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Abstract
The effective handling of overlapping speech is at the limits
of the current state-of-the-art in speaker diarization. This pa-
per presents our latest work in overlap detection. We report
the combination of features derived through convolutive non-
negative sparse coding and new energy, spectral and voicing-
related features within a conventional HMM system. Overlap
detection results are fully integrated into our top-down diariza-
tion system through the application of overlap exclusion and
overlap labeling. Experiments on a subset of the AMI cor-
pus show that the new system delivers significant reductions in
missed speech and speaker error. Through overlap exclusion
and labelling the overall diarization error rate is shown to im-
prove by 6.4 % relative.
Index Terms: speech overlap detection, convolutive non-
negative sparse coding, speaker diarization

1. Introduction
The detection and handling of overlapping speech is still a ma-
jor challenge in speaker diarization [1] and, indeed, in any field
of automatic language processing [2]. Speaker diarization sys-
tems aim to determine “who speaks when” but, while overlap-
ping speech is typical in uncontrolled, spontaneous conversa-
tions, current state-of-the-art speaker diarization systems are
generally capable of detecting only a single active speaker. Con-
sequently, intervals with multiple active speakers can contribute
directly to diarization error. In addition, overlapping speech can
lead to speaker model impurities which indirectly contribute to
diarization error through degraded clustering performance.

Several different systems have been proposed to handle
overlapping speech in the context of speaker diarization. Hui-
jbgrets et al. [3] use speech data around speaker turns to cre-
ate show-specific models of overlapping speech. With similar
models of non-overlapping speech these are subsequently used
to detect intervals of overlap and to identify or label contribut-
ing speakers. Boakye et al. [4] propose an HMM-based ap-
proach to overlap detection which uses models of overlapping
and non-overlapping speech trained on external data, while Ze-
lenak et al. [5] explored the use of prosodic features with a sim-
ilar HMM-based classifier.

Our previous work reports the use of convolutive non-
negative sparse coding (CNSC) for detecting overlapping
speech [6]. CNSC is used to project intervals of mixed speech
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onto speaker-specific bases; base activations are used to detect
overlap. This approach was extended and improved in [7] using
enhanced features and optimized CNSC parameters. While the
approach successfully combines the advantages of mixed pat-
tern decomposition due to non-negative constraints and pow-
erful representation and noise robustness due to sparse coding,
overlap/non-overlap classification is unrealistically erratic since
it lacks any form of duration modelling.

The contributions of this paper are three-fold: first, we re-
port the use of CNSC base activations within an HMM frame-
work, which inherently includes duration modelling. Second,
we introduce new energy, spectral and voicing related features
which are well-suited to overlap detection. Third, we describe
the integration of overlap detection into a full speaker diariza-
tion system and demonstrate improved performance through
overlap exclusion and labeling.

The remainder of this paper is structured as follows: the
CNSC-based approach to overlap detection is described in Sec-
tion 2; new energy, spectral and voicing related features are in-
troduced in Section 3; overlap detection and labeling experi-
ments are reported in Section 4; conclusions and perspectives
are reported in Section 5.

2. Convolutive Non-Negative Sparse
Coding for overlap detection

This section describes the general approach to CNSC base
learning and overlap detection.

2.1. Convolutive Non-Negative Sparse Coding

Non-negative sparse coding (NSC) [8] is an approach to repre-
sent non-negative, multi-variate data as a linear combination of
lower rank bases. Only additive combinations are allowed due
to the imposition of non-negative constraints.

With NSC, a non-negative matrix D ∈ R≥0
M×N is repre-

sented as:
D ≈WH (1)

where W ∈ R≥0
M×R and H ∈ R≥0

R×N are the bases and base
activations respectively. These are learned such that the regu-
larised least square error between the original matrix D and the
recomposition (WH) is minimised according to:

(Ŵ , Ĥ) = arg min
W,H
‖D −WH‖2F + λ

X
ij

Hij , (2)

where λ is a regularization parameter which controls the spar-
sity of the resulting representation. Our work involves a con-



volutive variant, referred to as convolutive NSC (CNSC) [9],
where the decomposition takes the form:

D ≈
P−1X
p=0

Wp

p→
H , (3)

where P is the convolution range. The column shift operators
p→. and p←. shift p columns of H to the right and left respec-
tively. The learning of bases and activations together according
to Eq. (2) is a non-convex optimization problem and is solved
by iterative update rules presented by other authors in [10].

2.2. CNSC-based features

To compute CNSC features for overlap detection, bases W
are learned for each speaker in an audio document using spec-
tral magnitude features extracted from segments of pure (non-
overlapping) speech. The base patterns for each speaker are
then concatenated together to create a global basis WG which
spans the spectral patterns of all speakers. Spectral magnitude
features across the whole audio document are then decomposed
at the frame level according to Eq. (2) with WG kept fixed and
only H being updated to minimise the optimisation criterion.

The activationsH and basesW can be used to separate and
reconstruct each speaker’s activity and hence to detect segments
of overlapping speech. Since, however, basesW are normalised
and thus activationsW reflect speaker energy, we use the activa-
tions H on their own to detect overlap. The energy for speaker
s during frame j is estimated according to:

Ej(s) =
X
i∈Is

Hij (4)

where Is represents the speaker-specific rows in H , or the acti-
vations for speaker s. Due to erratic overlap/non-overlap clas-
sifications, speaker activation energies calculated as per Eq. (4)
are smoothed with a moving average filter and used to compute
two frame-level features for overlap detection.

The first feature is the energy ratio ER and is estimated for
frame j as follows:

ERj =
Ej(ŝ2)

Ej(ŝ1)
(5)

where ŝi denotes the speaker with the i-th highest energy. The
energy ratio reflects the difference in activation energy for the
two speakers who are deemed to be most active in the given
frame. For overlapping segments we expect the ratio to be
nearer to unity while for non-overlapping segments the ratio
should be nearer to zero. Since overlapping speech segments
typically have more energy (they comprise speech from multi-
ple speakers) we also estimate the total energy Ej by summing
Eq. (4) across all speakers s ∈ S:

Ej =
X
s∈S

Ej(s) (6)

To normalise the total energy across different recordings, the
mean over all the speech frames in the respective recording is
subtracted from Ej , resulting in the normalised total energy
ET :

ETj = Ej −
f

|Jsp|
X

j∈Jsp

Ej , (7)

where f is a regularization factor tuned on held-out develop-
ment data and Jsp denotes all speech frames in the recording,
determined by the speech activity detection (SAD) component

Feature win. size KL score

Energy & spectral (27)

MFCC 1-12 60 0.01-0.06
loudness (auditory model based) 60 0.29
zero crossing rate 25 0.04
energy in band 250 - 650 Hz 25 0.98
energy in band 1 kHz - 4 kHz 25 1.15
25 % spectral roll-off point 25 0.03
50 % spectral roll-off point 25 0.02
75 % spectral roll-off point 25 0.02
90 % spectral roll-off point 25 0.01
spectral flux 25 0.43
spectral entropy 25 0.02
spectral variance 25 0.00
spectral skewness 25 0.02
spectral kurtosis 25 0.06
psychoacoustic sharpness 25 0.00
spectral harmonicity 25 0.09

Voicing related (6)

F0 (subharmonic summation (SHS)
followed by Viterbi smoothing)

60 0.03

probability of voicing 60 0.18
jitter 60 0.08
shimmer (local) 60 0.11
jitter (delta: “jitter of jitter”) 60 0.02
logarithmic Harmonic-to-Noise Ra-
tio (logHNR)

60 0.01

CNSC-based (2)

energy ratio 40 0.05
CNSC energy 40 0.28

Table 1: Candidate features with window sizes and score of
the KL divergence based feature selection on the training set.
Selected features are indicated in bold.

of our diarization system. Whereas our previous work inves-
tigated the simple thresholding of the normalized energy ratio
ER and total energy ET to detect overlap, this paper reports
their use as additional features in an HMM-based overlap de-
tection system.

3. Additional features and feature selection
In addition to the two CNSC-based features described above we
also consider new energy, spectral and voicing related features
which are well-suited to overlap detection. They are a subset
of the AVEC2011 audio feature set [11] and are extracted using
the open-source openSMILE toolkit [12]. The resulting 33 can-
didate features, including CNSC and baseline MFCC features,
are listed in Table 1. All features are computed every 20 ms
with indicated window sizes.

We use a Kullback-Leibler (KL) divergence-based feature
selection approach similar to that reported by Zhou et al. [13]
to identify features most pertinent to overlap detection. The
discriminant value of each feature f is computed according to:

df = D(pf || qf ), (8)

where D(· || ·) is the KL divergence, pf is the distribution
of feature f for overlap frames, and qf is the distribution over
all frames. The KL divergence D(p || q) of two probability



distributions p and q is computed as

D(p || q) =

Z ∞
−∞

p(x) ln
p(x)

q(x)
dx. (9)

Under the assumption of Gaussian distributed features with
mean µ and variance σ2, Eq. (9) can be computed as:

D(p || q) = log
σq

σp
+
σ2

p + (µp − µq)
2

2σ2
q

− 1

2
. (10)

KL divergence scores for all features are also displayed in Ta-
ble 1 and show that a small selection are particularly well-suited
to overlap detection. Scores for loudness, the two spectral en-
ergy features, spectral flux, kurtosis, harmonicity, probability of
voicing, jitter, shimmer and the two CNSC features (illustrated
in boldface in Table 1) are all higher than those for MFCC fea-
tures. The energy-related features give the highest scores, which
is somewhat expected, since the signal energy should be a good
indicator of overlap. Jitter is a measure of fluctuations in fun-
damental frequency while shimmer is a measure of amplitude
variability and it is thus of no surprise that they are also good
indicators of overlap. Accordingly, all of these features are used
together with standard MFCCs as additional inputs to an HMM
overlap classifier. The feature set is augmented with first order
regression coefficients and is normalized, using the statistics of
the training data only, to have zero mean and unity variance.

4. Experiments
We report an assessment of our new overlap detection system
using a subset of the AMI meeting corpus.

4.1. HMM overlap detection system

Experiments were conducted using an HMM classifier similar
to that reported in [4]. There are three models corresponding to
non-speech, non-overlapping speech and overlapping speech.
Each model has three states and observations are modeled with
a multivariate Gaussian Mixture Model (GMM) with diagonal
covariance matrices. Due to unbalanced training data each state
in the speech model has 256 components, while those in both
the nonspeech and overlap states have 64 components. Mod-
els are trained with an iterative mixture splitting technique with
successive re-estimation. Transitions from non-speech to over-
lapping speech are forbidden, as are self-transitions, e.g. from
overlapping speech to overlapping speech. The log-likelihood
transition penalty from speech to overlapping speech (also re-
ferred to as the overlap insertion penalty OIP) is tuned to control
the trade off in precision and recall performance.

4.2. Overlap handling

Overlap handling is achieved with two setups which correspond
to different OIPs applied during HMM decoding. First, detected
intervals of overlapping speech are excluded from the diariza-
tion clustering process to reduce speaker model impurities. For
this approach, a high overlap detection recall is desired in order
to detect and discard as much overlapping speech as possible.

Second, overlap labeling is applied by labelling a second
speaker in the diarization output for all intervals of detected
overlapping speech. While this can reduce missed speaker time,
it can also introduce false alarms and thus high precision is de-
sirable. One of two approaches is used to determine the sec-
ond speaker where either the GMM likelihoods (LLKs) or the

Test set

EN2003a EN2009b ES2008a ES2015d
IN1008 IN1012 IS1002c IS1003b
IS1008b TS3009c

Table 2: Meetings from the AMI evaluation dataset used for the
tests

System P R F P R F

MFCC [14] 0.55 0.40 0.46 0.64 0.24 0.35
CNSC [7] 0.55 0.31 0.40 0.64 0.23 0.34

M
FC

C
AV

EC
11

C
N

SC OIP
0 -100

3 - - 0.45 0.50 0.47 0.54 0.26 0.35
3 3 - 0.61 0.24 0.34 0.86 0.13 0.23
3 3 3 0.66 0.31 0.43 0.82 0.23 0.36

Table 3: Overlap detection results on the test set, comparing
previously published results with our HMM system with vari-
ous features. For each system, two different precision (P) vs.
recall (R) operating points with their respective F-score (F) are
shown, depending on the OIP.

CNSC energies according to Eq. (4) are summed up over the de-
tected overlap segment. The speaker with the highest summed
score (or the second highest, if the speaker with the highest
score is already that detected by the baseline system) is then
added as a second speaker.

4.3. Experimental setup

A selection of 40 meeting recordings is used for training
whereas all evaluation work is conducted with the the same ten
files used in previous work by other authors [14]. The list of
meetings in the evaluation/test set is displayed in Table 2. In
all cases we considered only the single-channel, far-field mi-
crophone recordings. On average the amount of overlapping
speech is in the order of 20%.

CNSC bases are first learned for each speaker in the stan-
dard diarization system output. The algorithm described in Sec-
tion 2 is applied to magnitude spectra computed for 40 ms win-
dows with a window shift of 20 ms. CNSC speaker activations
are calculated with speaker bases of size R = 35, a convolu-
tional range of P = 4 and a sparseness parameter of λ = 0.05.
The factor f in Eq. (7) was tuned on held-out development data
and set to f = 1.2.

Overlap detection performance is assessed using averaged,
frame-level precision and recall statistics. To give a single score
upon which all systems can be compared the F-score is also
given. For overlap exclusion the OIP is set to zero, while for
overlap attribution the OIP is to set to -100. In the following
we thus report overlap detection performance for each set of
features using both OIP values.The speaker diarization system
used for all experiments reported below is the top-down LIA-
EURECOM system reported in [15]. Finally, so that all results
are independent of speech activity detection, we used reference
speech/nonspeech segmentations in all cases.



System Miss FA SpkE DER Imp.

Baseline [15] 15.0 0.0 18.2 33.2
+Exclusion 15.0 0.0 17.7 32.7 +1.5
+Labeling LLK 11.6 0.6 20.1 32.3 +2.7
+Labeling CNSC 11.6 0.6 19.6 31.9 +4.0
+Exc. + Lab. LLK 11.6 0.6 19.4 31.6 +4.8
+Exc. + Lab. CNSC 11.6 0.6 18.9 31.1 +6.4

Table 4: Influence of overlap handling (applying either overlap
exclusion or overlap labeling or both) for our test set, showing
the missed speaker error (Miss), false alarm error (FA), speaker
error (SpkE), diarization error rate (DER) and relative improve-
ment in DER over the baseline. Overlap labeling is compared
with either LLK scores or CNSC energy scores.

4.4. Overlap Detection Results

Table 3 shows overlap detection results for each of the differ-
ent system setups. Results reported in [14] for an HMM-based
system with MFCC and other features are illustrated in the first
line for high recall (left) and high precision (right) setups. They
are slightly better than those for our previous CNSC-based sys-
tem [7]. The last three lines in Table 3 show results for our
new system using only baseline MFCC features, the same sys-
tem with additional AVEC2011 features and then with addi-
tional CNSC features. In all cases, for the high recall setup
OIP = 100 whereas for the high precision setup OIP = 0.
The use of AVEC2011 features leads to a substantial improve-
ment in precision over our own MFCC baseline but a drop in re-
call. The inclusion of CNSC features brings further significant
improvements to recall performance which is then comparable
to previous work [14, 7] but with significantly better precision.

4.5. Diarization Results

The best setup using MFCCs, AVEC2011 and CNSC features
was then used to integrate overlap handling into our full diariza-
tion system [15]. For high recall setup was used for overlap ex-
clusion whereas the high precision setup was used for overlap
labeling.

Results are presented in Table 4. For the baseline sys-
tem overlapping speech is shown to contribute 15 % to missed
speech whereas there are no false alarms due to the use of ref-
erence speech/non-speech transcriptions. With a speaker error
of 18.2 % a baseline DER of 33.2 % falls marginally to 32.7 %
(1.5 % relative improvement) when overlap exclusion is used
to reduce clustering impurities. On its own (without exclu-
sion) overlap labeling has a slightly larger impact on perfor-
mance. The DER improves by 2.7 % relative when labelling is
performed using LLK scores and by 4.0 % relative for CNSC
scores. With small increase in false alarms, the average missed
speech rate falls to 11.6 % whereas there is a small increase
in speaker error due to erroneous labeling. When used in ad-
dition to overlap exclusion improvements in speaker error for
LLK and CNSC based approaches give relative improvements
of 4.8 % and 6.4 % respectively.

5. Conclusions
This paper reports our successful efforts to advance the state-
of-the-art in speech overlap handling for speaker diarization. It
shows how CNSC and new energy, spectral and voicing related

features can be coupled with MFCC features and integrated
into an HMM-framework to improve diarization performance
through overlap exclusion and labelling.

The two tasks require different operating points. Whereas
overlap detection requires high recall, labelling requires high
precision. Compared to our own MFCC baseline system en-
ergy, spectral and voicing related features bring improvements
in precision whereas CNSC features bring improvements in re-
call. Since missed speech rates remain high and recall rates re-
main low, there is still significant potential to improve speaker
diarization performance. Future work should concentrate on
improved recall performance and we believe that CNSC-based
approaches warrant further attention.
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