An Improved Algorithm on Viola-Jones Object Detector

Qian Li, Usman Niaz, Bernard Merialdo
Multimedia Department, EURECOM

Sophia Antipolis, France

{Qian.Li, Usman.Niaz, Bernard.Merialdo}@eurecom.fr

Abstract

In image processing, Viola-Jones object detector
[1] is one of the most successful and widely udsdab
detectors. A popular implementation used by most
image processing researchers and implementerseis th

Afterwards, it is also applied to detect other lsinof

object. It works well on the faces, achieving norseo
performance than the best previous systems [18, 19,
20, 21, 22]. Its fast processing speed caterseméed
of real-time applications. But through experimeiotat
we found that it didn't work really well as expeatter

one implemented in OpenCV. The detector shows itsgeneral-purpose object detection task. In addifiona

strong power in detecting faces, but we found ittia

be extended to other kinds of objects. The connesye
of the training phase of this algorithm dependstaoh
the training data. And the prediction precision ysta
low. In this paper, we have come up with new ideas
improve its performance for diverse object categ®ri
We incorporated six different types of feature isrsmg
into the Viola and Jones’ framework. The integral
image [1] used by the Viola-Jones detector is then
computed on these feature images respectivelyaitiste
of only on the gray image. In addition, we also
integrated a key points based SVM [2] predictooint
the prediction phase to improve the confidencehef t
detection result.

1. Introduction

Nowadays the enormous number of videos on the
Internet provides us with large visual and audio
information. We need efficient tools to annotatesth
videos automatically based on their content. There
exist a large number of applications that depend on
video annotation, such as content-based videcvetri
video clustering, video surveillance etc. The
importance of individual object detection in viddos
retrieval tasks cannot be denied as many real life
videos contain significant contribution of localjetts.

Most of the state-of-the-art object detection
researches focus on face. And one of the most famou
detectors is the rapid object detector designedibla
and Jones. It was initially designed for face diec

certain subset of training data, the training prashe
algorithm doesn't converge.

The Viola-Jones object detector uses Haar-like [16]
features, which are reminiscent of Haar basis fanst
to train the stage classifier for the cascadedsiflas
The Haar-like features are predefined and computed
directly on the integral image of the gray image.tise
first contribution of this paper is that we have
introduced multiple feature images into training th
stage classifier instead of only the gray image.dre
stage, several stage classifiers are trained osethe
feature images respectively. The one gives out the
biggest discrimination between the object and non-
object image patches wins and will then be seleated
the stage classifier for the current stage.

The second contribution of this paper is to avbil t
case where the training phase can't converge. The
Viola-Jones’ stage classifier training iteratiorderon
the false alarm rate reaching a predefined threshol
But for a certain set of training samples, thedatarm
rate does not reach the predefined threshold based
our experiments. Here we introduce a new stopping
criterion to terminate the training of the stagessifier,
the maximum variance ratio between score of pasitiv
image patches and score of the negative ones.

The third contribution of this paper is to make the
algorithm output a real-value weighted score fazhea
test image, which represents the confidence that th
image contains a desired object.

The remainder of the paper is organized as follows.
Section 2 details the new elements that we have
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introduced into the Viola-Jones object detector alarm rate as the winner.

implemented in OpenCV [17]. Section 3 would then  The training data is preprocessed and a deiatiire
set up the experiment environment and present theimages are generated as shown in Figure 4.

result. Section 4 concludes the paper and intracgluce These feature images are built based on piieg-w

some ideas into the future work. local image features. We replace the image pjxel
with a new value® which is computed from the local
2. THE PROPOSED FRAMEWORK image feature associated wjthIn the experiment, the

chosen 6 feature images are extracted as follows.

The flowchart of the proposed object detection

Featureimagetypel: Gray Image
framework is shown in Figure 1 (training phase) and getyp y g

Figure 2 (prediction phase). Featureimagetypell: LBP [13, 14] Image
LBP image is extracted on the basis of graygena
2.1. Training Phase For each image pixel, compare it with its 8-neighbo

pixels respectively. Starting from its upper-left
The training phase consists of 2 types of diess nEighbor pixel, visit its 8-neighb0r ClOCk'Wisely]di
AdaBoost classifier [3] (stage classifier) and ealed ~ Update theP’s bits from left to right correspondingly.
classifier. The cascaded classifier is a degerétage I it is bigger than its neighbor, then assigriato the

of stage classifiers. corresponding bit position iR, otherwise a0'. This
Within any image patches, the total number a4~ byte P is the new value of this image pixel. As shown

like features is very large, far larger than thenber of ~ in Fig 5, the resulting new value should be:

pixels. In order to increase its speed, Viola aoded Y 6 4 1 0

have made a simple modification on the AdaBoost 21 =2"+ 20+ 20+ 2+ 2%,

procedure. The weak learner is constrained scethztt Featureimagetypelll: EDGE Image

weak classifier returned depends on only one single We use an improved canny edge detector [7]chwhi
feature. AdaBoost provides an effective learning automatically chooses the high threshold and low
algorithm and strong bounds on generalization threshold value according to the image binarization
performance [4,5,6]. And to satisfy the real time threshold [11]. The image binarization threshold is
demand of the detection algorithm, Viola and Jonesthen chosen to be the high threshold in canny &nd i
computed Haar-like features directly on integrahdge. 40% as the low threshold.

Based on these, first, in this paper we haepgsed
6 different feature images for all the objects. Pae
stage of the cascaded classifier, train 6 stagesifilers
based on 6 feature images respectively, as shown in FeatureimagetypeV: A-channel Image
Fig 3. We select stage classifier with minimumdals A-channel of the Lab color channels.

FeatureimagetypelV: L-channel Image
L-channel of the Lab [8, 9] color channels.
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Featureimagetype VI: B-channel Image
B-channel of the image’s Lab color channels.

Second, the state-of-the-art implementationthef
stage classifier in OpenCV use false alarm rate
reaching a predefined value as its stopping caieri
while this, proved by experimentation, sometimes it
doesn’'t converge even until all the Haar-like feasu
are used to train the weak classifier, the totahiner of
which is far larger than the number of pixels. Toial
time consumed to find the stage classifier thuguise
long and probably with no result at all in the end.

Here we introduce new stopping criterion:
maximum variance ratidR) between score of positive
samples and score of the negative ones. The id&a is

possible and meanwhile keep the intra-varianceacfie

class as small as possible (in a consideration of

robustness)RR is defined with equation 1.

0N
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Fig 4. Six feature images for ‘Hand’ object
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card(p)+[E(p)~E (p+n)]*+card (n)+[E (W) —E (p+n)]?

R =
card(p)*D(p)+card(n)=D(n)

@)

where p is a set afcoresof positive samples, n is the
set ofscoresof negative sample$Scoreis defined as
the stage sum of the last stage classifier of aived
image patch. Stage sum is the cumulative sum of-Haa
like features convolved with the image patéh.(.)
represents the mean of the sBt,(.) represents the
variance of the set andard (.) is the number of
elements in this set.

We continue the stage training if R keeps iasigg.
Intuitively, the stage classifier training will faty
converge since R is not goanna be very large qukee
increasing all the time.

Third, generally it is the user who defines thtal
number of stages used by the cascaded classifiet. A
in most cases, this number could only be found by
repeating multiple parallel experiments, whichtif a
blind process costing a lot of time. Here we hasedu
a small trick to decide the training stages
automatically, a set of validation data.

As shown in Figure 3, before starting to trée
stage classifier, compute the error rate on trginiata
using the previous trained stag&RR_S = FP(false
positive) + FN (false negative); After training each
candidate stage classifier, compute the error oate
validation data;ERR_V = FP + FN If ERR_S <
ERR_V then we could assert that a probable over

ﬁtting occurs. The training process is stoppedneife

the user defined stage number hasn't been arriged y
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2.2. Prediction Phase

The key points based SVM predictor is integtate
into the prediction phase to weight the output ecor
We use SIFT [23] here. We compute one global weight
for all the candidate image patches in the tesigena
and one local weight for each candidate respegtivel
using this predictor.

Firstly, we train the SVM predictor as in Figu®.
We extract the SIFT key points from the trainingada
set. Those key points falling in the desired obpeet
treated as the positive samples, and those outlsale
desired object are treated as the negative ones.

Secondly, we extract the key pointg}{from the
test image and predict it using the SVM predictoen
we get{p(x)|x € X } which represents the probability
of a key pointx belonging to the desired object.

The global weight is defined with equation 2:

card({x|x eobject})
card({x|x €eobject})+card({x|x ¢object})

W, =

)

To compute the local weight, for each candidate
image patch in the test image, figd|Y c X}, Y
represents the key points which are included is thi

candidate image patch. For computation convenience,

regardy|y € Y } as independent random variables and
SO we can compute the entropyYofising equation 3.

HY)=-2Xp®)logp(y) ,y €Y )

H(Y) indicates the uncertainty included in these key
points, thu&-H(Y) shows how much we could trust on
the information provided by these key points.

If the candidate image patch contains the apjec
then it should have a highalifference which is
defined with equation 4:

Xpm)
card({m})

Xp(m)
card({n})

dif ference =

(4)

wherem € object,n & object, meY,neyY
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Fig 7. Score computation on test image
w, = edifferencex(1-H(Y)) (5)
Here we use an exponential function as thestean
function to adjust the influence differencé(1-H (Y))
on the finalscore;y,. Wy is bounded betweehande.
So the final score for each survived candidatEge
patch can be computed using equation 6:

SCOr€fing = Score * w *(1+wy)

(6)

Survived image patches are those who have passed th
evaluation of all the stage classifiers definedthe
cascaded classifier. For each survived image pdtish,
associated with acoreby definition.

We pick the biggestcorey,, among all the survived
image patches as the final score for the test imbaige
computation scheme is briefly shown in Figure 7.

3. Experiments and Results

In our experiments we operate on the TRECVID 2011
development dataset [15]. The number of training
samples (positive, negative and validation dataj an
test images for each concept are listed in TablBe§t
images are the same for all the objects while imgin
images used for extracting samples are independentl
separately and randomly chosen from the dataset.

3.1 Experimental Setup

We have chosen 4 objects for the experiment;
Scene_Text, Computers, Telephones and Hand, which
are part of the list of concepts for TRECVID 20Ebr
each object, we prepared positive and validation

So for each candidate image patch, we compute graining samples by annotating video frames maguall

local confidence weight with equation 5:

using Object Annotator [10]. And for each objecg w



Table 1. Training and testing data number

Objects Training samples Test
pos neg val Images

Computer 233 1185 8¢ 113

Hand 710 1368 53 113

SceneT ext 516 1191 11C 113

Telephone 34 1246 7 113

Table 2. Parameters selected for each object

Objects width height | nstages
Computers 24 24 20
Hand 24 20 20
SceneT ext 54 9 16
Telephone 20 16 14

select training parameters througixperimers. The
parameters chosen are listed in Table 2

The parameter pair (width, heiglagtually defines
the size of the candidate image patdfays to collect
the positive data and negative data to train th¢
predictor are depicted in Figure 6.

For the original Viola and Jones object detec
image patches that have passed the last stagd#iela
are considered to contain the desired object, ehtite
maximumscorewithout any weighting on these ima
patches as the score for the test image.

3.2. Reaults

The feature imagebat have been chosen for e
object are listed in Table Fhough we have chosen
different feature images, not alf themare used. Each
object prefers onsubset. We can see that LBP i
strong candidate for feature images most objects
select it It shows strong local image featu

For the proposed algorithithe stage number
evaluated automatically during the training phiThe
user doesn’t have to do parallel experiments td fie
best stage number for each object, which savesaf
time and efforts at training phasehe algorithm woulc
terminate when detecting tipeobable over fitting. Bu
meanwhile the multiple featuienage processing do
bring a reduction on prediction speed.

From table 4, we can see that the stage nun
actually trained are tremendously reduced in the
algorithm compared to the column ‘nstages’ in Tdh|
which are the stage numbers used by the origirjact
detection algorithm.

In terms of the averagerediction precion after
introducing multiple feature imagesnd SIFT based
SVM predictor, the resultingaverage precisio as
shown in Figure 8, is computeaxh the top 4 images
detectedwith highest scores in all 11est images.
From Figure 8, we can see that tieavalgorithm

Table 3. Feature Image Chosen for Each

Object
stage | 1 2 3 4
object
Computers B L Orig | LBP
Hand LBP | B Orig | LBP
Scene_Text Orig | LBP | LBP | -
Telephone LBP | Orig | Orig | Orig

Table 4. Stage Numbers Chosen for Each

Object
object | Computer | Hand| Scene Te; | Telephone
stages 4 4 3 4

shows better performance th#re original Viola and
Jones’ algorithnimplemented in OpenC.

4. Conclusions

The robustness of the detector is still a veryidti
problem and also we caohignore th impact of the
outliers. The detectionlepends a lot on the selec
training data. The new algorithm doe address this
problem right now. Ongay wouldto focus on finding
methods to deouple the dependency of tlearning
algorithm on tle correlation betweetraining data and
testing data. Another possibility is to ntroduce
heuristics into the training data selectiphase to
enhance the robustness of the algori

Currently we have chosen the same 6 fee
images for all objects. And thus, the improven
varies on different object. Afterwards, some w
should be focused on inspecting suitable fee
images particularly for each obje
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