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Abstract—We consider a multiuser MIMO Mobile Satellite
System (MSS) and model its channel as a cascade of a slow
varying component, directivity vector, and a fast fading com-
ponent, propagation component. We study the estimation of the
slow varying part of the satellite channel at the gateway. Since the
channel model is nonlinear, we propose a nonlinear parametric
least squares approach. This optimization problem is shownto
be equivalent to an eigenvalue complementary problem. The
equivalent problem does not require an intermediate estimation
of the nuisance (fast fading component) with relevant benefits
in terms of computational complexity. The performance of the
proposed algorithm is assessed by simulations based on realistic
satellite channels.

I. I NTRODUCTION

In modern multibeam satellite systems (MSS), thanks to
the improvements in the switching speed of beamforming
networks (BFN), adaptive beamforming for mobile terminals
is nowadays a realistic option.

The knowledge of channel state information (CSI) at the
gateway is critical for the design of an adaptive beamformer.
Therefore, CSI acquisition becomes a crucial problem and
strongly depends on the channel characteristics.

In satellite systems, the fading components of the channel
are highly variable, the channel coherence time is much shorter
than the round trip delay of the signal, and possible feedback
of the CSI is already stale when received. In this situation,
channel distribution information (CDI) provides a practical
solution since the channel statistics change slower than the
CSI.

In a satellite system, the CDI can be estimated at the STs
and fed back to the gateway or can be estimated at the gateway
if channel reciprocity holds. The latter approach presentswell
known benefits in terms of system spectral efficiency since
a feedback channel is not required. In this contribution, we
assume that channel reciprocity holds, at least from a statistical
point of view, and the CDI is estimated at the gateway.

The acquisition of the CDI at the gateway, for a satellite
system with mobile satellite terminals (ST) equipped eventu-
ally with multiple antennas and transmitting in left and right
polarization, presents completely new challenges compared to
the thoroughly studied field of satellite channel estimation
finalized to the coherent detection and decoding of the channel
at the receiver side and it is a completely unexplored field.
By assuming that the statistics of the propagation coefficients

are available at the gateway, the CDI estimation reduces to
the estimation of the slow varying components of the fading
channel. From a signal processing perspective, this implies the
challenging task of estimating parameters observed through
multiplicative nuisance.

The estimation of the directivity vectors is intrinsicallynon-
linear. We consider a parametric model of channels where the
directivity vector (slow fading components) is parametrically
represented by a linear combination of given known direc-
tivity vectors and the varying propagation coefficients (fast
fading components) play the role of multiplicative nuisance
parameters. In this work, we propose an algorithm to estimate
the directivity vector parameters based on a least squares
criterion. We show that the estimation problem reduces to
an eigenvalue complementary problem. We dub the proposed
algorithm Parametric Least Squares Estimation (PLSE). The
proposed algorithm does not require the estimation of nui-
sance parameters and this enables a considerable complexity
reduction.

Throughout this article, we adopt the following notations.
Vectors are written in boldface lower case letters; matrices in
boldface capital letters. SuperscriptsT , ∗, H denote transpo-
sition, elementwise conjugation, conjugate transposition of a
matrix, respectively.Re(·) denotes the real part operator and
‖ · ‖l denotes the norml vector. Shortly,‖ · ‖ denotes the
Euclidean norm.A(∽i) represents the submatrix of the matrix
A obtained by removing thei-th column and thei-th row.

II. SYSTEM MODEL

The modeling of a multi-antenna satellite system channels
with satellite antenna mobility is currently object of intense
research. An updated overview of the ongoing studies and
recent results about the channel modeling can be found in [1].
We follow the channel model proposed by [2] and refer to
it as Surrey model throughout this work. Thus, the channel is
modeled as a cascade, i.e. analytically a multiplication, of two
different components: (a) directivity vector between a satellite
terminal (SA) and the satellite and (b) propagation coefficients.
The directivity vector depends on the radiation patterns of
the SAs and the STs’ positions. The propagation coefficients
model the propagation losses (atmospheric and shadowing)
between satellite and ST.



We consider a satellite system consisting of a gateway, a
bent-pipe satellite equipped withN antennas (SA) andK STs
endowed withR antennas. All antennas transmit in left and
right polarizations. The discrete-time baseband receivedsignal
at the gateway at timet is given by

y[t] = D[t]P [t]x[t] + z[t], (1)

where y[t] is the column vector of received signals at the
gateway,D[t] is the directivity matrix,P [t] is the propagation
matrix, x[t] is the 2RK vector of transmitted signals, and
z[t] is the additive noise vector introduced at the gateway1.
The noise vector is a zero mean white Gaussian process with
covariance matrixσ2

zI.

Let xk[t] be the2R-dimensional vector of symbols trans-
mitted in left and right polarization by theR antennas of ST
k. Then, the vectorx[t] of transmitted signals is obtained by
stacking together theK vectorsxk[t], i.e.,

x[t] =
(
xT
1 [t],x

T
2 [t], ...,x

T
K [t]

)T
. (2)

The propagation matrixP [t] is a block diagonal matrix with
K independent blocksP k[t] of size2× 2R and form

P k[t] =

(
P

(1)
k,r [t] 0 · · · P

(R)
k,r [t] 0

0 P
(1)
k,l [t] · · · 0 P

(R)
k,l [t]

)
,

where P
(ℓ)
k,o [t] denotes the fast fading coefficient affecting

the link between the satellite and antennaℓ at ST k in o-
polarization2. It is worth noting that this fading component
is due to local perturbation of the signals around the ST.
Due to the very large distance between SAs and a ST, and
propagation in deep space, the same fast fading components
affects the signals from all SAs to a single antenna in a
certain polarization. We make the realistic assumption that
the variations of directivity vectors due to ST movements are
negligible in the time interval when the channel is measured
for estimation. Thus, we assume that the directivity vectors
are constant in our system model and we drop the time index
in the matrixD[t]. The directivity matrixD can conveniently
be structured inKN blocks of form

Dk
n =

(
dkn,rr dkn,rl
dkn,lr dkn,ll

)
=

(
dk
n,r

dk
n,l

)
, (3)

where dkn,ov, with o, v ∈ {r, l} represents the directivity
coefficient of SAn in o polarization in direction of STk in v

polarization;dkn,rl anddkn,lr are cross polarizations;dkn,rr and
dkn,ll are co-polarizations. Then,Dk

n describes the static part of
the channel between STk and SAn anddk

n,o = (dkn,or, d
k
n,ol)

is the component ino-polarization at SAn. The block column
of size 2N × 2, Dk = (DkT

1 ,DkT
2 , . . .DkT

N )T represents

1In this model, the attenuation between satellite and gateway is neglected
and the channel link satellite-gateway is modeled as an additive white
Gaussian channel. Additional noise introduced at the satellite antenna (e.g.
intermodulation noise) is not explicitly considered in this model but it can be
taken into account in the additive white noise at the gateway.

2In this model we assume that the signal leakage from left to right
polarization and vice versa is negligible at the STs.

the directivity coefficients of STk. It is common to assume
dkn,rr = dkn,ll anddkn,rl = dkn,lr.

The directivity vector corresponding to a certain ST is
determined by two factors: the geographic position of the
ST and the frequency carrier. Interestingly, the effects of
the frequency carrier on the directivity vectors are minor.
They can be neglected in a given satellite system, e.g., in
Ka band or Ku band. This implies that we can benefit from
directivity reciprocity both in Time and Frequency Division
Duplex (TDD/FDD) mode, and not only in TDD mode, as in
terrestrial mobile communications.

Throughout this work, we make two realistic assumptions:
(a) the directivity vectors of some reference STs in a grid are
known at the gateway.3 We denote byG the matrix available
at the gateway and containing all the directivity vectors ofthe
points in the grid. The matrixG has a block structure similar
to the one ofD with blocksGk

n of form (3); (b) the directivity
vector of a ST in an arbitrary position can be determined
as a convex combination of the directivity vectors at some
reference points. More specifically, let us consider STk with
coordinatesSk ≡ (x, y), and letGπ(i) ≡ (aπ(i), bπ(i)), with
i = 1, 2, 3, be the three nearest reference points surrounding
ST S. The pointSk can be expressed as convex combination
of Gπ(1), Gπ(2), andGπ(3), i.e.

Sk = αk
1Gπ(1) + αk

2Gπ(2) + αk
3Gπ(3)

with 0 ≤ αk
i ≤ 1, for i = {1, 2, 3}, and

∑3
i=1 α

k
i = 1. If

Gπ(i) denotes theπ(i) block column ofG corresponding to
pointGπ(i), then, the directivity column blockDk of ST k is
given by convex combination of the directivity column vectors
with identical coefficients

Dk = αk
1G

π(1) + αk
2G

π(2) + αk
3G

π(3). (4)

The estimation of the directivity matrixD is based on the
synchronous transmissions of pilot sequences by all active
STs. STk transmits2R pilot sequences of lengthL, one for
each antenna and polarization. They are known by the gateway
and differ each other and from the pilot sequences assigned
to other STs. The pilot sequences are transmitted during a
time slot not longer than the coherence time of the channel.
Thus, in a time slot, the propagation matrix is constant and we
denote the constant values in time slotq asP k(q) andP (q)
for ST k and all the STs, respectively. Observations overQ

different time slots are utilized for the estimation. Underthese
assumptions, the signal received at SAn in o-polarization,
with o ∈ {l, r}, is given by

yn,o[sq + s] = dn,oP (q)x[sq + s] + zn,o[sq + s], (5)

where dn,o = (d1
n,o,d

2
n,o, . . . ,d

K
n,o), sq is the time offset

when the transmission of a pilot sequence for theqth slot
starts ands = 0, . . . , L − 1 is a time index. The observation
signalYYYn,o(q) = (yn,o[sq], yn,o[sq +1], . . . , yn,o[sq +L− 1])
in the coherence timeq at SA n and o-polarization, is given
by

YYYn,o(q) = dn,oP (q)Xq +ZZZn,o(q), (6)

3We recall that they depend on the SAs’ radiation patterns.



where Xq is the 2RK × L matrix whose rows are
the pilot sequences of the active STs andZZZn,o(q) is
the L-dimensional row vector of the noiseZZZn,o(q) =
(zn,o[sq], zn,o[sq + 1], . . . , zn,o[sq + L− 1]) .

III. D IRECTIVITY ESTIMATION

In this section, we describe our approach to the estimation of
the directivity vectors. It consists of two steps. In the first step,
we perform a standard linear estimation of the transfer channel
matrix based on standard linear least squares estimation (LSE)
in each time slot. The second step consists of a nonlinear
estimation of the directivity vectors based on a least squares
error criterion.

Let hn,r(q) and hn,l(q) be the transfer vectors from all
the ST to SAn at time slotq in left and right polarization,
respectively. They consist ofK blocks hk

n,r(q) and hk
n,l(q)

defined as

h
k
n,r(q) =

(
h
k,(1)
n,rr (q), h

k,(1)
n,rl

(q), · · · , hk,(R)
n,rr (q), h

k,(R)
n,rl

(q)
)

=
(
d
k
n,rrP

(1)
k,r

(q), dk
n,rlP

(1)
k,l

(q), · · · , dk
n,rrP

(R)
k,r

(q), dk
n,rlP

(R)
k,l

(q)
)

and

h
k
n,l(q) =

(
h
k,(1)
n,lr

(q), h
k,(1)
n,ll

(q), · · · , h
k,(R)
n,lr

(q), h
k,(R)
n,ll

(q)
)

=
(
d
k
n,lrP

(1)
k,r

(q), d
k
n,llP

(1)
k,l

(q), · · ·, d
k
n,lrP

(R)
k,r

(q), d
k
n,llP

(R)
k,l

(q)
)
,

respectively. Then, (6) reduces to

YYYn,o(q) = hn,o(q)Xq +ZZZn,o(q). (7)

By applying standard results on linear LSE (see e.g. [3]),
we obtain the LSE estimation ofhn,r(q) andhn,l(q) given
by

ĥn,o(q) = YYYn,oX
H
q (XqX

H
q )−1 {o} = {r, l}. (8)

The estimation error isεn,o(q) = ĥno(q)−hno(q), o = r, l.

By rearranging the components in̂hn,r(q) and ĥn,l(q) and
utilizing the assumptionsdkn,ll = dkn,rr anddkn,lr = dkn,rl, we
obtain the system of equations





dkn,rrP
(1)
k,r (q) = ĥ

k,(1)
n,rr (q) + ε

k,(1)
n,rr (q)

dkn,lrP
(1)
k,r (q) = ĥ

k,(1)
n,lr (q) + ε

k,(1)
n,lr (q)

dkn,rrP
(1)
k,l (q) = ĥ

k,(1)
n,ll (q) + ε

k,(1)
n,ll (q)

dkn,rlP
(1)
k,l (q) = ĥ

k,(1)
n,rl (q) + ε

k,(1)
n,rl (q)

...

dkn,rrP
(R)
k,l (q) = ĥ

k,(R)
n,ll (q) + ε

k,(R)
n,ll (q)

dkn,rlP
(R)
k,l (q) = ĥ

k,(R)
n,rl (q) + ε

k,(R)
n,rl (q),

(9)

where the indices of the components of the estimates and

the estimation error vectorŝh
k

n,o(q) and εkn,o(q) are defined
consistently with the ones of vectorhk

n,o(q). By making use
of (4), we express (9) in a matrix form as function of the
channel parametersαk

1 , αk
2 andαk

3 . Let us define the vector
αk =

(
αk
1 , α

k
2 , α

k
3

)T
and the matrix

G̃
k

n =
(
gπ(1),T
n,r , gπ(2),T

n,r , gπ(3),T
n,r

)
, (10)

wheregπ(i)
n,r is the first row vector of the blockGπ(i)

n of matrix
G. Then,

dk,T
n,r = G̃

k

nα
k. (11)

By substituting (11) in (9), we obtain




P
(1)
k,r (q)G̃

k

nα
k = ĥ

k,(1)

n,r (q) + ε
k,(1)
n,r (q)

P
(1)
k,l (q)G̃

k

nα
k = ĥ

k,(1)

n,l (q) + ε
k,(1)
n,l (q)

...

P
(R)
k,r (q)G̃

k

nα
k = ĥ

k,(R)

n,r (q) + ε
k,(R)
n,r (q)

P
(R)
k,l (q)G̃

k

nα
k = ĥ

k,(R)

n,l (q) + ε
k,(R)
n,l (q)

(12)

where ĥ
k,(ℓ)

n,r (q) =
(
ĥ
k,(ℓ)
n,rr (q), ĥ

k,(ℓ)
n,lr (q)

)T
, ĥ

k,(ℓ)

n,l (q) =
(
ĥ
k,(ℓ)
n,ll (q), ĥ

k,(ℓ)
n,rl (q)

)T
, andεk,(ℓ)n,r (q) andεk,(ℓ)n,l (q) are defined

similarly.
The directivity estimation reduces to the estimation of

the parametersα. We estimate these parameters based on
a nonlinear least squares error criterion. The optimization
problem can be formulated as

minimize
∑

ℓ=1,...R
q=0,...,Q−1
n=1,...,N

‖ĥ
k,(ℓ)

n,r (q)− P
(ℓ)
k,r(q)G̃

k

nα‖2

+‖ĥ
k,(ℓ)

n,l (q)− P
(ℓ)
k,l (q)G̃

k

nα‖2

subject to 0 ≤ αi ≤ 1, i = 1, 2, 3 Problem P0∑3
i=1 αi = 1

with optimization variablesα andP
(ℓ)
k,l , ℓ = {1, ..., R}, q =

{0, ..., Q− 1}, n = {1, ..., N}.
Problem P0 does not reduce to linear LSE because of the

presence of nuisance parametersP
(ℓ)
k,o(q) and it is in general

nonconvex. The following theorem establishes the equivalence
of P0 to a generalized symmetric Eigenvalue Complementarity
Problem (EiCP) object of thorough studies in optimization
theory (see e.g. [4] and references therein).

Theorem 1. Problem P0 is equivalent to the following prob-
lemP1 with optimization variableα,

maximize fk(α) =
αH

Re(Hk)α

αHRe(Γk)α
Problem P1

subject to
∑3

i=1 αi = 1 0 ≤ αi ≤ 1, i = 1, 2, 3

beingHk andΓ
k the 3× 3 matrices defined as

H
k = G̃

k,H




Q−1∑

q=0

R∑

ℓ=1

(
ĥ

k,(ℓ)

r (q)ĥ
k,(ℓ)H

r (q) + ĥ
k,(ℓ)

l (q)ĥ
k,(ℓ)H

l (q)
)


 G̃
k
,

(13)

Γ
k = G̃

k,H
G̃

k
(14)

with ĥ
k,(ℓ)

o (q) =
(
ĥ
k,(ℓ)H

1,o (q), ..., ĥ
k,(ℓ)H

N,o (q)
)H

and G̃
k
=

(
G̃

k,H

1 , ..., G̃
k,H

N

)H
.

Due to space constraint the proof of Theorem 1 is omitted
here. It can be found in [6].

The optimal vectorα∗ provides the desired estimation of
the parameterαk and a PLSE of the directivity column block

Dk is given byD̂
k
=
∑3

i=1 α
∗

iG
π(i).

Interestingly, Problem P1 does not require an explicit
estimation of the nuisance parameters, i.e. the propagation



coefficients, with consequent computational complexity and
numerical error propagation reduction. In the rest of this
section we discuss the solution of Problem P1.

Let us observe thatfk(α) assumes the same value on each
of the points belonging to the same ray passing through the
origin, i.e,fk(α) = fk(ρα) for any nonzero realρ. Therefore,
given any vectorα∗ maximizingfk(α), it is straightforward to
derive from it a vector that achieves the optimal valuef(α∗)
and satisfies the constraint

∑
i αi = 1 by setting

αopt =
α∗

‖α∗‖1
. (15)

Based on (15), the constraintsαi ≤ 1 are also satisfied if
αi ≥ 0. Thus, the problem is very similar to a generalized
eigenvalue problem (see e.g. [5]). However, in generalα,
a solution of the generalized eigenvector problem does not
satisfy the constraintsαi ≥ 0. In the following, we discuss the
utilization of the solutions of a generalized eigenvalue problem
to find a solution to P1, which satisfies also the constraints
αi ≥ 0.

The global maximum of functionfk(α) is achieved by
the eigenvector corresponding to the maximum generalized
eigenvalue ofRe(Hk) and Re(Γk). The other generalized
eigenvectors ofRe(Hk) andRe(Γk) achieve local maxima,
local minima or saddle points4 of the functionfk(α). More-
over, fk(α) is a continuous function ofα. Therefore, if the
generalized eigenvector ofRe(Hk) andRe(Γk) yielding the
global optimum of the unconstrained problem does not have
all components of the same sign, i.e. it cannot be normalized
to satisfy the constraintαi ≥ 0, the solution of P1 in the
nonnegative orthant is achieved or by the other generalized
eigenvectors ofRe(Hk) andRe(Γk) or falls on the boundary
of the nonnegative orthant. Then, we can compute the solution
of P1 by exhaustive search on the boundary and among the
generalized eigenvectors. Among the generalized eigenvec-
tors, we need to analyze the ones that have all nonnegative
components. The value offk(α) is given by the generalized
eigenvalue corresponding to the generalized eigenvector.

For searching the solution of P1 on the boundary, we need
to consider two different cases: (a) Two elements ofα are 0;
(b) One element ofα is 0. In the former case, the value of
f(α) can be easily computed by

f(α) =

∣∣∣∣∣
Re(Hk)ii

Re(Γk)ii

∣∣∣∣∣ (16)

where Re(Hk)ii and Re(Γk)ii denotes theith diagonal
element ofRe(Hk) andRe(Γk), respectively.

In the latter case, we examine the maximum value offk(α)
for αi = 0, i = 1, 2, 3 separately. Forαi = 0, αj > 0, i, j =

4As well known, the optimization of any Rayleigh quotient
x
T
Ax

xTBx
, with

A,B squared matrices andx vector of consistent dimension, is equivalent to
the optimization ofxT

Ax constrained toxT
Bx = K. It is straightforward

to observe that the gradient of the corresponding Lagrangian vanishes in
any (λ, v), being λ and v respectively a generalized eigenvalue and the
corresponding eigenvector of the matricesA andB.
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Estimation Error of the Positions, pilot length=100

Estimation Error of the Positions, pilot length=150

Estimation Error of the Positions, pilot length=200

Figure 1. Estimation error of STs positions in km with different levels of
thermal noise,Q = 30, andK = 30

1, 2, 3, i 6= j, we have

α(∽i)H
Re(Hk)(∽i)α(∽i)

α(∽i)HRe(Γk)(∽i)α(∽i)
(17)

and we retain the generalized eigenvectors ofRe(Hk)(∽i) and
Re(Γk)(∽i) with components of the same sign.

To summarize, to solve the optimization problem P1 we
analyze all the generalized eigenvectors ofRe(Hk) and
Re(Γk), the generalized eigenvectors of (17) and the values
(16). We compare the values offk(α) for all the possible
cases and choose the maximum one. The correspondingα∗

yields the desired estimation.
In order to solve the directivity estimation problem for

all the active STs over the full coverage area it is relevant
to further observe that (a) Problem P1 has to be solved for
each STs; (b) In the general case, the three nearest points
surrounding STk are not known. Then, an exhaustive search
over the whole possible triplets of adjacent reference points is
required and the triplet yielding to the least squared erroris
selected.

IV. N UMERICAL PERFORMANCEASSESSMENT

In this section, we analyze the performance of the proposed
PLSE algorithm. The simulations are performed for satellite
terminals equipped with two antennas, i.e.,R = 2. The
satellite is endowed with163 SA. For simulations, we utilize
the actual directivity vectors of a geostationary system serving
the European area. The propagation coefficients are generated
according to the Surrey model in [2]. The power of the transmit
signals is set to be 0 dBW. The results are obtained by aver-
aging over 100 system realizations, i.e., 100 different groups
of STs are randomly generated and the performance of the
system is assessed over each realization. The event when the
distance between the actual position and the estimated position
of a terminal is greater than 40 kilometers is referred to as
“estimation failure.” The positions of the STs are generated
randomly and uniformly in a rectangular region covering the
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Figure 2. Estimation error of the positions of STs expressedin km with
different number of STs,Q = 30, andσ2

z = −∞ dBW.
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Estimation Error of the Positions, Pilot Length=100

Estimation Error of the Positions, Pilot Length=150

Estimation Error of the Positions, Pilot Length=200

Figure 3. Estimation error of the positions of STs expressedin km with
different number of coherence time intervals,K = 40, andσ2

z = −∞ dBW.

most of Europe. The pilot sequences’ length is either 100, 150
or 200. They consist of QPSK symbols randomly generated.

Figure 1 shows the estimation error of the PLSE in terms
of positions errors5 for increasing levels of thermal noise. In
the system there are30 active STs. The number of coherence
time intervals in the simulation is30. As apparent in Figure
1, when the thermal noise increases, the estimation error of
STs’ positions increase only slightly since interference from
other STs plays major role.

The impact of the number of active STs in the system on
the PLSE estimation is shown in terms of distance estimation
error in Figure 2. In this simulation,Q = 30, the thermal
noise is absent and only co-channel interference is present.

5The choice to show the performance in terms of error on the distance
instead of the error on the directivity vectors is due to the fact that the
average error on the directivity vector is not very representative because of
the large length of the directivity vectors (163 elements) and their large range
of variation. This choice is adopted throughout all this section.

When the number of STs is greater than20, the position’s
estimation error increases rapidly when the length of the pilot
is 100, as apparent from Figure 2 . On the contrary, when the
length of the training pilot is 200, the estimation error of the
positions of STs increases very slowly and the PLSE achieves
a good estimation of the positions. It is worth noticing that
whenK STs are transmitting, the channel consists of2RK =
4K links. The performance starts degrading significantly when
the training length approaches or is lower than4K.

Finally, we analyze the impact ofQ, the number of co-
herence time intervals on the PLSE estimation. In our sim-
ulations, K = 40. The thermal noise is absent. Figure 3
shows the impact of the number of coherence time intervals
on the estimation errors of the STs’ locations. Interestingly,
the algorithm’s performance are not sensitive to the number
of coherence time intervals when the pilot length is greater
than 2RK. On the contrary, it has a beneficial impact when
the training length is short and does not guarantee good
performance.

V. CONCLUSIONS

We provided an estimation algorithm of the slow varying
component of a satellite channel at the gateway. We propose
a nonlinear parametric least squares estimation that can be
expressed as a nonconvex constrained optimization problem.
We show that the constrained optimization reduces to an eigen-
value complementary problem and does not require estimation
of the fast varying channel components. This enables to keep
complexity moderate for real time implementation.

A numerical analysis of the performance shows the depen-
dence of the proposed algorithm on thermal noise, number of
coherence time intervals used for the estimation, number of
users and training length.
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