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Parametric Least Squares Estimation for Nonlinear Satellite
Channels

Laura Cottatellucci and Lei Xiao

Abstract

We consider a multiuser MIMO Mobile Satellite System (MSS) and model
its channel as a cascade of a slow varying component, directivity vector, and
a fast fading component, propagation component. We study the estimation
of the slow varying part of the satellite channel at the gateway. Since the
channel model is nonlinear, we propose a nonlinear parametric least squares
approach. This optimization problem is shown to be equivalent to an eigen-
value complementary problem. The equivalent problem does not require an
intermediate estimation of the nuisance (fast fading component) with rel-
evant benefits in terms of computational complexity. The performance of
the proposed algorithm is assessed by simulations based on realistic satellite
channels.
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1 Introduction

Multibeam satellite systems are widely employed to provide broadband ser-
vices to geographical areas under-served by terrestrial infrastructure. In modern
MSS, satellites are equipped with multiple antennas and beamforming networks
(BFN) which allow for multibeam transmissions. Thanks to the improvements in
the switching speed of BFNs, adaptive beamforming for mobile terminals is nowa-
days a realistic option.

The knowledge of channel state information (CSI) at the gateway is critical
for the design of an adaptive beamformer. Therefore, CSI acquisition becomes
a crucial problem in the design of adaptive beamforming systems and strongly
depends on the channel characteristics.

The modeling of a multi-antenna satellite system channels with satellite an-
tenna mobility is currently object of intense research. An updated overview of
the ongoing studies and recent results about the channel modeling can be found
in [?]. We follow the channel model proposed by [?] and refer to it as Surrey
model throughout this work. Thus, the channel is modeled as a cascade, i.e. ana-
lytically a multiplication, of two different components: a directivity vector between
a satellite terminal (SA) and the satellite and (b) propagation coefficients. The di-
rectivity vector depends on the direction of the line of sight (LOS) of the signal
transmitted from/to the satellite. The propagation coefficients model the propaga-
tion losses (atmospheric and shadowing) between satellite and ST. They are highly
variable in time and their coherence time is too short compared to propagation de-
lays. Thus, information fed back to the gateway is stale and the estimation of the
instantaneous transfer matrix of the channel cannot be utilized for the design of
adaptive beamforming.

When the estimation of the full (or instantaneous) CSI is not feasible as in
satellite systems where the propagation delay is very long and the instantaneous fed
back CSI measurement becomes obsolete, channel distribution information (CDI)
can be utilized instead of the instantaneous CSI. CDI provides a practical solution
when the acquisition of the instantaneous CSI is not feasible, since the channel
statistics change slower than the channel state.

In a satellite system, the CDI can be estimated at the STs and fed back to
the gateway or can be estimated at the gateway if channel reciprocity holds (at
least from a statistical point of view). The latter approach presents well known
benefits in terms of system spectral efficiency since the feedback channel is not
required. In this contribution, we assume that channel reciprocity holds and the
CDI is estimated at the gateway.

The acquisition of the CDI at the gateway, for a satellite system with mobile
satellite terminals (ST) equipped eventually with multiple antennas and transmit-
ting in left and right polarization, presents completely new challenges compared to
the thoroughly studied field of satellite channel estimation finalized to the coherent
detection and decoding of the channel at the receiver side and it is a completely
unexplored field.
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By assuming that the statistics of the propagation coefficients are available at
the gateway and follow the model in [?], the CDI estimation reduces to the esti-
mation of the slow varying components, i.e, the directivity vectors. From a signal
processing perspective, this implies the challenging task of estimating parameters
observed through multiplicative nuisance.

The estimation of the directivity vectors is intrinsically nonlinear. We consider
a parametric model of the channels where the directivity vector is parametrically
represented by a linear combination of given known directivity vectors and the
varying propagation coefficients play the role of multiplicative nuisance parame-
ters.

In this work, we propose an algorithm to estimate the directivity vector pa-
rameters based on a least squares criterion. We show that the estimation problem
reduces to an eigenvalue complementary problem. We dub the proposed algo-
rithm Parametric Least Squares Estimation (PLSE). The proposed algorithm does
not require the estimation of nuisance parameters and this enables a considerable
complexity reduction.

Because of a one-to-one relationship between the parameters representing a
directivity vector and the STs’ geographic position, the performance of the sim-
ulation is assessed in terms of mismatch between actual and estimated location
of the satellite terminals. It is worth noticing that all the simulations are based
on measurements of a the directivity coefficients of a real satellite system and the
generation of the propagation coefficients follows strictly the Surrey model in [?].

The remainder of this contribution is organized as follows. In Section II, we
introduce the satellite system model for the proposed estimation and describe a
parametric model for the directivity vectors. In section III, we describe the esti-
mation problem and the proposed algorithm, PLSE. In section IV, the application
of the PLSE algorithm to a connection-oriented data transmission channel is dis-
cussed. In Section V, the performance of the proposed estimation algorithm is
assessed through numerical simulations. Section VI provides conclusive remarks.

Throughout this article, we adopt the following notations. Vectors are written
in boldface lower case letters; matrices in boldface capital letters. Superscripts T ,
∗, H denote transposition, elementwise conjugation, conjugate transposition of a
matrix, respectively. Re denotes the real part operator. ∥ · ∥l denotes the norm l
vector. Shortly, ∥ · ∥ denotes the Euclidean norm. A(vi) represents the submatrices
of the matrix A obtained by removing the i-th column and the i-th row.

2 System Model

We consider a satellite system consisting of a gateway, a bent-pipe satellite
equipped with N antennas (SA) and K STs endowed with R antennas. All the an-
tennas transmit in left and right polarizations. The discrete-time baseband received
signal at the gateway at time t is given by

y[t] = D[t]P [t]x[t] + z[t], (1)
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where y[t] is the column vector of received signals at the gateway, D[t] is the direc-
tivity matrix, P [t] is the propagation matrix, x[t] is the 2RK vector of transmitted
signals, and z[t] is the additive noise vector introduced at the gateway1. The noise
vector is a zero mean white Gaussian process with covariance matrix σ2

zI.
Let xk[t] be the 2R-dimensional vector of symbols transmitted in left and right

polarization by the R antennas of ST k. Then, the vector x[t] of transmitted signals
is obtained by stacking together the K vectors xk[t], i.e.,

x[t] =
(
xT
1 [t],x

T
2 [t], ...,x

T
K [t]

)T
. (2)

The propagation matrix P [t] is a block diagonal matrix with K independent
blocks P k[t] of size 2× 2R and form

P k[t] =

(
P

(1)
k,r [t] 0 · · · P

(R)
k,r [t] 0

0 P
(1)
k,l [t] · · · 0 P

(R)
k,l [t]

)
,

where P (ℓ)
k,o [t] denotes the fast fading coefficient affecting the link between the satel-

lite and antenna ℓ at ST k in o-polarization2.
We make the realistic assumption that the variations of directivity vectors due

to ST movements are negligible in the time interval when the channel is measured
for estimation. Thus, we assume that the directivity vectors are constant in our
system model and we drop the time index in the matrix D[t].

The directivity matrix D can conveniently be structured in KN blocks of form

Dk
n =

(
dkn,rr dkn,rl
dkn,lr dkn,ll

)
=

(
dk
n,r

dk
n,l

)
, (3)

where dkn,ov, with o, v ∈ {r, l} represents the directivity coefficient of SA n in o

polarization in direction of ST k in v polarization; dkn,rl and dkn,lr are cross polar-
izations; dkn,rr and dkn,ll are co-polarizations. Then, Dk

n describes the static part
of the channel between ST k and SA n and dk

n,o = (dkn,or, d
k
n,ol) is the com-

ponent in o-polarization at SA n. The block column of size 2N × 2, Dk =
(DkT

1 ,DkT
2 , . . .DkT

N )T represents the directivity coefficients of ST k. It is com-
mon to assume dkn,rr = dkn,ll and dkn,rl = dkn,lr.

The directivity vector corresponding to a certain ST is determined by two fac-
tors: the geographic position of the ST and the frequency carrier. Interestingly, the
effects of the frequency carrier on the directivity vectors are minor. They can be
neglected in a given satellite system, e.g., in Ka band or Ku band. This implies that

1In this model the attenuation between satellite and gateway is neglected and the channel link
satellite-gateway is modeled as an additive white Gaussian channel. Additional noise introduced at
the satellite antenna (e.g. intermodulation noise) is not explicitly considered in this model but it can
be taken into account in the additive white noise at the gateway.

2In this model we assume that the signal leakage from left to right polarization and vice versa is
negligible at the STs.
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we can benefit from directivity reciprocity both in Time and Frequency Division
Duplex (TDD/FDD) mode, and not only in TDD mode, as in terrestrial mobile
communications.

Throughout this work, we make the following two realistic assumptions: (a) the
directivity vectors of some reference STs in a grid are known at the gateway. We
denote by G the matrix available at the gateway and containing all the directivity
vectors of the points in the grid. The matrix G has a block structure similar to
the one of D with blocks Gk

n of form (3); (b) the directivity vector of a ST in
an arbitrary position can be determined as a convex combination of the directivity
vectors at some reference points. More specifically, let us consider ST k with
coordinates Sk ≡ (x, y), and let Gπ(i) ≡ (aπ(i), bπ(i)), with i = 1, 2, 3, be the
three nearest reference points surrounding ST S. The point Sk can be expressed as
convex combination of Gπ(1), Gπ(2), and Gπ(3), i.e.

Sk = αk
1Gπ(1) + αk

2Gπ(2) + αk
3Gπ(3)

with 0 ≤ αk
i ≤ 1, for i = {1, 2, 3}, and

∑3
i=1 α

k
i = 1. If Gπ(i) denotes the π(i)

block column of G corresponding to point Gπ(i), then, the directivity column block
Dk of ST k is given by convex combination of the directivity column vectors with
identical coefficients

Dk = αk
1G

π(1) + αk
2G

π(2) + αk
3G

π(3). (4)

The estimation of the directivity matrix D is based on the synchronous trans-
missions of pilot sequences by all active STs. ST k transmits 2R pilot sequences of
length L, one for each antenna and polarization. They are known by the gateway
and differ each other and from the pilot sequences assigned to other STs. The pilot
sequences are transmitted during a time slot not longer than the coherence time of
the channel. Thus, in a time slot, the propagation matrix is constant and we denote
the constant values in time slot q as P k(q) and P (q) for ST k and all the STs,
respectively. Observations over Q different time slots are utilized for the estima-
tion. In general, the time slots are nonconsecutive and such that the corresponding
propagation channels can be considered statistically independent. However, these
Q time slots are sufficiently close such that the directivity matrix can be considered
constant in the whole observation time.

Under these assumptions, the signal received at SA n in o-polarization, with
o ∈ {l, r}, is given by

yn,o[sq + s] = dn,oP (q)x[sq + s] + zn,o[sq + s]. (5)

where dn,o = (d1
n,o,d

2
n,o, . . . ,d

K
n,o), sq is the time offset when the transmission of

a pilot sequence for the qth slot starts and s = 0, . . . , L − 1 is a time index. The
observation signal YYYn,o(q) = (yn,o[sq], yn,o[sq + 1], . . . , yn,o[sq + L − 1]) in the
coherence time q at SA n and o-polarization, is given by

YYYn,o(q) = dn,oP (q)Xq +ZZZn,o(q) (6)
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where Xq is the 2RK × L matrix whose rows are the pilot sequences of the ac-
tive STs and ZZZn,o(q) is the L-dimensional row vector of the noise ZZZn,o(q) =
(zn,o[sq], zn,o[sq + 1], . . . , zn,o[sq + L− 1]) .

3 Directivity Estimation

In this section, we describe our approach to the estimation of the directivity
vectors. It consists of two steps. In the first step, we perform a standard linear
estimation of the transfer channel matrix based on standard linear least squares es-
timation (LSE) in each time slot. The second step consists of a nonlinear estimation
of the directivity vectors based on a least squares error criterion.

Let hn,r(q) and hn,l(q) be the transfer vectors from all the ST to SA n at time
slot q in left and right polarization, respectively. They consist of K blocks hk

n,r(q)

and hk
n,l(q) defined as

hk
n,r(q) =

(
hk,(1)n,rr (q), h

k,(1)
n,rl (q), · · · , h

k,(R)
n,rr (q), h

k,(R)
n,rl (q)

)
=
(
dkn,rrP

(1)
k,r (q), d

k
n,rlP

(1)
k,l (q), · · · , d

k
n,rrP

(R)
k,r (q), dkn,rlP

(R)
k,l (q)

)
and

hk
n,l(q) =

(
h
k,(1)
n,lr (q), h

k,(1)
n,ll (q), · · · , hk,(R)

n,lr (q), h
k,(R)
n,ll (q)

)
=
(
dkn,lrP

(1)
k,r (q), d

k
n,llP

(1)
k,l (q), · · ·, d

k
n,lrP

(R)
k,r (q), dkn,llP

(R)
k,l (q)

)
,

respectively. Then, (6) reduces to

YYYn,o(q) = hn,o(q)Xq +ZZZn,o(q). (7)

By applying standard results on linear LSE (see e.g. [?]), we obtain the LSE
estimation of hn,r(q) and hn,l(q) given by

ĥn,l(q) = YYYn,lX
H
q (XqX

H
q )−1 (8)

and
ĥn,r(q) = YYYn,rX

H
q (XqX

H
q )−1, (9)

respectively.
The estimation error is εn,o(q) = ĥno(q) − hno(q), o = r, l. By rearranging

the components in ĥn,r(q) and ĥn,l(q) and utilizing the assumptions dkn,ll = dkn,rr
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and dkn,lr = dkn,rl, we obtain the system of equations

dkn,rrP
(1)
k,r (q) = ĥ

k,(1)
n,rr (q) + ε

k,(1)
n,rr (q)

dkn,rlP
(1)
k,r (q) = ĥ

k,(1)
n,lr (q) + ε

k,(1)
n,lr (q)

dkn,rrP
(1)
k,l (q) = ĥ

k,(1)
n,ll (q) + ε

k,(1)
n,ll (q)

dkn,rlP
(1)
k,l (q) = ĥ

k,(1)
n,rl (q) + ε

k,(1)
n,rl (q)

...
dkn,rrP

(R)
k,l (q) = ĥ

k,(R)
n,ll (q) + ε

k,(R)
n,ll (q)

dkn,rlP
(R)
k,l (q) = ĥ

k,(R)
n,rl (q) + ε

k,(R)
n,rl (q).

(10)

where the indices of the components of the estimates and the estimation error vec-
tors ĥ

k

n,o(q) and εkn,o(q) are defined consistently with the ones of vector hk
n,o(q).

By making use of (4), we express (10) in a matrix form as function of the channel
parameters αk

1 , αk
2 and αk

3 . Let us define the vector αk =
(
αk
1 , α

k
2 , α

k
3

)T
, and the

matrix
G̃

k

n =
(
gπ(1),T
n,r , gπ(2),Tn,r , gπ(3),T

n,r

)
(11)

where g
π(i)
n,r is the first row vector of the block G

π(i)
n of matrix G. Then,

dk,T
n,r = G̃

k

nα
k. (12)

By substituting (12) in (10), we obtain

P
(1)
k,r (q)G̃

k

nα
k = ĥ

k,(1)

n,r (q) + ε
k,(1)
n,r (q)

P
(1)
k,l (q)G̃

k

nα
k = ĥ

k,(1)

n,l (q) + ε
k,(1)
n,l (q)

...

P
(R)
k,r (q)G̃

k

nα
k = ĥ

k,(R)

n,r (q) + ε
k,(R)
n,r (q)

P
(R)
k,l (q)G̃

k

nα
k = ĥ

k,(R)

n,l (q) + ε
k,(R)
n,l (q)

(13)

where ĥ
k,(ℓ)

n,r (q) =
(
ĥ
k,(ℓ)
n,rr (q), ĥ

k,(ℓ)
n,lr (q)

)T
, ĥ

k,(ℓ)

n,l (q) =
(
ĥ
k,(ℓ)
n,ll (q), ĥ

k,(ℓ)
n,rl (q)

)T
,

and ε
k,(ℓ)
n,r (q) and ε

k,(ℓ)
n,l (q) are defined similarly.

The directivity estimation reduces to the estimation of the parameters α. We
estimate these parameters based on a nonlinear least squares error criterion. The
optimization problem can be formulated as

minimize
∑

ℓ=1,...R
q=0,...,Q−1
n=1,...,N

∥ĥk,(ℓ)

n,r (q)− P
(ℓ)
k,r (q)G̃

k

nα∥2 + ∥ĥk

n,l(q)− P
(ℓ)
k,l (q)G̃

k

nα∥2

subject to 0 ≤ αi ≤ 1, i = 1, 2, 3 Problem P0∑3
i=1 αi = 1

6



Problem P0 does not reduce to linear LSE because of the presence of nui-
sance parameters P

(ℓ)
k,o(q) and it is in general nonconvex. The following theorem

establishes the equivalence of P0 to a generalized symmetric Eigenvalue Comple-
mentarity Problem (EiCP) object of thorough studies in optimization theory (see
e.g. [?] and references therein).

Theorem 1. The optimization problem P0 is equivalent to the problem

maximize fk(α) =
αHRe(Hk)α

αHRe(Γk)α
Problem P1

subject to
∑3

i=1 αi = 1 0 ≤ αi ≤ 1, i = 1, 2, 3

being Hk and Γk the 3× 3 matrices defined as

Hk = G̃
k,H

Q−1∑
q=0

R∑
ℓ=1

(
ĥ
k,(ℓ)

r (q)ĥ
k,(ℓ)H

r (q) + ĥ
k,(ℓ)

l (q)ĥ
k,(ℓ)H

l (q)
) G̃

k
, (14)

Γk = G̃
k,H

G̃
k

(15)

with ĥ
k,(ℓ)

o (q) =
(
ĥ
k,(ℓ)H

1,o (q), ..., ĥ
k,(ℓ)H

N,o (q)
)H

and G̃
k
=
(
G̃

k,H

1 , ..., G̃
k,H

N

)H
.

Theorem 1 is proven in Appendix.
The optimal vector α∗ provides the desired estimation of the parameter αk and

a PLSE of the directivity column block Dk is given by D̂
k
=
∑3

i=1 α
∗
iG

π(i).
Interestingly, Problem P1 does not require an explicit estimation of the nui-

sance parameters, i.e. the propagation coefficients, with consequent computational
complexity and numerical error propagation reduction.

In the rest of this section we discuss the solution of Problem P1.
Let us observe that fk(α) assumes the same value on each of the points be-

longing to the same ray passing through the origin, i.e, fk(α) = fk(ρα) for any
nonzero real ρ. Therefore, given any vector α∗ maximizing fk(α), it is straightfor-
ward to derive from it a vector that achieves the optimal value f(α∗) and satisfies
the constraint

∑
i αi = 1 by setting

αopt =
α∗

∥α∗∥1
. (16)

Based on (16), the constraints αi ≤ 1 are also satisfied if αi ≥ 0. Thus, the problem
is very similar to a generalized eigenvalue problem (see e.g. [?]). However, in
general α, a solution of the generalized eigenvector problem does not satisfy the
constraints αi ≥ 0. In the following, we discuss the utilization of the solutions of
a generalized eigenvalue problem to find a solution to P1 which satisfies also the
constraints αi ≥ 0.

The global maximum of function fk(α) is achieved by the eigenvector corre-
sponding to the maximum generalized eigenvalue of Re(Hk) and Re(Γk). The
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other generalized eigenvectors of Re(Hk) and Re(Γk) achieve local maxima, lo-
cal minima or saddle points3 of the function fk(α). Moreover, fk(α) is a con-
tinuous function of α. Therefore, if the generalized eigenvector of Re(Hk) and
Re(Γk) yielding the global optimum of the unconstrained problem does not have
all components of the same sign, i.e. it cannot be normalized to satisfy the con-
straint αi ≥ 0, the solution of P1 in the nonnegative orthant is achieved or by the
other generalized eigenvectors of Re(Hk) and Re(Γk) or falls on the boundary of
the nonnegative orthant. Then, we can compute the solution of P1 by exhaustive
search on the boundary and among the generalized eigenvectors. Among the gen-
eralized eigenvectors, we need to analyze the ones that have all nonnegative com-
ponents. The value of fk(α) is given by the generalized eigenvalue corresponding
to the generalized eigenvector.

For searching the solution of P1 on the boundary, we need to consider two
different cases: (a) Two elements of α are 0; (b) One element of α is 0. In the
former case, the value of f(α) can be easily computed by

f(α) =

∣∣∣∣Re(Hk)ii

Re(Γk)ii

∣∣∣∣ (17)

where Re(Hk)ii and Re(Γk)ii denotes the ith diagonal element of Re(Hk) and
Re(Γk), respectively.

In the latter case, we examine the maximum value of fk(α) for αi = 0, i =
1, 2, 3 separately. For αi = 0, αj > 0, i, j = 1, 2, 3, i ̸= j, we have

α(vi)HRe(Hk)(vi)α(vi)

α(vi)HRe(Γk)(vi)α(vi)
(18)

and we retain the generalized eigenvectors of Re(Hk)(vi) and Re(Γk)(vi) with
components of the same sign.

To summarize, to solve the optimization problem P1 we analyze all the gener-
alized eigenvectors of Re(Hk) and Re(Γk), the generalized eigenvectors of (18)
and the values (17). We compare the values of fk(α) for all the possible cases and
choose the maximum one. The corresponding α∗ yields the desired estimation.

In order to solve the directivity estimation problem for all the active STs over
the full coverage area it is relevant to further observe that (a) Problem P1 has to be
solved for each STs; (b) In the general case, the three nearest points surrounding
ST k are not known. Then, an exhaustive search over the whole possible triplets
of adjacent reference points is required and the triplet yielding to the least squared
error is selected. In a practical system for connection oriented communications,

3As well known, the optimization of any Rayleigh quotient
xTAx

xTBx
, with A,B squared matrices

and x vector of consistent dimension, is equivalent to the optimization of xTAx constrained to
xTBx = K. It is straightforward to observe that the gradient of the corresponding Lagrangian
vanishes in any (λ,v), being λ and v respectively a generalized eigenvalue and the corresponding
eigenvector of the matrices A and B.
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such exhaustive search is not required also in case of ST’s mobility and the search
can be limited to triples adjacent to the area covered by the triplet utilized in the
previous estimation.

4 PLSE for Connection-Oriented Channels

In this section, we discuss the application of the PLSE algorithm to a practical
system with connection-oriented channels. First, we illustrate the peculiarities of
this system, then summarize the steps to apply the proposed PLSE algorithm.

In the connection-oriented channel, the gateway has the prior knowledge of the
number of active STs and pilot sequences utilized by each ST. Moreover, the gate-
way is aware of the area where each ST is located from the previous estimation
up to some estimation error and mismatches due to the ST’s mobility. This gate-
way may update the estimation of the directivity coefficients based on the previous
estimation. It searches the k-th ST in a disc Ck(Ŝk,Rk), where Ŝk, the estimated
position of ST k at the previous step, is the center of the disc, and Rk is the radius.
We denote the distance between the actual position of ST k and the center of the
disc Ck as Da,k.

The algorithm for connection-oriented channels and based on the PLSE esti-
mation is summarized in Algorithm 1.

1 for k = 1, ...,K do
2 for q = 1, ..., Q do
3 Calculate ĥ

k

n,o(q), {o} = {r, l} according to (8) and (9).
4 end
5 end
6 for k = 1, ...,K do
7 Find all the Πk adjacent triplets located in Ck(Ŝk,Rk)
8 for i = 1, ...Πk do
9 Compute the optimal parametric coefficients α by solving the

optimization problem P1;
10 end
11 select triplet and parameter α yielding to the minimum least squares.
12 Determine position and directivity vector of the ST k corresponding to

the optimum triplet and optimum α by applying (4).
13 end
Algorithm 1: Directivity coefficients estimation based on PLSE for
connection-oriented channels.
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Estimation Error of the Positions, pilot length=200, exhaustive search

Estimation Error of the Positions, pilot length=200, limited region search

Figure 1: Estimation error of STs’
positions in km versus thermal noise
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Estimation Failure Probability pilot length=150, exhaustive search

Estimation Failure Probability pilot length=200, exhaustive search
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Estimation Failure Probability pilot length=200, region limited search

Figure 2: Estimation failure proba-
bility versus thermal noise
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Estimation Error of the Positions, pilot length=100 exhaustive search

Estimation Error of the Positions, pilot length=100 limited−region search

Estimation Error of the Positions, pilot length=150 exhaustive search

Estimation Error of the Positions, pilot length=150 limited−region search

Estimation Error of the Positions, pilot length=200 exhaustive search

Estimation Error of the Positions, pilot length=200 limited−region search

Figure 3: Estimation error of the
STs’ positions in km versus a vary-
ing number of STs
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Figure 4: Estimation failure proba-
bility versus number of STs

5 Numerical Performance Assessment

In this section, we analyze the performance of the proposed algorithm under
two different assumptions, namely, the gateway does not make use of the prior
knowledge of the area where ST k is located and a whole map exhaustive search is
performed or it does utilize the previous estimation and a limited-region search is
performed.

The simulations are performed for satellite terminals equipped with two an-
tennas,i.e., R = 2. The satellite is endowed with 163 SA. For the simulations,
we utilize the actual directivity vectors of a geostationary system serving the Eu-
ropean area. The propagation coefficients are generated according to the Surrey
model in [?]. The power of the transmit signals is set to be 0 dBW. The results
are obtained by averaging over 100 system realizations, i.e., 100 different groups
of STs are randomly generated and the performance of the system is assessed over
each realization. The event when the distance between the actual position and the
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estimated position of a terminal is greater than 40 kilometers is referred to as “esti-
mation failure.” The positions of the STs are generated randomly and uniformly in
a rectangular region covering the most of Europe. Throughout the whole section,
if not differently specified, the following setting is adopted: (1) The pilot sequence
length is either 100, 150 or 200 QPSK symbols; (2) In the case of limited-region
search, the gateway searches the STts in a circle with a radius of 160 kilometers
and the center of the circle is the previous estimated position; (3) In order to ini-
tialize the algorithm, the distance Da between the center of the circle Ŝk and the
actual position of ST k is normally distributed with zero mean and variance of 20
kilometers.

Figure 1 shows the estimation error of the PLSE in terms of position errors4

for increasing levels of thermal noise. In the system there are 30 active STs. The
number of coherence time intervals in the simulation is 30. As apparent in Figure
1, when the thermal noise increases, the estimation error of the STs’ positions in-
crease only slightly under both assumptions since interference from other STs plays
major role. In general, the algorithm depending on prior knowledge (limited-region
search) outperforms the algorithm based on the whole map exhaustive search. The
performance gap between the two implementations decreases when the pilot se-
quences length increases. A similar trend appears in Figure 2 where the estimation
failure probability of the PLSE for increasing levels of thermal noise is presented.
The exhaustive search approach has an estimation failure probability above 10%
for pilot length of 100 symbols, while the estimation failure events vanishes for
pilot length of 200 symbols. Figure 1 and Figure 2 suggest that the impact of the
thermal noise in the performance of PLSE algorithm is not significant. To achieve
better estimation, it is more critical to increase the length of pilots.

The impact of the number of active STs in the system on the PLSE estimation is
shown in terms of distance estimation error in Figure 3 and in terms of estimation
failure in Figure 4. In this simulation, Q = 30, the thermal noise is absent and
only co-channel interference is present. When the number of STs is greater than
20, the position’s estimation error increases rapidly when the length of the pilot is
100 in both types of estimation, as apparent from Figure 3. On the contrary, when
the length of the training pilot is 200, the estimation error of the STs’ positions
increases very slowly and the PLSE achieves a good estimation. A similar trend is
shown in Figure 4 for the estimation failure probability. It is worth noticing that
when K STs are transmitting, the channel consists of 2RK = 4K links and the
performance starts degrading significantly when the training length approaches or
is lower than 4K.

We also analyze the impact of Q, the number of coherence time intervals, on the
PLSE estimation of the STs’ positions. In our simulations, K = 40. The thermal
noise is absent. Figure 5 and Figure 6 shows the impact of the number of coherence

4The choice to show the performance in terms of error on the distance instead of the error on
the directivity vectors is due to the fact that the average error on the directivity vector is not very
representative because to the large length of the directivity vectors (163 elements) and their large
range of variation. This choice is adopted throughout all this section.
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time intervals on the estimation errors of the STs’ locations and the estimation
failure probability, respectively. Also in this case, the algorithm based on the prior
information outperforms the exhaustive search. Interestingly, the performance is
not sensitive to the number of coherence time intervals Q when the pilot length is
greater than 2RK. On the contrary, an increase of Q has a beneficial impact when
the training length is short and does not support good performance.

In the following, we study the impact of the distance between adjacent STs for
the limited-region search approach. We generate the STs’ positions on a square
grid. Each ST has the same distance to its adjacent ST. In the simulation, the ther-
mal noise is absent and the length of the pilot sequence is 200. The number of
coherence time intervals is 30. The gateway utilizes the information from the pre-
vious estimation. The gateway searches the ST in a disc of radius 240 kilometers.
The distance between the actual position of the STs and the center of the disc is
normally distributed and has a variance of 40 kilometers.

Figure 7 shows the impact of the distance between adjacent STs. As expected,
when the distance between adjacent STs increases, the PLSE algorithm achieves
better performance. Figure 7 also indicates that, for a given distance between ad-
jacent STs, the estimation errors of the STs’ positions also increases slightly as the
number of STs increases.

Finally, we study the impact of the radius Rk of the search disc and Da,k, the
distance between the actual position of a ST and the center of its search disc. In our
simulations, K = 40, the thermal noise is absent and the pilot length is 200. The
number of coherence time intervals is 30. The positions of the STs are randomly
and uniformly generated. Additionally, we force the minimal distance between two
adjacent STs to be not less than 40 kilometers.

Figure 8 shows the estimation error when different radius lengths are adopted.
When the variance of the distance between the center of the search disc and the
actual position is 96 kilometers, the position estimation error is more than 2 kilo-
meters if the search is executed only in a disc of radius 80 kilometers. As the radius
of the search disc increases, the position estimation errors decreases dramatically:
it decreases approximately 0.3 kilometers for a radius of 144 kilometers. When
the variance of the distance between the center point of the search area and actual
position is 24 kilometers, a search of a ST in a disc of radius 80 kilometers is suffi-
cient, i.e., as the radius increases, the performance of the PLSE algorithm does not
improve further.

6 Conclusions

We provided an estimation algorithm of the slow varying component of a satel-
lite channel at the gateway. We propose a nonlinear parametric least squares es-
timation that can be expressed as a nonconvex constrained optimization problem.
We show that the constrained optimization reduces to an eigenvalue complemen-
tary problem. Interestingly, the proposed PLSE algorithm does not require esti-
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mation of the fast varying channel components which play the role of nuisance
parameters in the problem. This enables to keep complexity moderate for real time
implementation.

The performance is assessed by numerical simulations based on realistic satel-
lite channels.

Appendices
A Proof of Theorem 1

By utilizing the definition of ĥ
k,(ℓ)

o and G̃
k

in Theorem 1, the objective function
of problem P0 can be rewritten as

f(α,P k(q)) =
R∑
ℓ=1

Q−1∑
q=0

∥ĥk,(ℓ)

r (q)− P
(ℓ)
k,r (q)G̃

k
α∥2 + ∥ĥk,(ℓ)

l (q)− P
(ℓ)
k,l (q)G̃

k
α∥2

=

R∑
ℓ=1

Q−1∑
q=0

|P (ℓ)
k,r |

2αHG̃
k,H

G̃
k
α−Re

(
P

(ℓ)
k,r ĥ

k,(ℓ)H

r (q)G̃
k
α
)
+ ĥ

k,(ℓ)H

r (q)ĥ
k,(ℓ)

r (q)

+

R∑
ℓ=1

Q−1∑
q=0

|P (ℓ)
k,l |

2αHG̃
k,H

G̃
k
α−Re

(
P

(ℓ)
k,l ĥ

k,(ℓ)H

l (q)G̃
k
α
)
+ ĥ

k,(ℓ)H

l (q)ĥ
k,(ℓ)

l (q)

(19)

The application of rules for complex gradient operators (see e.g. [?, ?]) yields

∂f(α,P k(q))

∂P
(ℓ)
k,o(q)

= 2P
(ℓ)
k,o(q)α

HG̃
k,H

G̃
k
α− 2αHG̃

k,H
ĥ
k,(ℓ)

o (q). (20)

Since f(α,P k(q)) is convex in P
(ℓ)
k,o(q), for any given α, it is minimized by the

value of P (ℓ)
k,o(q) where (20) vanishes, i.e.

P
(t)
k,o(q) =

αHG̃
k,H

ĥ
k,(ℓ)

o (q)

αHG̃
k,H

G̃
k
α

, o = r, l. (21)

By substituting (21) in f(α,P k(q)) and neglecting the constant terms, we obtain
the optimization problem

minimize −
∑R

ℓ=1

∑Q−1
q=0

(
αHG̃

k,H
ĥ
k,(ℓ)

r (q)ĥ
k,(ℓ)H

r (q)G̃
k
α

αHG̃
k,H

G̃
k
α

+
αHG̃

k,H
ĥ
k,(ℓ)

l (q)ĥ
k,(ℓ)H

l (q)G̃
k
α

αHG̃
k,H

G̃
k
α

)
subject to

∑3
i=1 αi = 1 0 ≤ αi ≤ 1, i = 1, 2, 3
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which is equivalent to

maximize fk(α) =
αHHkα

αHΓkα
subject to

∑3
i=1 αi = 1 0 ≤ αi ≤ 1, i = 1, 2, 3.

By observing that Hk and Γk are Hermitian, α is a vector of reals, and the
quadratic forms are real, the equalities αHHkα = αHRe(Hk)α and αHΓkα =
αHRe(Hk)α hold. This concludes the proof of Theorem 1.
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Figure 5: Estimation error of the
STs’ positions in km versus number
of coherence time intervals
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Figure 6: Estimation failure prob-
ability versus number of coherence
time intervals
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Figure 7: Estimation error of the
STs’ positions in km versus distance
between adjacent STs
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Figure 8: Estimation error of the
STs’ positions in km versus radius of
the search disc.
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