatα

(2)
1 ≥ α

(1)
1 ,

i.e., TX 2 has the best CSI over̃h1. From (6), the number of
DoFs at RX1 is

DoF1= 1− lim
P→∞

EH,{Wi,j}

[

log2(|h
H
1 t2|

2)
]

log2(P )
(26)

We now focus on the interference term:

|hH
1 t2|

2 =
P

2 log2(P )

∣

∣

∣

∣

∣

hH
1

[

1

−
{h̃

(2)
1 }1

{h̃
(2)
1 }2

]∣

∣

∣

∣

∣

2

. (27)

By construction,t2 is orthogonal toh(2)
1 , so that

|hH
1 t2|

2 =
P (1 + ρ

(2)
2 )

2 log2(P )
‖h1‖

2
∣

∣

∣
Π⊥

h̃
(2)
1

(h̃1)
Hu2

∣

∣

∣

2

(28)

=
P (1 + ρ

(2)
2 )

2 log2(P )
‖h1‖

2 sin2(∠(h̃1, h̃
(2)
1 )). (29)
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Inserting (29) in the DoFs expression (26) and using Proposi-
tion 11 from Appendix X-A to bound the expectation of the
sinus, we obtain

DoF1 ≥ lim
P→∞

EH,{Wi,j}

[

− log2

(

sin2(h̃1, h̃
(2)
1 )
)]

log2(P )
(30)

≥ lim
P→∞

B
(2)
1

log2(P )
(31)

= α
(2)
1 (32)

which is the best scaling across the TXs.
Comparing the number of DoFs achieved with AP ZF

with the number of DoFs achieved when both TXs share the
estimate of a channel vector with the highest accuracy gives
the following result.

Theorem 3. Active-Passive ZF achieves the same number of
DoFs in the2-user DCSI MIMO channel as in the conventional
MIMO BC where both TXs share the estimates with the highest
CSI accuracy.

Improved scheme at finite SNR:AP ZF allows to recover
the number of DoFs which would have been achieved with the
best CSI across the TXs. However, the choice of the coefficient
used to transmit at TX1 (with the lowest accuracy of the
CSI) remains to be discussed. In fact, the beamformer can
be multiplied arbitrarily by any unit-norm complex number
without impacting the rate achieved so that only the power
used at TX1 needs to be decided. According to (23), the
power used at TX1 is set toP/(2 log2(P )).

The normalization bylog2(P ) is done because the fading
coefficient{h̃1}2 might have a very small amplitude. In this
case it would be necessary for TX2 to transmit with a very
large power to fulfill the orthogonality constraint. To ensure
that the interference are canceled for all channel realizations
while respecting the power constraint, it is necessary to have
the ratio between the power used at TX1 and the sum power
constraint tending to zero. The factorlog2(P ) is used because
it fulfills this property while not reducing the number of DoFs
due to the partial power consumption.

However, this comes at the cost of using only a small share
of the available power, which is clearly inefficient and leads to
a rate offset tending to minus infinity. To avoid this behavior,
we propose that the TX with the worst CSI accuracy adapts its
power consumption with respect to the channel realizations. In
the following, we propose two possible solutions to improve
the performance at finite SNR:

• Firstly, TX 1 can use its local CSI to normalize the
beamformer which is then given by

tAPZF
i =

√

P

2







1
√

1+ρ
(1)
i

−
{h̃

(2)

ī
}1

√

1+ρ
(2)
i {h̃

(2)

ī
}2






(33)

with ρ
(j)
i , |{h̃

(j)

ī
}1|

2/|{h̃
(j)

ī
}2|

2, for j = 1, 2. This
beamformer is not DoFs maximizing because the local
CSI is used at TX1 so that TX2 does not any longer have
an exact knowledge of the coefficient used to transmit

at TX 1. Consequently, beamformertAPZF
i is not any

longer orthogonal tõh(2)

ī
. Yet, this solution achieves good

performance at intermediate SNR.
• Another possibility is to assume that TX1 receives the

scalarρ(2)i (or ρi) and use it to control its power. This
means that TX2 needs to share this scalar. This requires
an additional feedback, but only a few bits are necessary
to improve the performance at practical SNR.

V. ZERO FORCING IN THE DCSI-MIMO CHANNEL FOR

ARBITRARY NUMBER OF USERS

In this section, we will show how the main results can be
generalized to arbitrary number of users. The same approach
as in the caseK = 2 can be followed and we start by
briefly generalizing to arbitrary number of users the precoding
schemes previously described.

A. Conventional Zero Forcing

The conventional ZF precoder will be denoted
as T

cZF , [tcZF1 , . . . , tcZFK ] with tcZFi ,
[eT

1t
cZF(1)
i , eT

2t
cZF(2)
i , . . . , eT

Kt
cZF(K)
i ]T transmitting symbol

si, and the beamformertcZF(j)i computed at TXj to transmit
symbol i given by

t
cZF(j)
i ,

√

P

K

Π⊥

H̄
(j)
i

(h̃
(j)
i )

‖Π⊥

H̄
(j)
i

(h̃
(j)
i )‖

(34)

with H̄
(j)
i , [h̃

(j)
1 , . . . , h̃

(j)
i−1, h̃

(j)
i+1, . . . , h̃

(j)
K ].

We can then generalize the results from Theorem 2 to an
arbitrary number of users.

Theorem 4. In the DCSI-MIMO channel, the number of DoFs
achieved with conventional ZF is equal to

DoFcZF = K min
i,j∈{1,...,K}

α
(j)
i . (35)

Proof: A detailed proof is provided in Appendix X-B.
In Theorem 4, we have shown that the results concerning

conventional ZF can be exactly generalized and the number
of DoFs scales with the worst CSI accuracy across the TXs
and the RXs. Indeed, the bad estimation of the channel to
one user at one TX reduces the number of DoFs ofall
the users. This is very pessimistic and represents a different
behavior as in the conventional multiple-antennas BC. This
can be observed by comparing the number of DoFs for the
conventional MIMO BC in (11) with the formula for the
number of DoFs in the DCSI-MIMO channel given in (35)
when ∀i, j = 1, . . . ,K, α

(j)
i = αi, i.e., the CSI qualities are

the same at all the TXs

B. Beacon Zero Forcing

The beacon ZF precoder is denoted as
T

bZF , [tbZF1 , tbZF2 . . . , tbZFK ] with the beamformer
tbZFi , [eT

1t
bZF(1)
i , eT

2t
bZF(2)
i , . . . , eT

Kt
bZF(K)
i ]T transmitting
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symbol si. The beamformertbZF(j)i computed at TXj to
transmit symbolsi is given by

t
bZF(j)
i ,

√

P

K

Π⊥

H̄
(j)
i

(ci)

‖Π⊥

H̄
(j)
i

(ci)‖
(36)

whereci is any non-zero vector chosen beforehand and known
at all TXs.

Proposition 3. The number of DoFs achieved with beacon ZF
is equal to

DoFbZF =

K
∑

k=1

min
i∈{1,...,K},

i 6=k

min
ℓ,j∈{1,...,K},

ℓ 6=i

α
(j)
ℓ . (37)

Proof: To derive the number of DoFs at a RXk, we need
to compute the scaling of the interference at RXk stemming
from the transmission to theK−1 other RXs. In the proof of
Theorem 4, it is in fact the scaling of the interference resulting
from the transmission of one stream which is calculated. To
obtain the number of DoFs at one RX, the scaling of the
interference resulting from the transmission of each of the
K − 1 interfering streams needs to be computed. This is
represented by the first summation overi. Determining the
interference leaked by the transmission of symbolsi using
beacon ZF leads to the second minimum in the formula.

We have derived the number of DoFs for beacon ZF, but we
will show in the following corollary that beacon ZF is only
attractive in terms of number of DoFs in the two-user case.

Corollary 2. For K ≥ 3, beacon ZF achieves the same
number of DoFs as conventional ZF.

Proof: The result is easily obtained by studying the effect
of the two successive minimums in (37).

C. Active-Passive Zero Forcing

The generalization of AP ZF is intuitive and consists simply,
for the computation of each beamforming vector, in letting
one TX arbitrarily fix its precoding coefficient while the other
TXs adapt to this coefficient. Nevertheless, it requires the
introduction of a few more notations.

We define the ordered setS , {n1, . . . , nK} as the set
whosei-th element corresponds to the indice of the TX with
fixed coefficient when transmitting the symbolsi (passive TX
for si). We then introduce the (column) channel vector from
TX ℓ to all the RXs except thei-th RX:

g̃
(j)
i (ℓ), [{H̃(j)}1,ℓ,. . .,{H̃

(j)}i−1,ℓ,{H̃
(j)}i+1,ℓ,. . .,{H̃

(j)}K,ℓ]
T.

(38)
Using the previous definition, we can then define

H̄
(j)
i (ni), [g̃

(j)
i (1), . . . , g̃

(j)
i (ni−1), g̃

(j)
i (ni+1), . . . , g̃

(j)
i (K)]

(39)
which represents the estimate at TXj of the multi-user channel
from all the TXs except TXni to all the RXs except RXi.

For a given set S, we write T
APZF(S) ,

[tAPZF
1 (n1), . . . , t

APZF
K (nK)] where the beamformer

tAPZF
i (ni) , [eT

1t
APZF(1)
i (ni), . . . , e

T
Kt

APZF(K)
i (ni)]

T

transmits symbolsi. The beamformertAPZF(j)
i (ni) computed

at TX j to transmit symbolsi is given by

t
APZF(j)
i (ni),

√

P

K log2(P )
u
APZF(j)
i (ni) (40)

where we have defined

u
APZF(j)
i (ni), [ ǔ

APZF(j)
1i (ni), . . . , ǔ

APZF(j)
ni−1,i (ni), 1

, ǔ
APZF(j)
ni,i

(ni), . . . , ǔ
APZF(j)
K−1,i (ni)]

T
(41)

with ǔ
APZF(j)
i (ni),

[

ǔ
APZF(j)
1i (ni),. . . , ǔ

APZF(j)
K−1,i (ni)

]T
∈CK−1

and

ǔ
APZF(j)
i (ni),

−
(

H̄
(j)
i (ni)

)−1

g̃
(j)
i (ni)

√

1 + ‖
(

H̄
(j)
i (ni)

)−1

g̃
(j)
i (ni)‖2

. (42)

Even though the notations are quite heavy, the intuition behind
the construction of the precoder is exactly the same as for the
two-user case. TXni is thepassiveTX and transmits with a
fixed coefficient

√

P/K log2(P ) while the otheractive TXs
then choose their coefficients in order to ZF the interference.
This is obtained by setting their coefficients so as to fulfill(40).
The notational complexity comes only from the fact that we
need to introduce a “reduced” channel without the direct
channel as well as without the channel from thepassiveTX.

Proposition 4. Active-Passive ZF with the setS =
{n1, . . . , nK} achieves the number of DoFs

DoFAPZF(S) =

K
∑

k=1

min
i∈{1,...,K},

i 6=k

min
ℓ,j∈{1,...,K},

ℓ 6=i,j 6=ni

α
(j)
ℓ . (43)

Proof: Due to the symmetry between the RXs, we will
show the result only for the number of DoFs at RXk. Let
assume that AP ZF is used with the setS. To obtain the number
of DoFs, we need to derive the scaling of the interference at
RX i when all streams are transmitted using AP ZF. The first
minimum of the DoFs formula follows from the summation
over all theK − 1 interfering streams. It remains then to
determine the scaling of the interference resulting from the
transmission of one given data symbol.

TX j computes the beamformertAPZF(j)
ℓ (nℓ) according

to (40). This formula is similar to the one for conventional ZF
so that the scaling of the remaining interference power can be
derived with a proof very akin to that of Theorem 4 which
is omitted to avoid repetitions. Thus, the interference received
at RX k due to the transmission of symbolsi corresponds to
the second minimum of the DoFs formula. This expression
follows from the fact that the CSI at TXnℓ and the CSI on
the direct channel̃hℓ are not used to design the beamformer
transmittingsℓ.

The number of DoFs given in Proposition 4 is given by two
successive minimizations. This is similar to beacon ZF at the
difference that the index of one TX is not taken into account
in the second minimization. This leads then to a larger number
of DoFs. The formula for the number of DoFs depends on the
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setS but we will show that the optimal set is easily derived
when the number of users is larger than4.

Corollary 3. For K ≥ 4 users, it is optimal in terms of
number of DoFs to choose all the indices inS to be equal.
Therefore, it is optimal to chooseni as the indice of the
minimum over all the CSI scaling coefficients, and the number
of DoFs reads as

DoFAPZF = K min
i,j∈{1,...,K},

j 6=argmink minℓ α
(k)
ℓ

α
(j)
i . (44)

Proof: Similar to the proof of the corollary for Beacon ZF,
the proof follows by studying the effect of the two successive
minimums and forK ≥ 4, it has for consequence that it is
optimal to choose∀i, j, ni = nj .

Exactly as in the two-user case, AP ZF leads to an im-
provement in number of DoFs but this comes at the cost of an
unbounded negative rate offset. To improve on this feature,the
percentage of the available power which is consumed by the
TXs needs to be increased. The sames solutions as described
for the two-user case in Subsection IV-D can be applied, i.e.,
either a heuristic power control or the transmission of a scalar
to control the power. Note that the scalar can be transmitted
by any of the otherK − 1 TXs and that one scalar needs to
be transmitted for each stream. We refer to Subsection IV-D
for more details.

D. Discussion of the Results

Altogether, we have shown in this section that the results
for the two-user case given in Section IV could generalize to
an arbitrary number of users. However, the results suggest in
all cases a fundamental lack of robustness of the performance
as we increase the number of users. Indeed, with conventional
ZF, a single inaccurate channel estimate can reduce the number
of DoFs of all the users while the novel precoding schemes
proposed can only cope with a few channel estimates being
of insufficient quality. This shows the need for other methods
to make the transmission more robust to imperfect distributed
CSI when more than two-user are present.

VI. PRECODINGUSING HIERARCHICAL QUANTIZATION

In view of the rather pessimistic results in the previous
section, we propose now an alternative method to make the
transmission more robust to the CSI discrepancies. It consists
in modifying the CSI quantization and using a Hierarchical
Quantization (HQ) scheme to encode the CSI [34], [41].

A. Hierarchical Quantization

Hierarchical quantization (or multi-resolution quantization)
is a quantization scheme in which the information is encoded
so that the original message can be decoded up to a number
of bits depending on the quality of the feedback channel. The
better the channel is, the more bits can be decoded. Thus,
if one entity receives a codeword with a higher accuracy than
another entity, and has the knowledge of the feedback qualities,

it also knows what has been decoded at the other entity.
Conversely, if one entity can detect the feedback information
at a given resolution level but knows that another entity can
decode the same information at a higher resolution level, it
can use its individual decoded codeword to form a limited set
of guesses around it as to which higher resolution codeword
may have been detected at the other TX.

In our setting, it means that each TX can decode the CSI
feedback up to a certain number of bits depending on the
quality of the feedback link. If TXj1 receives a CSI of better
quality than another TXj2, it can decode more bits from the
CSI and can get the knowledge of the CSI at TXj2 with less
decoded bits. Note that this implies that two TXs with the
same CSI quality have thesamecodebook and thus exactly
the same realization for the channel estimation error. Thisis in
contrast to what has been considered in the previous sections.

We wish to continue using the properties of RVQ so that we
need to designhierarchical random codebooks, i.e., codebooks
fulfilling the properties of both kinds of codebooks. Since
this is not the main focus of the work, we just briefly
describe a possible method to construct such codebooks and
the quantization scheme associated.

We start by considering a random codebook of size cor-
responding to the best accuracy, say2ℓmax . This random
codebook is then divided into two random codebooks con-
taining each half the elements. This process is then applied
on the two smaller codebooks obtained until having2ℓmax

codebooks of one element. In each of the sub-codebooks of
different sizes created, we pick randomly one elements to be
the representativeof this codebook.

Once the quantized vector maximizing the figure of merit
has been chosen among the2ℓmax vectors, the encoding can
be easily done. The chosen vector belongs to one set of each
size and the encoding bits are used to select among the two
possible choices, the set to which the quantized vector belongs.

The decoding step works as follows. The first bit denotes
one of the two codebooks of size2ℓmax−1, the second bit
denotes one of the two codebooks of size2ℓmax−2 inside this
codebook, and so on, until the last bit is decoded. Once this is
done, the codeword decoded is chosen to be therepresentative
codeword of the obtained codebook.

It is then easily verified that the proposed quantization
scheme has the hierarchical properties desired.

B. Conventional Zero Forcing with Hierarchical Quantization

In the previous sections, we have shown that the quality
of the estimation of one channelh̃i to one given RX had an
impact on the number of DoFs achievedat all RXs. This is a
surprising property which follows from the particular structure
of the DCSI-MIMO channel where the consistency between
the transmissions of the different TXs is critical. We will show
how the hierarchical quantization described above can be used
to avoid this very inefficient property.

In the following, we will consider a particularly simple use
of hierarchical quantization consisting in letting all theTXs
designing the beamforming vector use only the part of the
CSI which is common to all the TXs, and simply ”forget”
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about the more accurate CSI knowledge. We then obtain a
CSI configuration where all the TXs share the same CSI and
the number of DoFs can be obtained from Theorem 1.

Theorem 5. The number of DoFs achieved using Conven-
tional ZF with hierarchical quantization is

DoFcZF =

K
∑

i=1

min
j∈{1,...,K}

α
(j)
i . (45)

Using HQ as described, i.e., using only the estimate of
a channel vector̃hi common to all the TXs, follows from
the observation that the worst estimation error ofh̃i limits in
any case the number of DoFs at RXi. Thus, using only the
common part of the estimate ofh̃i does not reduce the number
of DoFs at RXh̃i. Yet, it leads to an improved consistency
between the beamformers computed at the TXs. This has for
consequence that the error in the estimate of the channelh̃i

only impacts the number of DoFs at RXi and not at the other
RXs.

Note that the proposed scheme using HQ is very simple
and more gains could certainly be obtained with a more
sophisticated use of the additional CSI knowledge available
at some TXs.

C. Active-Passive Zero Forcing with Hierarchical Quantiza-
tion

Hierarchical quantization is used for AP ZF in the same way
as for Conventional ZF. This consists in using the CSI which
is common to all the active TXs considered in the definition
of the beamformer in (40).

Proposition 5. The number of DoFs achieved using Active-
Passive ZF with Hierarchical Quantization and the setS is

DoFAPZF(S) =
K
∑

k=1

min
i∈{1,...,K},

i 6=k

min
j∈{1,...,K},

j 6=ni

α
(j)
k . (46)

The two successive minimums come from the fact that it is
not the same TX which ispassivefor the different streams. It
is clear from (46) that it is optimal to choose all theni to be
equal forK ≥ 3. However, the indice of the optimal passive
TX, which we denote bynHQ, is now different from the case
without HQ. It is easily obtained by looking for the passive
TX bringing the largest improvement in number of DoFs:

nHQ , argmax
n∈{1,...,K}

K
∑

k=1

min
j∈{1,...,K},

j 6=n

α
(j)
k . (47)

The maximum number of DoFs using AP-ZF with HQ follows
then directly.

Proposition 6. For K ≥ 3, it is optimal to choose the passive
TX to be TXj with j = nHQ defined in(47), for all the data
streams. The number of DoFs achieved with Active-Passive ZF
based on Hierarchical Quantization is then equal to

DoFAPZF =
K
∑

i=1

min
j∈{1,...,K},

j 6=nHC

α
(j)
i . (48)

VII. D OF OPTIMAL SHARING OF THE FEEDBACK UNDER

A TOTAL FEEDBACK CONSTRAINT

In this section, we consider the opposite side of the problem
which consists in deriving how to distribute a maximum
numberB of feedback bits across the TXs and the channel
vectors so as to maximize the number of DoFs. Since our focus
remains on the number of DoFs and considering previous
results, it is meaningful to introduceγ , limP→∞ B/ log2(P )
which we call thetotal feedback scaling.

Thus, we consider a constraint on the sum of the scaling
coefficients of the total feedback transmitted through the multi-
user channel feedback:

∑

i,j∈{1,...,K}

α
(j)
i ≤ γ. (49)

We study first conventional ZF before extending the results to
Active-Passive ZF. To optimize the CSI allocation efficiently,
it becomes necessary to also optimize the number of users
being served, which means that time sharing will this time be
explicitly considered.

A. Conventional Zero Forcing

Proposition 7. With conventional ZF (with or without Hierar-
chical Quantization), it is optimal in terms of number of DoFs
to share equally the number of bits across the TXs and across
the channels to quantize and to let the number of TX being ac-
tually transmitting be equal ton for γ ∈ [n(n−1)2, (n+1)n2].
It follows that the optimal number of DoFs using Conventional
ZF is equal to
{

DoFcZF = γ/(n(n− 1)), if γ ∈ [n(n− 1)2, n2(n−1)]

DoFcZF = n, if γ ∈ [n2(n− 1), (n+ 1)n2].
(50)

Proof: We study first the case without HQ. Since the
number of DoFs scales as the worst CSI scaling across the
TXs and the channel vectors, it is clearly optimal to have
the same CSI accuracy at all the TXs and for all the channel
vectors. To achieve a number of DoFs ofα at n RXs, the
number of bits to quantize a channel vector has to be equal
to α(n − 1) log2(P ), wheren is the number of transmitting
TXs. Hence, the total feedback in the channel is given by
n2α(n− 1) log2(P ) when considering then estimates needed
at then TXs.

Let us assume thatn TXs are servingn RXs with the max-
imal feedback scalingγ, we obtain thatα = γ/(n2(n − 1)).
For γ ≤ n2(n− 1) the number of DoFs achieved at the RXs
is lower or equal to one so that the sum number of DoFs is
equal tonα = γ/(n(n− 1)). For γ ≥ n2(n− 1), the number
of DoFs at each RX reaches its maximal value of one and
the sum number of DoFs is equal ton. Comparing the sum
number of DoFs achieved by two successive configurations,
with respectivelyn andn+1 users served, leads to the value
of γ given in the proposition as switching point between the
configurations.
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Fig. 2. Degrees of Freedom as a function of the total feedbackscalingγ
for different number of users.

When HQ is used, the number of DoFs still scales as the
minimum over the CSI scaling across the TXs so that it is still
optimal to let all the TXs have the same CSI scaling.

Using HQ does not increase the number of DoFs when the
CSI configuration can be optimized. However, many more con-
figurations are optimal as the CSI can be allocated indifferently
to any channel vector as long as the scaling of the CSI does
not exceed one and all the TXs receive the same CSI.

The results from Proposition 7 are very intuitive, yet the
formula is not very enlightening and the intuition is better
understood in a plot of the number of DoFs with optimal CSI
sharing. Thus, we plot in Figure 2 the number of DoFs in
terms of the total feedback scalingγ for different numbers of
transmitting TXs. The parts with a positive slope correspond
to values ofα smaller than one while the flat parts correspond
to a saturation of the number of DoFs, i.e.,α ≥ 1.

The values ofγ corresponding to the saturation of the
number of DoFs and to the activation of an additional user,
respectively, are given in Appendix X-C. Whenn TXs are
transmitting, the slope of the number of DoFs as a function of
γ is known to be equal to1/(n2(n− 1)) and we can observe
in the figure how the values forγ given in the proposition fit
with the observation in terms of saturation and intersection of
the curves.

It is possible to observe that the saturated parts are optimal
for some values ofγ. This follows from the fact that using an
additional TX induces an increase of the feedback necessary
(lower slope in the figure). Thus, a possibly large increase
in γ is necessary before reaching the point where it starts
being more interesting to serve the additional RX and use an
additional TX.

B. Extension to Active-Passive Zero Forcing

Our analysis for conventional ZF can be extended to Active-
Passive ZF without difficulty. The only difference consistsin
the number of bits necessary to achieve a scaling ofα which
is then n(n − 1)2α log2(P ) instead ofn2(n − 1)α log2(P )
since one TX (passive TX) does not need to be shared any

CSI. Thus, it holds thatα = γ/(n(n − 1)2) which leads to
the following result.

Proposition 8. When using Active-Passive ZF (with or without
HQ), it is optimal to share equally the number of bits across
the active TXs and across the channels, and to let the number
of transmitting TXs be equal ton for γ ∈ [n(n − 1)2, (n +
1)n2]. It follows that the optimal number of DoFs is equal to
{

DoFAPZF = γ/(n− 1)2, if γ ∈ [(n− 1)3, n(n− 1)2]

DoFAPZF = n, if γ ∈ [n(n− 1)2, n3].
(51)

The proof and the plot of the number of DoFs in terms of
the total feedback scalingγ follow both the same pattern as
conventional ZF and are omitted to avoid repetition.

The general insight behind those results is that it is better
to achieve the maximal number of DoFs at less users instead
of serving more users with a lower number of DoFs. This is
an intuitive consequence of the very quick increase of the size
of the aggregate feedback required in terms of the number of
TXs used.

VIII. S IMULATIONS

A. In the Two-User Case

We consider two models for the imperfect channel CSI, a
statistical model and RVQ.

In the statistical model, the quantization error is modeledby
adding a Gaussian i.i.d. quantization noise to the channel with
the covariance matrix at TXj equal todiag([P−α

(j)
1 , P−α

(j)
2 ]).

This corresponds to the scaling inP of the variance provided
in Proposition 10 of Appendix X-A. The Gaussian distribution
maximizes the entropy for the given variance [42] so that we
will obtain a priori a lower bound for the performance. Yet, it
is expected that only the scaling of the variance will have an
impact so that the statistical model should be accurate. The
averaging is then done over10000 realizations.

In the RVQ, we consider a given number of feedback bits
and we average over100 random codebooks and1000 channel
realizations. In the simulations, we consider the following
precoders: ZF with perfect CSI, conventional ZF [cf. (12)],
Beacon ZF [cf. (20)], and Active-Passive ZF [cf. (23)] with
heuristic power control and with3-bits power control.

In Fig. 3, we consider the statistical model with the CSI
scaling [α

(1)
1 , α

(2)
1 ] = [1, 0.5] and [α

(1)
2 , α

(2)
2 ] = [0, 0.7]. To

emphasize the number of DoFs (i.e., the slope of the curve
in the figure), we let the SNR grow large. As expected
theoretically, conventional ZF scales with the worst accuracy
and saturates at high SNR, while Beacon ZF has a positive
slope and Active-Passive ZF performs closer to perfect ZF
with a slope only slightly smaller than the optimal one.

In Fig. 4, we plot the sum rate achieved with the CSI
feedback[B(1)

1 , B
(2)
1 ] = [6, 3] and [B

(1)
2 , B

(2)
2 ] = [3, 6] using

RVQ. From the theoretical analysis, the number of DoFs
should be equal to zero for all the precoding schemes since
the number of feedback bits used does not increase with the
SNR. This is confirmed by the saturation of the sum rate
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as the SNR increases. Yet, the saturation occurs at a higher
SNR for Beacon ZF compared to conventional ZF, and at an
even higher SNR for Active-Passive ZF. This translates into
an improvement of the sum rate at intermediate SNR.

B. With Arbitrary Number of Users

For the simulations with arbitrary number of users, only
the statistical model described in the previous paragraph for
the two-user case is considered. To model easily the use of
Hierarchical Quantization, we simply consider that a TX has
the knowledge of the channel estimate at another TX if this
TX receives a feedback concerning this channel vector with a
lower CSI scaling coefficient. Since we have derived that Bea-
con ZF [Cf. (36)] does not bring any improvement in number
of DoFs for K ≥ 3, we will consider in the figures only
conventional ZF [Cf. (34)] and Active-Passive ZF [Cf. (40)]
where the transmission of3-bits to thepassiveTX is allowed
for every beamforming vector. For both precoding schemes,
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Fig. 5. Sum rate achieved for the arbitrarily chosen CSI scaling configuration
α given in Appendix X-D.

we will furthermore consider both the case of Hierarchical
Quantization with random codebooks and conventional RVQ.

We consider the performance achieved with an arbitrary
chosen CSI scaling matrix to verify that the precoding schemes
behave as expected. Thus, we considerK = 7 users and we set
all the elements of the CSI scaling matrixα equal to1 at the
exception of two coefficients corresponding to different TXs
and RXs set to0 and0.3, respectively. The CSI scaling matrix
is given explicitly in Appendix X-D as well as the number of
DoFs obtained analytically for that setting.

In Fig. 5, we plot the average sum rate achieved for the
previous setting in terms of the SNR. We can observe that
the schemes using HQ achieve a much larger number of DoFs
(i.e., slope in terms of the SNR) which is in agreement with
the theoretical results. Furthermore, the increase in number of
DoFs translates to better performance at intermediate SNRs.

IX. CONCLUSION

In this work, we have introduced a new model, called
distributed CSI-MIMO channel, consisting in a multicell
downlink channel where each transmitter has its own local
estimate of the whole multi-user channel. We have shown that
conventional ZF precoding applied without taking into account
the CSI discrepancies achieves far from the maximal number
of DoFs and is limited by the worst accuracy of the CSI
over the whole multi-user channel. This is particularly striking
as the bad estimate of the channel to one particular user at
a unique TX reduces the number of DoFs of all the users.
This represents a different behavior from the conventional
MIMO BC. In the particular case with only two users, we
have provided a precoding scheme achieving the number of
DoFs corresponding to the most accurate CSI across the
TXs. With arbitrary number of users, the number of DoFs
achieved by conventional ZF has been derived and precoding
schemes to improve over this number of DoFs value have been
provided. Particularly, it has been shown how using codebooks
with a hierarchical structure to quantize the CSI could lead
to a significant number of DoFs improvement. Moreover,
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considering the opposite problem of optimizing the sharing
of the CSI feedback under a total feedback constraint, we
have derived a number of DoFs maximizing CSI configuration
when ZF is used. Finally, simulations have confirmed that the
novel precoding schemes outperform known linear precoding
schemes at intermediate SNRs.

This paper represents the first step on our work on the DCSI-
MIMO channel and many problems remain open. Firstly,
the DCSI-MIMO channel has been studied asymptotically
for analytical tractability and the extension to finite SNR
represents a challenging problem. The design of other robust
precoders forms also an interesting problem with a strong
potential. Finally, there are many other scenarios where dis-
tributed TXs want to cooperate but cannot practically sharethe
exact same CSI (Relay channels, interference channels,...). In
such settings, similar analysis could be developed to make the
transmission more robust to the CSI discrepancies which are
likely to exist in practical settings.

X. A PPENDIX

A. Some Results on Vector Quantization

We consider the quantization of the unit-norm complex
vector h̃ ∈ C

K over a codebookC where both the channel to
quantize and the elements of the codebook are multiplied by
a unit-norm complex number (i.e., are rotated in the complex
space) so as to let the first element of the vector be real valued.
The quantized vector̂h is then obtained as

ĥ = argmin
c∈C

‖c− h̃‖. (52)

The multiplication by the unit-norm complex number is done
in order to optimize the performance of the quantization.
Since the norm is conserved when considering the canonical
isomorphism fromC

K to R
2K , we can consider for the

quantization the vectors as elements ofR
2K made of the

stacked real and imaginary parts of the original vector.
With the first coefficient real valued, it is only necessary to

considerR2K−1. Thus, a vectoru = [u1, u2, . . . , uK ]T ∈ C
K

with its first coefficient real valued is represented inR2K−1

by uR2K−1 defined as

uR2K−1 ,
[

Re(u1) Re(u2) Im(u2) Re(u3) . . . Im(uK)
]T

.
(53)

We can then define the angle betweenuR2K−1 andvR2K−1 in
R

2K−1 as

∠(uR2K−1 ,vR2K−1) , arccos

(

|uT
R2K−1vR2K−1 |

‖uR2K−1‖‖vR2K−1‖

)

. (54)

Using the conservation of the norm by the canonical isomor-
phism, the quantization in (52) is rewritten as

ĥR2K−1 = argmin
c
R2K−1∈C

R2K−1

‖cR2K−1 − h̃R2K−1‖2 (55)

= argmin
c
R2K−1∈C

R2K−1

(2− 2cT
R2K−1h̃R2K−1). (56)

We can see from (56) that the quantization scheme aims at
maximizingcT

R2K−1h̃R2K−1 . This figure of merit can be linked

to the commonly used chordal distanced(•) which is defined
for two vectors as [43]

d(h̃R2K−1 , cR2K−1) =

√

sin2(∠(cR2K−1 , h̃R2K−1)) (57)

=
√

1− |cT
R2K−1h̃R2K−1 |2. (58)

Thus, minimizing the chordal distance is equivalent to maxi-
mizing |cT

R2K−1h̃R2K−1 |2. This is then equivalent to the quan-
tization scheme (54) if the half-space whereh̃R2K−1 belongs
is known. This requires solely one additional bit. Since we
are interested in the scaling of the number of bits, this will
not make any difference. Consequently, we will study in the
following the quantization scheme based on the minimization
of the chordal distance

ĥR2K−1 = argmin
c
R2K−1∈C

R2K−1

√

sin2(∠(cR2K−1 , h̃R2K−1)). (59)

On that account, we now study the quantization scheme
given by (59) over the Grassmannian manifold of dimensions
(1, 2K−1) in the fieldR (i.e., on the unitary ball inR2K−1).
This quantization scheme is studied (in a much more general
form) in [43] and we start by recalling some results adapted
to our notations. We then derive some new properties which
will be needed in the derivations.3

Let us first denote byF(x) , Pr{sin2(∠(h̃, c)) ≤ x}
the cumulative distribution function (CDF) ofd2(h̃, c) =
sin2(∠(h̃, c)) wherec ∈ R

2K−1 is an element of a random
codebook.

Proposition 9 ( [43], Corollary 2). The CDFF(x) verifies
that for all x ≤ 1

c2K−1x
K−1 ≤ F(x) ≤ c2K−1x

K−1(1− x)
−1
2 (60)

wherec2K−1 , Γ(K − 1/2)/(Γ(K)Γ(1/2)).

Proposition 10 ( [43], Theorem 2). When the size
L = 2B of the random codebook is sufficiently large
(c−1/(K−1)

2K−1 2−B/(K−1) ≤ 1 is necessary), then it holds that

2K−1

2K+1
c
−1/(K−1)
2K−1 2−B/(K−1) .

EC,h̃[min
c∈C

sin2(∠(h̃, c))].
Γ( 1

K−1 )

K−1
c
−1/(K−1)
2K−1 2−B/(K−1).

(61)

Proposition 11. When the sizeL = 2B of the random
codebook is sufficiently large, the expectation of the logarithm
of the quantization error is bounded as

B+log2(c2K−1)

(K−1)
.

EC,h̃

[

− log2

(

min
c∈C

sin2(∠(h̃, c))

)]

.
B+log2(c2K−1)+log2(e)

(K−1)
.

(62)

3We will do the abuse of notation consisting in removing the subscript
R2K−1 in the derivations but it will be clear that any mention of an angle
will refer to the angle defined inR2K−1.
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Proof: Upper Bound: The derivation of an upper bound
follows the same idea as the proof in AppendixB of [43]
which derives an upper bound for the same expectation as in
this proof, only without the logarithm. We start by recalling
a Lemma from [43] which follows easily from the definition
but is helpful.

Lemma 1 ( [43], Lemma 3). The empirical distribution
function minimizing the distorsion for a givenL = 2B is

F∗
C∗(x) =











0 if x < 0

LF(x) if 0 ≤ x ≤ x∗

1 if x > x∗

(63)

where x∗ satisfies LF(x∗) = 1 and F(x) ,
Pr{sin2(∠(h̃, c))|≤x}.

Note that Lemma 1 corresponds to the optimal codebook
minimizing the average distance and leads thusly to a lower
bound for the distorsion. We can then write

EC,h̃

[

− log

(

min
c∈C

sin2(∠(h̃, c))

)]

=

∫ ∞

0

Pr{− log

(

min
c∈C

sin2(∠(h̃, c))

)

≥ z}dz (64)

=

∫ ∞

0

Pr{min
c∈C

sin2(∠(h̃, c)) ≤ e−z}dz (65)

≤

∫ − log(x∗)

0

dz +

∫ −∞

− log(x∗)

LPr{sin2(∠(h̃, c)) ≤ e−z}dz

(66)

where (64) is obtained by exploiting the fact that the term in
the expectation is a positive random variable and (66) follows
from the previous lemma since the CDF obtained with the
optimal codebook dominates the CDF obtained with any other
codebook of the same size.

Following the same approach as the proof in AppendixB
of [43], we defineF0(x) , c2K−1x

K−1 and x0 so that
LF0(x0) = 1. Let also defineFub(x) , c2K−1x

K−1(1 −
x)−1/2 and xub so thatLFub(xub) = 1. Finally, we define
Fubub(x) , c2K−1x

K−1(1 − x0)
−1/2 and xubub so that

LFubub(xubub) = 1.
It holds by construction thatxub ≤ x∗ ≤ x0 since we know

from Proposition 9 thatF0(x) ≤ F(x) ≤ Fub(x). Clearly
(1− x)−1/2 ≤ (1− x0)

−1/2 for x ∈ [0, x0] so thatFub(x) ≤
Fubub(x) for x ∈ [0, x0], which finally impliesxubub ≤ xub.
We can then use these relations to derive an upper bound
for (66).

EC,h̃

[

− log

(

min
c∈C

sin2(∠(h̃, c))

)]

≤

∫ − log(x∗)

0

dz +

∫ −∞

− log(x∗)

LF(e−z)dz (67)

≤

∫ − log(xubub)

0

dz +

∫ ∞

− log(x0)

LF(e−z)dz (68)

≤

∫ − log(xubub)

0

dz +

∫ ∞

− log(x0)

LFubub(e
−z)dz. (69)

Equation (68) follows fromxubub ≤ x∗ ≤ x0 and (69) follows
from the fact thatFub(x) ≤ Fubub(x) for x ∈ [0, x0]. We

now replaceFubub(x), xubub, andx0 by their expressions to
evaluate the integral.

EC,h̃

[

− log

(

min
c∈C

sin2(∠(h̃, c))

)]

≤ − 1
K−1 log

(

(1−x0)
1/2

Lc2K−1

)

+ Lc2K−1

(1−x0)1/2

∫ ∞

− log(x0)

e−z(K−1)dz (70)

= −
1

K−1
log

(

(1−x0)
1/2

Lc2K−1

)

+
1

(1−x0)1/2(K−1)
(71)

=
1

K − 1
(log (Lc2K−1) + 1) + o(1) (72)

as L increases. Dividing bylog(2) yields the final upper
bound.

Lower Bound: We start from the lower bound for the CDF
given in Proposition 9. It has a form very similar to the CDF
for the quantization of a complex vector in the unit-ball in
C

K which is usually used for multiple-antenna BC. Hence,
we adapt the approach of the proof of Lemma3 in [1] to the
current setting.

From the lower bound in Proposition 9, we write

Pr{min
c∈C

(

sin2(∠(h̃, c))
)

≤ z} ≥ 1− (1− c2K−1x
(K−1))L.

(73)
A lower bound for the expectation of the logarithm can then
be calculated as follows.

EC,h̃

[

− log

(

min
c∈C

sin2(∠(h̃, c))

)]

(74)

=

∫ ∞

0

Pr{min
c∈C

sin2(∠(h̃, c)) ≤ e−z}dz (75)

≥

∫ ∞

0

1− (1− c2K−1e
−z(K−1))Ldz (76)

=

∫ ∞

0

1−
L
∑

k=0

(

L

k

)

(−1)kck2K−1e
−z(K−1)kdz (77)

=
1

K − 1

L
∑

k=1

(

L

k

)

(−1)k+1 c
k
2K−1

k
(78)

=
1

K − 1
f(L) (79)

where we have definedf(p) ,
∑p

k=1

(

p
k

)

(−1)k+1 ck2K−1

k for
p ∈ N. To compute the value off(L), we will use the
following relation given in [44, Sec.0.155].

n
∑

k=0

(

n

k

)

αk+1

k + 1
=

(α+ 1)n+1 − 1

n+ 1
. (80)
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We now rewritef(L) in order to be able to apply (80)

f(L) ,
L
∑

k=1

(

L

k

)

(−1)k+1 c
k
2K−1

k
(81)

=

L
∑

k=1

[(

L−1

k−1

)

+

(

L−1

k

)]

(−1)k+1 c
k
2K−1

k
(82)

=

L−1
∑

k′=0

(

L−1

k′

)

(−1)k
′+2 c

k′+1
2K−1

k′ + 1
+ f(L− 1) (83)

= −
(−c2K−1 + 1)L − 1

L
+ f(L− 1) (84)

=

L
∑

p=2

1− (−c2K−1 + 1)p

p
+ f(1) (85)

=

L
∑

p=1

1

p
−

L
∑

p=1

1− (−c2K−1 + 1)p

p
. (86)

where we have used (80) to obtain (83) and we have iteratively
expressedf(x) in terms off(x−1) to write (85). Furthermore
we have the two following relations:

log(L) ≤
L
∑

p=1

1

p
≤ log(L) + 1, (87)

log(1− x) = −
∞
∑

n=1

xn

n
, for −1 < x < 1. (88)

Inserting the expression derived forf(x) inside (79) and using
the two bounds provided above, we can obtain the final lower
bound as

EC,h̃

[

− log2

(

min
c∈C

sin2(∠(h̃, c))

)]

≥
1

(K−1) log(2)

L
∑

p=1

1

p
−

1

(K−1) log(2)

L
∑

p=1

(1−c2K−1)
p

p

(89)

≥
log2(L)

(K − 1)
−

1

(K − 1) log(2)

∞
∑

p=1

(1− c2K−1)
p

p
(90)

=
log2(L) + log2(c2K−1)

(K − 1)
(91)

where we have used that the constantc2K−1 is smaller than
one to apply (88) and obtain the termlog2(c2K−1).

B. Proof of Theorem 4

The proof generalizes to the distributed CSI configuration
the proof of Theorem4 in Appendix IV of [1], which derives
the number of DoFs for the multiple-antenna BC with finite
rate feedback. The generalization is non-trivial due to the
fact that in the DCSI-MIMO channel it is not only the inner
product between the beamformer and the channelh̃H

k t
(j)
i

which matters, but also the coherency between the coefficients
used at the different TXs. Following this difference, we do
not use the conventional Grassmannian quantization scheme
but we use instead the quantization scheme described in
Subsection II-B. In a word, it consists in exploiting the fact that
the norm is conserved by the canonical isomorphism between
C

K and R
2K , to use the Grassmannian quantization in the

real subspaceR2K−1. The reduction to2K−1 real dimensions
comes from the multiplication by a unit-norm complex number
to let the first coefficient be real valued. We then define the
angles between vectors in that real linear space. We refer to
Appendix X-A for more detail.

The estimation error made at TXj about the channel
vector h̃i is denoted byδ(j)i such thatδ(j)i , h̃i − h̃

(j)
i .

The estimation error vectors made at TXj are stacked in the
estimation error matrix∆(j) defined as

∆
(j) ,













(δ
(j)
1 )H

(δ
(j)
2 )H

...

(δ
(j)
K )H













. (92)

We also denote byu(j)
i , t

(j)
i /‖t

(j)
i ‖ the conventional ZF

unit-norm beamformer computed at TXj and by u∗
i ,

t∗i /‖t
∗
i ‖ the same beamformer based on perfect CSI. We omit

in this proof the superscriptcZF for clarity.
Furthermore, we consider in the following that the accuracy

of the channel estimates increases with the SNR, i.e., the CSI
scaling coefficientsα(j)

i are all positive. If there is one pair of
indices(i, j) for which α

(j)
i = 0, then the Euclidean distance

betweenu(j)
k andu∗

k does not decrease withP for all k such
that the number of DoFs at all RXs vanishes. When this is
not the case, the norm of the channel estimation errors can be
approximated as

‖δ
(j)
i ‖2 = ‖h̃

(j)
i − h̃i‖

2 (93)

= 2− 2(h̃
(j)
i )Hh̃i (94)

= 2− 2|(h̃
(j)
i )Hh̃i| (95)

= 2− 2

√

1− sin2(∠(h̃(j)
i , h̃i)) (96)

= sin2(∠(h̃(j)
i , h̃i)) + o(sin2(∠(h̃(j)

i , h̃i))) (97)

where (95) is verified when the channel estimate belongs to
the same half-space as the true channel vector. This holds
true in this work for the reason explained in Appendix X-A.
Equality (96) follows from the definition of the angle between
two vectors and (97) is obtained via a Taylor expansion on
the first order in the estimation error.

From (92), we conclude that the square norm of the esti-
mation error‖δ(j)i ‖2 is asymptotically equal to the chordal
distance between the channel estimate and the true chan-
nel sin2(∠(h(j)

i ,hi)) when the SNR increases. The chordal
distance corresponds to the distance minimized by the Grass-
mannian quantization so that this will allow us to apply the
theoretical results provided in Appendix X-A. As a preliminary
step, we will now evaluate the impact of the estimation error
into the computation of the beamformers, i.e., evaluate the
norm of the vectoru(j)

i − u∗
i for all j.

Lemma 2. Let us assume that∀i, α(j)
i > 0, then it holds

asymptotically asP increases

E

[

log2

∥

∥

∥
u
(j)
i −u∗

i

∥

∥

∥

2
]

=E

[

log2

(

max
i=1,...,K

(

sin2(∠(h̃(j)
i ,h̃i))

)

)]

+O(1).

(98)
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Proof: We consider w.l.o.g. the precoding at TXj. Since
∀i, α

(j)
i > 0, the estimation error is infinitely small asP

increases and we can do a first order approximation of the
channel inverse and write

H
−1 − (H̃(j))−1 = −H

−1
∆

(j)
H

−1 + o(‖∆(j)‖F). (99)

Derivation of the Upper Bound: After multiplying by ej
to obtain thej-th beamformer, the Right Hand-Side (RHS) of
(99) can then be upper bounded as follows

‖(H−1−(H̃(j))−1)ei‖
2≤ ‖H−1

∆
(j)

H
−1‖2F+o(‖∆(j)‖2F)

(100)

≤‖H−1‖4F‖∆
(j)‖2F+o(‖∆(j)‖2F)

(101)

≤K2λ2
min(H)

K
∑

k=1

‖δ
(j)
k ‖2+o(‖∆(j)‖2F)

(102)

with λ2
min(H) denoting the smallest eigenvalue of the channel

matrixH. We then take the expectation of the logarithm of this
term according to both the channel estimation error and the
channel distribution. The termlog(λ2

min(H)) is shown to be
integrable and its expectation is given in [45]. The result fol-
lows by upper-bounding each of the estimation errors‖δ

(j)
k ‖2

by the error which is asymptotically the largest, i.e., the one
corresponding to the smallestα(j)

i .
Derivation of the Lower Bound: we start by factorizing

the estimation error matrix as follows

∆
(j) = ∆̄

(j) diag([‖δ
(j)
1 ‖, ‖δ

(j)
2 ‖, . . . , ‖δ

(j)
K ‖]) (103)

with the columns of∆̄(j) consequently normalized to be unit-
norm. We then assume w.l.o.g. that the asymptotic largest
estimation error corresponds to the channelh̃1 (i.e., the
smallest CSI scaling coefficient isα(j)

1 ). Furthermore, we
consider for the sake of exposition that no other channel has
the same CSI scaling coefficient. The proof holds similarly if
this condition does not hold.

Inserting this definition in (99) and taking the logarithm
followed by the expectation over the channel and the es-
timation errors, we can write equation (104). The absolute
value | log(‖H−1‖2F)| can be upper bounded as in (102)
by | log(Kλmin(H))| whose expectation is shown to exist in
[45], thus its expectation also exists. Similarly, the absolute
value of the last term of the RHS in (104) can be upper-
bounded by an integrable function such that it is also integrable
and its expectation is then aO(1), i.e., it remains bounded as
the SNRP increases. This concludes the proof.

Proof of Theorem 4:We will now use Lemma 2 to prove
the theorem. We consider for simplicity that the CSI scaling
coefficients are all different. The proof easily extends to the
configurations with some coefficients equal and this is done
solely to simplify the exposition. We assume w.l.o.g. that the
TX with the smallest CSI scaling coefficient is TX1.

DoF Lower Bound : We denote byui ∈ C
K×1 the

beamforming vector4 such that

∀j ∈ {1, . . . ,K}, {ui}j = {u
(j)
i }j =

{t
(j)
i }j

P/K
. (105)

We start from the number of DoFs expression in (6) that
we rewrite as

DoFcZF
i =1− lim

P→∞
EH,{Wi,j}

[

log2

(

1+
P
K

∑

k 6=i‖hi‖
2|h̃H

i uk|
2
)

log2(P )

]

(106)

=− lim
P→∞

EH,{Wi,j}





log2

(

∑

k 6=i |h̃
H
i uk|

2
)

log2(P )



 .

(107)

To obtain a lower bound for the number of DoFs, we need
to derive an upper bound for the leaked interference in (107).
We start by defining the selection matricesEi = diag(ei). We
can then use this notation to write

∣

∣

∣
h̃H
i uk

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∣

h̃H
i (u

∗
k +

K
∑

j=1

Ej(u
(j)
k − u∗

k)

∣

∣

∣

∣

∣

∣

2

(108)

≤
∥

∥

K
∑

j=1

Ej(u
(j)
k − u∗

k)
∥

∥

2
(109)

=
K
∑

j=1

|eT
j (u

(j)
k − u∗

k)
∣

∣

2
(110)

≤
K
∑

j=1

∥

∥

∥
u
(j)
k − u∗

k

∥

∥

∥

2

(111)

which we insert in (107) to obtain

DoFcZF
i ≥− lim

P→∞
EH,{Wi,j}





log2

(

∑

k 6=i

∑K
j=1

∥

∥

∥
u

(j)
k −u

∗
k

∥

∥

∥

2
)

log2(P )





(112)

≥− lim
P→∞

EH,{Wi,j}

[

log2

(

∑

k 6=i K maxj(‖u
(j)
k −u

∗
k‖

2)
)

log2(P )

]

.

(113)

From (99), the TX whose computed beamformer exhibits the
largest mean square error‖u(j)

k − u∗
k‖

2 at arbitrarily large
SNRP is the TX to whom the lowest CSI scaling coefficient

4The vectorui corresponds to the normalized version ofti. Yet, it is
exactly unit-norm only when all the TXs share thesamechannel estimate.
It is otherwise impossible for the TXs to jointly normalize thebeamformer
based on different channel estimates. This does not represent a problem in
practice because the power constraint is exactly fulfilled in average over the
channel estimation errors.
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E[log(‖(H−1 − (H̃(j))−1)ei‖
2)] = E[log(‖δ

(j)
1 ‖2)] + 2E[log(‖H−1‖2F)]

+ E[log(‖(
H

−1

‖H−1‖F
∆̄

(j) diag([1, ‖δ
(j)
2 ‖/‖δ

(j)
1 ‖, . . . , ‖δ

(j)
K ‖/‖δ

(j)
1 ‖])

H
−1

‖H−1‖F
ei)‖

2)] + o(E[log(‖∆(j)‖2F)])
(104)

belongs, which is by assumption TX1. We can then write

DoFcZF
i ≥ lim

P→∞

EH,{Wi,j}

[

− log2

(

∑

k 6=i ‖u
(1)
k −u

∗
k‖

2
)]

log2(P ) (114)

≥ lim
P→∞

EH,{Wi,j}

[

− log2

(

maxi

(

sin2(∠(h̃
(1)
i ,h̃i))

))]

log2(P )

(115)

≥ lim
P→∞

mini B
(1)
i +log2(c2K−1)+log2(e)

(K−1) log2(P ) (116)

= min
i=1,...,K

α
(1)
i (117)

where (114) is obtained by permuting the expectation and
the limit, (115) follows from Lemma 2 and we have used
Proposition 11 to obtain inequality (116). The last equation
(117) corresponds to the smallest CSI scaling coefficient and
provides the lower bound.

DoF Upper Bound: We now derive an upper bound for
the number of DoFs, which means a lower bound for the
interference. We proceed similarly to (108) but this time to
obtain a lower bound for the interference remaining after
precoding:

∣

∣

∣
h̃H
i uk

∣

∣

∣
=
∣

∣

∣
h̃H
i ak

∣

∣

∣
‖

K
∑

j=1

Ej(u
(j)
k − u∗

k)‖ (118)

≥
∣

∣

∣
h̃H
i ak

∣

∣

∣
‖E1(u

(1)
k − u∗

k)‖ (119)

=
∣

∣

∣
h̃H
i ak

∣

∣

∣
|eT

1b
(1)
k |‖u

(1)
k − u∗

k‖ (120)

where we have defined

ak ,
uk − u∗

k

‖uk − u∗
k‖

, b
(1)
k ,

(u
(1)
k − u∗

k)

‖u
(1)
k − u∗

k‖
. (121)

From (99), we can see thatak can in fact be written asak =
H

−1ãk + o(maxi ‖∆
(j)‖F) with

∀j ∈ {1, . . . ,K}, eT
j ãk , −eT

j∆
(j)

H
−1. (122)

Thus, we can write

∣

∣

∣
h̃H
i uk

∣

∣

∣
≥
∣

∣eT
i ãk

∣

∣ |eT
1b

(1)
k |‖u

(1)
k − u∗

k‖. (123)

The two vectorsãk and b
(1)
k are isotropically distributed so

that the expectation of their logarithm can be easily calculated
and is finite. Inserting (122) inside the number of DoFs

formula in (107), we can write the lower bound

DoFcZF
i =

limP→∞ EH,{Wi,j}

[

− log2

(

∑

k 6=i |h̃
H
i uk|2

)]

log2(P )
(124)

≥
limP→∞ EH,{Wi,j}

[

− log2

(

‖u
(1)
1 − u∗

1‖
2
)]

log2(P )
(125)

≥
limP→∞ E

[

− log2

(

maxi

(

sin2(∠(h̃(1)
i , h̃i))

))]

log2(P )
(126)

with inequality (126) obtained from Lemma 2. The proof
concludes in the same way as the proof of the upper bound
after using Proposition 11.

C. Numerical Values for the Total Feedback Scalingγ

The particular values for the optimization of the feedback
sharing can be found in Table I.

D. CSI Scaling Matrix Used in the Simulations

For Fig. 5, the CSI scaling matrix arbitrarily chosen is

α =





















0 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 0.3 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1





















. (127)

The number of DoFs achieved with the different precoding
schemes read as follows:

Precoding Scheme Number of DoFs
Conventional ZF 0

Active-Passive ZF 2.1
Conventional ZF with HQ 5.3

Active-Passive ZF with HQ 6.3
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