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Abstract—Cognitive radio has been lately suggested as a
promising technology in order to improve spectrum utilization.
This paper addresses the problem of channel estimation in an
underlay interference-prone cognitive radio setup. We consider a
primary and a secondary base station, both with multiple antenna
capability and serving multiple users. Although previous studies
propose the use of beamforming to handle secondary-caused
interference, this cannot be done in practice unless channels are
correctly estimated in the first place. However channel estimation
itself is plagued by interference (pilot contamination effects).
Therefore we propose a method to address channel estimation at
the primary system while removing contamination caused by the
secondary transmitter. The approach is twofold: (i) We develop
a robust channel estimator which makes use of covariance
information. We show analytically that the performance of this
estimator is identical to the interference free scenario under
certain when the number of antennas becomes large under a
condition on the distribution of the multipath model. (ii) We build
a pilot assignment algorithm which seeks to fulfill this condition.
Significant gains are reported.

Index Terms—cognitive radio, massive MIMO, channel esti-
mation, scheduling, covariance information.

I. INTRODUCTION

Spectrum sharing is principally examined in the context of
opportunistic spectrum usage and cognitive radio. In overlay
cognitive radios, a primary radio system and a secondary one
share the spectrum, in a way that the secondary devices can
maximize the use of the spectrum under the condition of
generating a small acceptable amount of interference to the
primary ones [1], [2], [3], [4].

The use of multiple antennas at the secondary (and possibly
primary) devices has proved to be very useful in order to
allow interference rejection or avoidance mechanisms, and
hence fulfilling the condition of limiting the impact caused
by the secondary-generated interference to the primary system
[5], [6], [7]. It should be noted, however, that MIMO-based
approaches (often based on zero-forcing principles or its regu-
larized variants) are efficient in dealing with interference, pro-
vided the channel vectors corresponding to intended users as
well as interfering users can be estimated accurately enough.
Interestingly, it was recently shown that the condition of
knowing the interfering channel can be alleviated by sticking
to simple spatial matched filter based receivers or transmitters.
Although highly suboptimal in many interference scenarios,
matched filters’ (maximum ratio combining MRC) gains ap-

proach optimality when the base station antenna numbers are
allowed to grow large, giving rise to the so-called Massive
MIMO concept [8]. This phenomenon simply exploits the fact
that as the number of antenna elements increases to infinity,
the independent desired and interference channel vectors grow
more orthogonal to each other, allowing the MRC to maximize
the SNR at the desired user while rejecting (or avoiding on the
downlink) interference to others ”for free”. Large numbers of
antennas do not have to be installed on the same base tower.
Instead, they can be spread around on a larger area, such as
a large building’s face or roof area, making Massive MIMO
more realistic than initially thought.

Although the concept of large scale antenna systems was
initially investigated for cellular networks, there is a clear
potential in the area of cognitive radio networks as well where
interference is even more problematic. However, this has not
been addressed to the best of our knowledge. In particular, we
put emphasis on the fact that even MRC filters assume that the
channel vectors can be accurately estimated in Massive MIMO
systems, as even a slight mismatch in the channel estimation
will reduce system performance substantially when one is in
the large antenna number regime. As primary and secondary
systems cannot be fully coordinated, it is likely that the pilot
sequences used in both systems do not satisfy orthogonality.
This gives rise to the well known effect of pilot contamination
(PC) [9], [10], [11], [12], [13]. PC causes the fast saturation
of the interference rejection performance, as the number of
antennas, M increases.

Recently a novel approach has been presented for decon-
taminating pilots in the context of Massive MIMO cellular
networks [14]. The key idea lies in the exploitation of second
order statistics (covariance matrix) for both the desired channel
to be estimated as well as the interference channels. We
assume such information can be collected and exchanged
between base stations beforehand since this is slow-varying
data. A robust Bayesian channel estimator is then developed.
The surprising result in [14] is that when the number of anten-
nas grows large, such an estimator will exhibit performance
identical to that obtained in a zero-interference setting, given
a condition on the distribution of multipath for both desired
and interfering users.

In this paper, we take on this idea and adapt it to the
context of underlay cognitive radios. The main difference



between the cellular and underlay cognitive networks is the
notion of priority for the cognitive scenario. To deal with this
problem we propose a new pilot assignment scheme which
is implemented in the secondary operator. This scheme aims
at maximizing the channel estimation quality for secondary
users, while minimizing the impact created by secondary users
onto the primary channel estimation performance. It is shown
analytically and by simulation that as the number of antennas
grows large, one can have interference free channel estimation
at the primary operator while letting the secondary users
communicate.

II. SIGNAL AND CHANNEL MODELS

Our model consists of a network of two service providers
(SPs), a primary one, SPP and a secondary one, SPS , with full
spectrum reuse (Fig.1). Estimation of (block-fading) channels
in the uplink is considered, and the two base stations, BSP
and BSS are equipped with M antennas each. We also assume
that, both the primary (PU) and secondary (SU) users are
equipped with a single antenna each and that K users belong to
each SP’s area. Moreover, the pilots, of length τ , used by users
belonging to the same operator are mutually orthogonal. As a
result, we assume that intra-operator interference is negligible.
However, non-orthogonal (possibly aligned) pilots are reused
among the operators, resulting in pilot contamination from
the other SP’s users. The pilot sequence used within the k-
th operator’s area (k ∈ {P, S}) is denoted by

sk = [ sk1 sk2 · · · skτ ]T (1)

. The pilot symbols are normalized such that |sk1|2 = · · · =
|skτ |2 = 1 for every operator index k = P, S, where P denotes
the primary service provider and S denotes the secondary (or
cognitive) service provider.

We denote the receive covariance matrix R
(k→l)
i ∈ CM×M

as R
(k→l)
i = E

{
h
(k→l)
i h

(k→l)H
i

}
, where user i is assigned to

SPk and h
(k→l)
i is the channel vector between this user and the

l-th base station, k, l ∈ {P, S}. In this paper we assume that
only one user per service provider is active at each resource
allocation block, thus we momentarily omit the user index
subscript, which will be useful later for the pilot assignment
algorithm description. Channel vectors are assumed to be M×
1 complex Gaussian, undergoing correlation due to the finite
multipath angle spread at the base station side as [15]:

h(k→l) = R(k→l)1/2hW
(k→l)k, l ∈ {P, S} (2)

where hW
(k→l) is the spatially white M × 1 SIMO channel

with hW
(k→l) ∼ CN (0, IM ), the user is assigned to SPk, and

IM is the M ×M identity matrix.
During the pilot phase, the M × τ signal received at each

base station from the user assigned to SPk is

Y(k) = h(P→k)sTP + h(S→k)sTS + N(k) (3)

where N(k) ∈ CM×τ is the spatially and temporally white
additive Gaussian noise (AWGN) with element-wise variance
σ2
n [16].
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Fig. 1. Topology of a cognitive network comprising of two service providers

III. COVARIANCE-AIDED CHANNEL ESTIMATION

In this section we recall some key results obtained in [14]
for the conventional cellular scenario. Then, in section IV the
results are generalized to adapt to the cognitive radio scenario.

A. Covariance-based Bayesian estimator
By taking advantage of the known long-term covariance

information of the channels, a Bayesian estimator, which is
equivalent to a MMSE estimator, is given by [14], [17]:

ĥ(k→k) = R(k→k)S̄H(S̄(R(k→k) + R
(l→k)

)S̄H + σ2
nIτM )−1y(k)

(4)
where l 6= k, S̄ is a matrix containing the pilot vectors, the
user is assigned to SPk, and y(k) is the vectorized received
training signal, that is: y(k) = vec(Y(k)) [14]. It is noted
that the expression (4) is similar to the traditional Bayesian
estimator as shown in [17] [18]. The difference is that here
identical pilot sequences are sent by users, and covariance
information is assumed to be known at the BS side.

Applying the matrix inversion identity A(I + BA)−1 =
(I + AB)−1A, we can obtain a more convenient form:

ĥ(k→k) = R(k→k)
(
σ2
nIM + τ

(
R(k→k) + R(l→k)

))−1

S̄Hy(k).

(5)

B. MSE Performance Analysis

We are interested in the mean squared error (MSE) of the
proposed Bayesian estimator developed in [14], which in the
cognitive network case can be defined as:

Mk , E
{∥∥∥ĥ(k→k) − h(k→k)

∥∥∥2
F

}
(6)

where the user is assigned to SPk and k ∈ {P, S}. The MSE
of the Bayesian estimator (5) with completely aligned pilots
is recalled from [14] for convenience.

Proposition 1. The estimation MSE of (5) is given by

Mk = tr

{
R(k→k) −R(k→k)2

(
σ2
n

τ
IM + R(k→k) + R(l→k)

)−1
}

(7)
where k 6= l.

Proof: The proof can be found in [14].



We can easily derive the MSE of (5) obtained in an
interference free scenario, by setting interference covariance
matrices to zero in (5):

Mno int
k = tr

{
R(k→k)(IM +

τ

σ2
n

R(k→k))
−1
}

(8)

where superscript no int refers to the ”no interference case”.
The corresponding channel estimate in this case is

ĥ(k→k)no int = R(k→k)(σ2
nIM + τR(k→k))−1S̄H(S̄h(k→k) + n).

(9)

C. Large antenna number regime

Our objective is to analyze the performance of the above es-
timators in the large antenna number regime M . For tractabil-
ity, our analysis is based on the assumption of a uniform linear
array with supercritical antenna spacing (i.e. less than or equal
to half wavelength).

In this paper we make use of the following multipath model

h(k→k) =
1√
P

P∑
p=1

a(θ(k→k)p )α(k→k)
p (10)

where P is the arbitrary number of independent spatially
separated paths, α(k)

p ∼ CN (0, δ(k)2) is independent over
the path index p, where δ(k) is the user channel’s average
attenuation. a(θ) is the steering vector,as shown in [19]

a(θ) ,


1

e−j2π
D
λ cos(θ)

...
e−j2π

(M−1)D
λ cos(θ)

 (11)

where D is the antenna spacing at the BS and λ is the signal
wavelength, such that D ≤ λ/2. θp ∈ [0, π] is a random AOA.
Note that we can limit angles to [0, π] because any θ ∈ [-π, 0]
can be replaced by -θ giving the same steering vector.

A principal result of [14] is stated below, where the nota-
tions are adapted to our cognitive network model:

Theorem 1. Assume the multipath angle of arrival θ yield-
ing channel h(k→k) given in (10) for a user assigned
to SPk, is distributed according to an arbitrary density
p(k→k)(θ) with bounded support, i.e. p(k→k)(θ) = 0 for
θ /∈ [θmin,(k→k), θmax,(k→k)] for some fixed θmin,(k→k) 6
θmax,(k→k) ∈ [0, π] . If the interfering user’s AOA in-
terval [θmin,(l→k), θmax,(l→k)] , k 6= l ∈ {P, S} is strictly
non-overlapping with the desired channel’s AOA interval
[θmin,(k→k), θmax,(k→k)], we have

lim
M→∞

ĥ(k→k) = ĥno int,(k→k) (12)

Proof: The proof can be found in [14].
From the above analysis and especially from Theorem 1,

lemmas (1)-(3) and the rest of results given in [14] we con-
clude to the fact that the MSE performance of the covariance-
aided channel estimation, in case this regards a PU, strongly
depends on the degree with which the signal subspaces of
the covariance matrices R(P→P ) and R(S→P ) overlap with

each other. As a result, this will lead to an interference
avoidance criterion for a primary user, PU, because in case the
signal subspace of one of the two aforementioned covariance
matrices will be achieved to be the orthogonal complement of
the signal subspace of the other covariance matrix - or at least
close to that one, then the pilot contamination effect will tend
to vanish in the large antenna number, M , regime.

IV. COORDINATED COGNITIVE RADIO PILOT
ASSIGNMENT ALGORITHM

A. Introduction
In this section, we design a suitable coordination protocol

for scheduling secondary users (SUs) to the above described
two-operator cognitive radio network. We assume that the
primary base station (BSP ) unconstrainedly selects a user
i?, where i? ∈ {1 · · ·K} is assigned to SPP and the
secondary base station (BSS) initially visits in an exhaustive
manner all the secondary users, in order to acquire a subset,
L ⊂ {1 · · ·K} , the elements of which will be the indices of
the SUs which are ε-orthogonal to user i?. We suppose that a
SU within subset L is indexed by j ∈ L. Then, the secondary
BS, BSS will schedule user terminal j? ∈ L which will have
the best channel estimation MSE performance.

B. Secondary user scheduling algorithm
The scheduling (optimization) problem with respect to the

secondary network is the following

j? = argmin
j∈L

MS

tr
{

R
(S→S)
j

} (13)

subject to ∥∥∥R(S→P )
j R

(P→P )
i?

∥∥∥
2

tr
{

R
(S→P )
j

}
tr
{

R
(P→P )
i?

} < ε (14)

where j ∈ L ⊂ {1 · · ·K} belongs to SPS and ε is a positive
system design parameter which illustrates the degree of
orthogonality between the signal spaces spanned by the
covariance matrices R

(S→P )
j and R

(P→P )
i?

. In case ε is such
that BSS cannot find such a subset L of users (|L| = 0), it
selects no user for the present resource block; in other words,
the secondary system becomes silent.
In summary, the above explained coordinated user scheduling
algorithm can be described in terms of each scheduling
interval by the following steps:

Step1 : BSP selects a user i? for transmission,
i? ∈ {1 · · ·K}

Step2 : Having this information, BSS finds a user subset,
L with |L| < K such that j ∈ L when

∥∥∥R(S→P )
j R

(P→P )
i?

∥∥∥
2

tr
{

R
(S→P )
j

}
tr
{

R
(P→P )
i?

} < ε. (15)



In case no SU fulfills the above orthogonality criterion, BSS
schedules no user (the PU functions under interference-free
conditions), otherwise move to step 3.

Step3 : BSS schedules user j? ∈ L where

j? = argmin
j∈L

MS(R
(S→S)
j ,R

(P→S)
i?

)

tr
{

R
(S→S)
j

} . (16)

V. NUMERICAL RESULTS

In order to evaluate the performance of the proposed
scheme, simulations of a two-SP system have been performed.
Some basic simulation parameters are given in Table I. These
parameters are being kept in the following simulations unless
otherwise stated.

TABLE I
BASIC SIMULATION PARAMETERS

SP area radius 1 km
SP area edge SNR 20 dB
Number of users per SP 10
Distance from a user terminal to its BS 800 m
Path loss exponent 3
Carrier frequency 2 GHz
Antenna spacing λ/2
Number of paths 50
Pilot length 10

In the following simulations the angles of arrival (AOAs)
follow an unbounded (Gaussian) distribution. Moreover, all
the user terminals have the same distance from their serving
BS (800m) and the angles of their positions are uniformly
distributed along this circle. The performance metric used to
evaluate the proposed coordinated scheduling scheme is the
normalized channel estimation mean squared error (MSE). Nu-
merical results which depict the performance of the scheduling
scheme proposed with an averaging over 100 independent
system topologies (user positions) are shown both for a
primary user (PU) and for a secondary user (SU), for an
angle spread of 10 degrees and for two different values of the
threshold ε, 0.03 and 0.08 respectively. In the figures, ”CBC”
stands for the proposed Covariance-Based (Bayesian) Coordi-
nated estimation algorithm, ”CBU” denotes the Covariance-
Based Uncoordinated estimation case, ”CBIF” denotes the
Covariance-Based Interference-Free case , while ”LSU” stands
for the Least Squares (conventional) Uncoordinated case and
finally, ”LSIF” corresponds to the Least Squares Interference-
Free case.

From Fig.2 and Fig. 3 we observe that the covariance-based
(Bayesian) channel estimation methods -both CBU and CBC-
outperform the conventional (LS) estimation method for the
whole range of M under examination, both for the PU and
for the SU. Also importantly, the proposed CBC scheduling
algorithm shows a better performance behavior compared to
the uncoordinated CBU algorithm. More specifically, as Fig.2
shows, the performance gain of the CBC over the CBU
algorithm can reach or even overcome (for smaller values of
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Fig. 2. PU Estimation MSE vs. BS antenna number, 2 SP network, Gaussian
distributed AOAs, σθ=10 degrees, ε = 0.03, τ = 10 symbols/pilot sequence
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Fig. 3. SU Estimation MSE vs. BS antenna number, 2 SP network, Gaussian
distributed AOAs, σθ=10 degrees, ε = 0.03, τ = 10 symbols/pilot sequence

M ) the value of 6dB plus the fact that the MSE performance of
the PU slowly approaches the interference-free case for large
values of M , which verifies Theorem 1. The above conclusions
also hold for the SU case, with the difference being in the slope
of the CBC curve. Here, the SU-CBC curve approaches the
interference-free performance in a really fast way. This can be
explained by the fact that the orthogonality threshold value ε
remains unchanged for the whole M range, so consequently,
as M grows really large and ε remains the same, the SU
will tend to suffer from very few or even zero outages, thus
causing interference to the PU and this is the reason why the
slope of the PU-CBC curve is much smaller. Due to this way
of implementation, looking at the smaller M regime, the PU
behaves satisfactorily and the gap between the PU-CBC and
the SU-CBC is significant for small values of M (MSE of
about -22dB for the PU and -10dB for the SU when M = 10).

In Fig. 4 and Fig. 5 the MSE performance curves of the
same algorithms are derived for a larger threshold parameter,
ε. Here, we can make similar conclusions as the above with a
big difference: the PU-CBC performance has now deteriorated
(-13dB for M = 10) and it is just marginally better than the
PU-CBU one. On the contrary, the SU-CBC curve is fastly
approaching the interference-free regime and it behaves almost
likewise over a value of M (M = 60). The explanation of this
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Fig. 4. PU Estimation MSE vs. BS antenna number, 2 SP network, Gaussian
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Fig. 5. SU Estimation MSE vs. BS antenna number, 2 SP network, Gaussian
distributed AOAs, σθ=10 degrees, ε = 0.08, τ = 10 symbols/pilot sequence

phenomenon is the same as the one described above: as the
threshold value is decreased for an unchanged value of M
and the angle spread, the coordinated CB scheduling method
works more efficiently for the PU. Hence, an important part
of the pilot assignment algorithm’s design is deciding on an
appropriate orthogonality threshold, which will compromise
between guaranteeing the interference avoidance for the PU
and simultaneously limiting the outage rate of the secondary
system.

VI. CONCLUSIONS

This paper proposes a covariance-based pilot assignment
algorithm within the channel estimation process itself regard-
ing a cognitive radio network which consists of two service
providers (SPs) and their corresponding users. The pilot as-
signment method is based upon the long-term knowledge of
the second order statistics of the user channels within both
service operators. In the large BS antenna number, M , regime,
it is shown that the channel estimation performance approaches
an interference-free scenario and significant performance gains
are presented.
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