
IEEE 802.11p Receiver Design for Software Defined Radio Platforms

Carina Schmidt-Knorreck, Daniel Knorreck, Raymond Knopp

Mobile Communications Department

EURECOM

Sophia Antipolis, France

Email: carina.knorreck@eurecom.fr, daniel.knorreck@eurecom.fr, raymond.knopp@eurecom.fr

Abstract—Software Defined Radio platforms are a flexible
and cost efficient solution to deal with the increasing number
of today’s wireless communication standards. One interesting
use case can be found in the automotive industry where
the IEEE 802.11p standard enables Car-to-Car and Car-to-
Infrastructure communication. In the context of this paper we
present a physical layer implementation of the 802.11p receiver
for the OpenAirInterface ExpressMIMO platform. Our results
show that a real-time processing is already possible for most of
the modulation schemes when applying a centralized control
flow. The results are further extended by recommendations
of further design improvements and the derivation of general
guidelines for further standard deployment on the platform.

Keywords-flexible HW platform, IEEE 802.11p receiver, SDR

I. INTRODUCTION

The number of today’s wireless communication standards

is growing rapidly, thus requiring the design of smaller and

more sophisticated technologies that support a wide range of

different standards. A flexible and cost efficient solution can

be found in highly reconfigurable Software Defined Radio

(SDR) platforms. These designs do not only cope with the

challenging task of multimodal standard processing but are

also easy adaptable to future technologies like LTE. This

makes these platforms of high interest not only for academia

but also for upcoming industrial solutions.

One interesting use case can be found in the automotive

industry. Currently, experts focus on the design for Car-

to-Car and Car-to-Infrastructure (C2X) communication to

further reduce traffic jams and accidents. Imaginable scenar-

ios are among others collision prevention, the monitoring of

hazardous vehicles or accident warnings. For this purpose,

several channels in Europe and the US have been reserved

at the 5.9 GHz and at the 5.8 GHz band. A project of major

importance in this domain is the German SimTD project

were C2X communication is implemented on the physical

(PHY) and on the MAC layer [1]. The most promising

standard in this context is IEEE 802.11p [2], which is an

enhancement of the well-known IEEE 802.11a standard [3].

It has its origin in 1999 when the US Federal Communica-

tion Commission allocated 75 MHz of the DSRC (Dedicated

Short-Range Communication) spectrum exclusively for C2X

communication. Compared to 802.11a, the bandwidth of

802.11p has been reduced from 20 MHz to 10 MHz. This

results in OFDM symbols that are longer in the time domain

and thus in systems with large delay spreads to avoid ISI

(Inter Symbol Interference). For vehicular use cases where

the channels are strong time-varying, this advantage is of

major importance as it ensures a reliable reception of the

transmitted signal. 802.11p has been in draft form till July

2010 and efficient transceiver design is still an open research

topic. This task is quite challenging as the strong latency

requirements require a fast baseband processing engine to

ensure a high performance. Apart from that there is a high

interest in the use of LTE for 802.11p type applications

which also increases the requirements for related reconfig-

urable radio architectures.

The first contribution of our paper is the presentation of

an efficient physical layer implementation of the 802.11p

receiver for a flexible SDR platform. The chosen target

technology is the OpenAirInterface ExpressMIMO platform

[4] which has been developed by Eurecom and Télécom

ParisTech. In contrast to other SDR platforms, its design

is structured in independent DSP engines (Fig. 1) which

allows an easy upgrade to future standards. Other advantages

include the effective use of spectrum, mobility, increased

network capacity, maintenance of cost reduction and faster

development of new services. In addition, the platform

comes with four A/D and four D/A converters and is thus

supporting the multimodal processing of up to eight different

channels that are not limited to the automotive context but

to wireless communication standards in general. For the

time being, the 802.11p receiver is the first prototype that

has been developed for the ExpressMIMO platform, but the

work on the integration of LTE and DAB has already been

started. Therefore we enhanced the presented receiver results

by a derivation of guidelines for further standard deployment

and identified possible improvements of the DSP engines.

The outline of this paper is as follows: besides a short

description of the latest baseband processing design of

the ExpressMIMO platform in Section III we outline the

basic development methodology of receiver mapping in Sec-

tion IV. Section V and Section VI elaborate on the porting of

the 802.11p receiver to the platform and performance figures

are provided in Section VII. Finally, guidelines for further

standard deployment are enhanced in Section IX.

Preprocessor Front-End Processor Channel Decoder

De /

Interleaver
Mapper Detector Channel

Encoder

VCI Interface

Interconnect – AVCI Crossbar

C
u
s
to
m
 / V

C
I

B
rid

g
e

VCI Interface VCI Interface

VCI Interface VCI Interface VCI Interface VCI Interface

Radio

Front-End

GPIO

Baseband FPGA

GPIO

GPIO

A
H
B
 /
 C
u
s
to
m

B
ri
d
g
e

LEON3 Micro-

processor

Peripherals

DDR

Flash

PCI Express Interface

Ethernet, UART, JTAG

Interface & Control FPGA

Figure 1. Baseband Architecture of the ExpressMIMO Platform

II. RELATED WORK

Although the 802.11p transceiver has been in draft form

till July 2010, there are already different industrial solutions

available. One is the LinkBird-MX v3 unit produced by

NEC [5] which embeds a Linux machine based on a 64

bits MIPS processor working at 266 MHz and which can

be configured either for reception or for transmission. Be-

sides, NXP and Cohda Wireless developed a flexible SDR

implementation of WAVE (Wireless Access in Vehicular

Environments) called MK3 [6]. It includes among others

a GPS module and a CAN bus interface and is based on

the NXP MARS platform which has been designed for the

automotive context. Another solution is the combination of

the WSU (Wireless Safety Unit) platform from DENSO and

the Openwave Engine developed by BMW [7]. Besides the

physical layer implementation of 802.11p this transceiver

supports the required MAC protocols for US, Europe and

Japan and includes CAN2.0, Ethernet and a 400 MHz power

PC that can process one or two standards in parallel. Finally,

[8] presented a transceiver based on GNU radio which has

been combined with USRP2.

Like the latter, the ExpressMIMO platform is not limited

to the automotive context but to wireless communication

standards in general. In contrast to the mentioned solu-

tions, different standards can be supported simultaneously

be reusing the same HW architecture. The switch between

two channels is performed at runtime and the DSPs are

reconfigured depending on the standard in process. Besides,

the modular baseband design allows an easy component

replacement in case of standard upgrades or the design of

new ones. Thus a complete redesign of the architecture is not

necessary. Furthermore a C++ library is available that allows

to emulate the transceiver in a pure SW environment.

III. SYSTEM INTEGRATION

The design of the ExpressMIMO platform [4] potentially

supports a wide range of different standards like GSM,

UMTS or LTE as well as their multimodal processing.

Its baseband design is split over several independent DSP

engines that are controlled by a SPARC LEON3 processor

from Gaisler Aeroflex [9]. The connection is established via

a generic Advanced Virtual Component Interface (AVCI)

crossbar [10]. The architecture of the DSP engines is based

on a standardized DSP Shell (Fig. 2) which is composed

of a Control Sub-System (CSS), a Processing Unit (PU)

and a Memory Sub-System (MSS), where the two latter are

custom defined. The CSS is common to all DSPs and is

specialized through parameters. It contains among others a

local 8 bit microcontroller (UC), a DMA engine, a set of

control and status registers plus several arbiters and FIFOs

for input-output requests and responses. Furthermore it acts

as a gateway with the surrounding host system via two 64

bits wide AVCI compliant interfaces. In addition, a set of

input and output interrupt lines is used for signaling and

synchronization with the host system.

For the design of transceivers with short data sets like

802.11p, the following characteristics of the CSS are of

major importance:

• DMA transfers can operate in parallel to the PUs

• the next command can already be prepared in the

control registers while the PU is still busy

• the UC enables a distributed control flow on the plat-

form

For the time being, the UC has not been integrated in

the CSS yet. The current version of the receiver is thus

orchestrated by a centralized control flow where the whole

receiver program is running on LEON3.

xx
xx
xx
xx
xx

x
x
x
x
x

Control and

status registers

AVCI initiator
interface

AVCI target
interface

Micro-

controller

Micro-

controller

memory

Direct

memory

access

engine

MSS

(Memory Sub-

System)

...

UC memory

64
VIA

DMA

UC

UCA

64

CTRL
8

CSS

Arbiter

Interrupts

AVCI requests FIFO

AVCI responses FIFO

DSP unit

64 bits AVCI crossbar

: custom component / interface

: standard component / interface

Arbiter

IP core (processing unit)

Figure 2. OpenAirInterface standardized DSP shell

To get first insights into the functional behavior of a

transceiver on the platform, a C++ library is provided that

allows to emulate all baseband processing functions in a

bit accurate pure SW environment. The so-called library

for ExpressMIMO baseband (libembb) is open-source and

has already been applied in different European projects (e.g.

SACRA [11]).

In the following we only focus on the DSP engines and

memories required for the design of the 802.11p receiver:

• VCI RAM: The VCI RAM is a baseband memory that

stores the permutations tables of the Deinterleaver as

well as the incoming signal samples.

• Front-End Processor (FEP): The FEP contains a

vector processing unit and a DFT/IDFT unit and com-

putes all operations at the air-interface level like packet

synchronization, data detection, etc.

• Channel Decoder (CHDEC): The CHDEC includes

turbo decoders and a Viterbi decoder. For the design of

the 802.11p receiver the latter one is used.

• Deinterleaver (DEINTL): The DEINTL descrambles

the bits to distribute burst errors over the whole received

OFDM symbol.

• (Preprocessor (PreProc)): The PreProc connects the

external radio front-end with the baseband processing

engine and contains among others a Sample Rate Con-

verter and real-time interrupt generation. As the work

on this DSP is still ongoing, it is neglected in this

paper. Including it in a future release will not change

the presented performance results, as the PreProc DMA

will stream the received samples into the VCI RAM

without interrupting the presented receiver processing.

IV. DEVELOPMENT METHODOLOGY

Receiver design typically starts with the development of

purely functional models to analyze the algorithmic part of

the receiver and to identify the required data flow arising

from data dependencies. In models stemming from data flow

networks, no further restrictions are imposed on the partial

order of computations whereas sequential models such as C

programs merely capture one possible sequence of compu-

tations. The entry point to our design flow are sequential,

bit accurate C models that are built upon libembb. This

emulation library is especially tailored to the ExpressMIMO

platform and considerably eases the design of new receivers.

libembb features the same functional primitives that are

available on the real hardware and accessible through the

same interfaces. Each DSP engine is represented by its own

set of bit-accurate C++ functions which account for compu-

tations, return values of the processing unit and data transfer

operations. Despite the sequential nature of the emulation

environment this model can already be leveraged (1) to

analyze the data flow between processing units, (2) to expose

data dependencies, (3) to obtain first performance results

and (4) to identify possible bottlenecks when processing

several transceivers simultaneously. First results related to

the 802.11p receiver have recently been published in [12].

To obtain cycle accurate performance figures of a set

of concurrently executed DSPs, a common approach is the

HW/SW co-simulation in discrete event simulators such

as Modelsim. Execution parallelism embraces simultaneous

computations on DSPs, data transfers of DMAs as well as

the pre-programming of commands while the DSP is still

busy. Using Modelsim is only appropriate for standards with

short data sets as for instance only the initialization time of

LEON3 for a standard like DAB is already in the order of

105 cycles.

Finally the receiver is validated on the real HW platform

by (1) known snapshots and (2) real test signals received

through the radio frequency part.

V. RECEIVER ALGORITHMS AND DESIGN

The 802.11p packet structure (Fig 3) is composed of a

constant part (Preamble and Signal Field) and the Data Field

which consists of variable number of OFDM symbols, each

with a size of 80 samples a 32 bit. The constant part has

a length of 40 µs and comprises a Short Training Symbol

(STS) for packet synchronization, a Long Training Symbol

(LTS) for channel estimation and the Signal Field specifying

how to decode the transmitted message. In contrast, the

length of the Data Field is variable. The number of octets

in the MPDU requested by the MAC layer varies between

1 and 4095, thus resulting in a Data Field length between 1

and 1366 OFDM symbols. Table I provides the modulation

parameters for the applied 10 MHz channel spacing.

Table I
802.11P SPECIFICATION PARAMETERS (10 MHZ CHANNEL SPACING)

Parameter Value

Number data subcarriers 48
number pilot subcarriers 4
subcarrier frequency spacing 10 MHz/64
Packet length 1 - 1366 DATA symbols
Modulation Schemes BPSK, QPSK, 16/64-QAM
Code rates 1/2, 2/3, 3/4
Data rates 3, 4.5, 6, 9, 12, 18, 24, 27 Mb/s

STS LTS SIGNAL DATA_1 DATA_N...

16us 16us

160 samples160 samples 80 samples

8us

80 samples

8us

80 samples

8us

Synchronization Channel Estimation Decoding
of DATA
Field
Parameters

Message
Decoding

Figure 3. 802.11p Packet Structure

A. Packet Synchronization

OFDM systems are known to be extremely sensitive

to timing and frequency synchronization errors. Possible

techniques for packet synchronization are auto or cross

correlation. Although the preamble of the 802.11p receiver

is suitable to both, [13] has shown that the cross correlation

performs slightly better. For our receiver we implemented an

energy detector combined with an overlapping DFT-based

correlator to synchronize over the known STS. The energy

detection over the received signal rx can be expressed as

E(X) =

255∑

i=0

|rx[i]|2 (1)

In case the result is beyond a predefined threshold, the

resulting frequency offset is can be computed as

is = argmax(|qk|2) (2)

with

qk = IDFT ((DFT (rx[i]) ∗ DFT (STSref)∗)) (3)

The window size is 256 complex samples a 32 bit; the

shift is performed over the size of one OFDM symbol. This

algorithm is accomplished by the FEP only. The comparison

to an energy threshold and thus the decision of whether the

receiver proceeds to channel estimation is currently in the

responsibility of LEON3 but may be delegated to the UC or

to a microprocessor on the baseband side in a future version

of the receiver.

B. Channel Estimation

For vehicular systems, the channel estimation is of ma-

jor importance as the applied channels are strongly time-

varying. Hence, correlated fading can be observed due to

reflections coming from the same object. 802.11p defines

two different pilot patters: block and comb pilots. The block

pilots carried by the LTS embrace two identical OFDM

symbols. In contrast, the four comb pilots are included in

each of the Signal and Data Field OFDM symbols. Specific

for 802.11p is, that their sign differs between the OFDM

symbols. In [14] a detailed comparison of the different types

of channel estimators has been carried out. Best performance

is attained by the comb-type channel estimator which uses

only the four comb pilots and interpolates intermediate

values for the remaining carriers. As interpolation entails

a considerable computation effort we decided to rely on

the block-comb-type channel estimator. The latter computes

an initial channel estimate as a function of the block pilots

and a subsequent amplitude and phase correction is applied

to the four comb pilots. The channel estimator reduces

computational complexity while achieving an acceptable

performance. The channel estimate based on the block pilots,

Ĥ , is calculated by the FEP:

Ĥ = DFT (LTSreceived) ⊙ DFT (LTS∗

reference) (4)

C. Signal and Data Field Detection

For Signal and Data Field detection, three different DSP

engines are required: FEP, Deinterleaver and Channel De-

coder (Fig. 4). As the parameters describing the latter

are to be extracted from the Signal Field, its decoding

procedure has to be finished before starting the Data Field

detection. These parameters comprise the number of OFDM

symbols contained in the Data Field, the modulation scheme

(BPSK, QPSK, 16-QAM, 64-QAM), the code rate (1/2, 3/4,

2/3), etc. The symbols of the Data Field permit a parallel

execution of the DSPs. For the moment, the Viterbi decoder

operates on the complete received message before the result

is transferred to the MAC layer. In a future release tail-biting

will be included so that this DSP can operate as shown in

Fig. 5.

The Data Field can be modulated with four different modu-

lation schemes, each of them exhibiting two different code

rates. Operations to be performed in the FEP are channel

compensation and data detection.

CHDEC

FEP DEINTL

LEON3AVCI Crossbar / VCI RAM

Figure 4. Data and Control Flow for Signal and Data Field

Afterwards the Deinterleaver reverts the two permutations

applied by the transmitter to reduce the impact of burst

errors. The resulting message after Viterbi decoding is

descrambled and CRC checked in LEON3.

1) Channel Compensation: The channel compensation

comprises the multiplication with the channel estimate as

well as further corrections based on the comb pilots:

Rd,n = (A(H)e−jΦ̂n ∗ Rx) (5)

with

A(H)e−jΦ̂n =
1

4

∑

i=−21,−7,7,21

R∗

p,iRn,i (6)

and

Â(H) =
∑

i=−21,−7,7,21

|Ĥi|2 (7)

Rn,i are the received and R∗

p,i the known comb pilots.

The correction of the unknown energy level term stated

as Â(H) is only necessary for 16/64-QAM demodulation

where the calculation of the remaining bits is based on Rd,n.

2) Data Detection (Decoding): For BPSK only the real

part of Rd,n serves as input to the Deinterleaver. For QPSK,

real and imaginary part of Rd,n are both significant. For

16/64-QAM, the missing bits are calculated as a function

of Rd,n as stated in [15].

Data Detection equations to be performed by 16-QAM:

Rd2,n =
2√
10

(Ĥ ⊙ Ĥ∗) ∗ Â(H) − abs(Rd,n) (8)

Data Detection equations to be performed by 64-QAM:

Rd2,n =
4√
42

(Ĥ ⊙ Ĥ∗) ∗ Â(H) − abs(Rd,n) (9)

Rd3,n =
2√
42

(Ĥ ⊙ Ĥ∗) ∗ Â(H) − abs(Rd2,n) (10)

The result of the multiplication of the root term with

Â(H) and Ĥ ⊙ Ĥ∗ does not change during the whole Data

Field detection and can be computed once after the Signal

Field detection is finished.

VI. HW ENHANCEMENTS

In the design flow, the code written for emulation could

directly be compiled for the hardware platform. However,

this code has been developed with a sequential execution

in mind and currently does not (fully) exploit concurrency

on the platform. As emulation is considered to be untimed

for the moment, introducing concurrency would not be

meaningful anyway. For this reason and to satisfy strong real

time constraints, the emulation code is manually revised and

optimized before being ported. In our case, improvements

include the design of a flexible scheduler to execute the

different DSP engines simultaneously and the generation of

command words off-line before the receiver is started. As

a lightweight operating system for LEON3, we opted for

MutekH [16]. Originally, MutekH was designed to support

the heterogeneity of nowadays processors and is increasingly

used on multiprocessor platforms. For our receiver, MutekH

does a good job in low level interrupt handling and initial

hardware configurations.

A. Symbol Grouping

One possible optimization is the grouping of Data Field

symbols for the FEP to operate on larger vectors. The

maximum group size depends on the number of OFDM

symbols supplied by the PreProc per acquisition cycle (time

till a known number of samples is stored in the output FIFO

of this DSP). The operations to be performed in the FEP

per OFDM symbol comprise DFT, channel compensation

and data detection. The maximum number of operations is

saved for a group size of eight. Compared to the case when

symbol per symbol is processed, 28 FEP commands can be

saved.

B. Scheduling

As the 802.11p standard is extremely latency critical due

to the short time available till the acknowledgement packet

has to be sent, we renounced the overhead that the usage

of POSIX threads would have entailed. We relied on a very

simple thread model instead, where one thread is assigned

to each concurrent entity on the platform (such as FEP,

Deinterleaver, Channel Decoder). Thread management boils

down to checking and updating two data items per thread:

a pointer to the next chunk of code to be executed (referred

to as position pointer) and a pointer to a memory location

indicating whether the task is runnable or not (referred to

as condition pointer). As the question whether a thread is

blocked or runnable coincides with the question whether a

DSP engine is running or ready, a condition pointer refers

for instance to the dedicated busy flag of a DSP. The position

pointer is updated as the algorithm control flow moves on

to the next potentially blocking activity on the platform, be

it a signal processing operation or a DMA transfer.

Fig. 5 illustrates the scheduling of the different DSP engines.

Once, the result of a DSP is available, it is copied into the

MSS of the subsequent DSP. During this time, both DSPs

are busy. In contrast to the Signal Field, the structure of

the Data Field allows to decode different Data symbols in

parallel. The processing flow depends on the number of Data

symbols available in the FEP MSS:

1) Assuming the case that the PreProc provides one Data

symbol as soon as it is received, the scheduler has

to wait till the next symbol is available before it can

schedule the next task to the FEP (Fig. 5(a)).

2) When more Data symbols are available, the FEP can

be started again once it finished the decoding proce-

dure of one symbol (Fig. 5(b)). The time the different

DSP engines are busy increases as the scheduler has

to take care of different DSP tasks in parallel.

C. Command Preparation

When applying a centralized control flow, the DSP en-

gines are programmed by LEON3. Per parameter, the pro-

gramming time takes around 425 ns. In case only one

parameter has to be written, the communication overhead is

negligible, but usual FEP commands, for instance, comprise

at least 14 different parameters. This results in a total pro-

gramming time of at least 6 µs per operation which is almost

the duration of one OFDM symbol for 802.11p. An efficient

solution can be found in the command preparation where

each command is prepared and stored in a local memory

before the receiver is started. The required programming

time at runtime is significantly reduced to 70 ns per 32 bit

command register. In case of the FEP, the programming

time is decreased from around 6 µs to 420 ns. For the

802.11p receiver, most of the commands are static and can

easily be prepared. In case a parameter is set dynamically

at runtime, the performance gain depends on the number of

parameters to be set and how they are distributed over the

32 bit command registers. For the 802.11p receiver, maxi-

mum one parameter is set dynamically per operation. The

related timing overhead is negligible as only one assembly

command is required for this operation.

D. Interrupt Handler

MutekH already comes with a very fast interrupt handler.

The time measured on the platform from the moment an

interrupt is raised till LEON3 reacts and continues with

the next assembly command takes about 2.3 µs which is

negligible for common standards.

STS LTS SIGNAL DATA_1 DATA_2
...

CHDEC

INTL

FEP

(a) DSP Engine Scheduling when only one Data OFDM Symbol is
available

STS LTS SIGNAL
...

CHDEC

INTL

FEP

DATA_Group

(b) DSP Engine Scheduling when several Data OFDM Symbols are
available

Figure 5. 802.11p DSP Processing and Scheduling

For 802.11p instead, this overhead causes a significant

performance drop. An alternative is to poll the status reg-

isters of the DSP engines which decreases the measured

reaction time to 436 ns.

VII. RESULTS

The presented results have been obtained by HW/SW co-

simulation in Modelsim. Prior to that, the whole receiver

chain has been validated on the platform itself for a reference

frequency of 100 MHz. The applied scheduler is based

on a Round Robin policy. Detailed results of the Channel

Decoder are not provided, as the tail-biting is not included

in the current design. Instead the Viterbi decoder is invoked

once at the end of the packet detection procedure.

A. Constant Part

Table II lists the DSP processing time and the communi-

cation overhead (control flow while the DSPs are not busy)

for energy detection, packet synchronization, the calculation

of the channel estimate and Signal Field detection. The

communication overhead of the first two entries contains

the programming time of the operations as well as the

value comparison to a known threshold in LEON3 which

takes 350 ns. The Signal Field requires three different DSP

engines whose busy times including the DMA transfers are

summarized in Table II. The additional processing time of

the FEP is due to data processing by LEON3 required

for the channel compensation algorithm. Furthermore, the

estimation of the parameters needed by the Data Field de-

tection (code rate,...) requires an additional processing time

of 2.74 µs. The overall processing time of the constant part

is about 23 µs plus the time required for an internal DMA

transfer in the FEP MSS due to some internal restrictions.

Not considering this variable transfer time that may vary

between 13 µs and 26 µs, only 40% of the Signal Field

processing time is related to the communication overhead.

Adding the additional DMA transfer, this value will decrease

as most of the supplementary processing time is related to

the DMA processing.

B. Data Field

The FEP operations of each Data symbol comprise two

main tasks: channel compensation and data detection. The

average processing time as a function of the group size for

the data detection is illustrated in Fig. 6.

Table II
RUNTIME PERFORMANCE RESULTS

total proc. time DSP proc time com. overhead

Energy Detection 2.82 µs 1.51 µs 1.31 µs

Synchronization 8.01 µs 5.76 µs 2.25 µs

Calculation 1.65 µs 0.82 µs 0.83 µs
Channel Estimate

Signal Field 11.64 µs 5.26 µs 6.38 µs

Table III
DSP BUSY TIMES SIGNAL FIELD INCLUDING DMA TRANSFERS

BETWEEN THE DSPS

DSP proc time additional com. overhead

FEP 2.99 µs 2.14 µs

DEINTL 1.62 µs -

CHDEC 1.27 µs -

1 2 3 4 5 6 7 8
1

2

3

4

5

number of grouped symbols

a
v
e

ra
g

e
 p

ro
c
e

s
s
in

g
 t

im
e

 (
u

s
)

16−QAM

64−QAM

Figure 6. Average Processing Time Data Detection

BPSK and QPSK are not listed, as the result of the

channel compensation can directly be used as input for

the Deinterleaver. For 64-QAM, the computation of the

remaining bits results in a higher processing time of the FEP

than for 16-QAM as two more bits have to be calculated.

Furthermore it can be observed, that for an increasing group

size, a boundary value is reached which is equal to the pure

processing time of the DSP plus some delays due to the

scheduler.

Fig. 7 gives the average processing time of the Deinterleaver

for 16-QAM with a code rate of 3/4 and illustrates the

performance loss when applying a Round Robin scheduler.

The dotted curve represents the ideal case where tasks of the

FEP and Deinterleaver are scheduled instantaneously. The

other curve shows the results when the scheduler is applied.

Finally Fig. 8 and Fig. 9 illustrate the overall FEP and

Deinterleaver processing time including the DMA transfers.

As expected, BPSK and QPSK perform best as only Rd,n

has to be copied from the FEP to the Deinterleaver.

1 2 3 4 5 6 7 8
4

5

6

7

8

9

number of grouped symbols

a
v
e

ra
g

e
 p

ro
c
e

s
s
in

g
 t

im
e

 (
u

s
)

16−QAM, rate 1/2, ideal

16−QAM, rate 1/2, round robin scheduler

Figure 7. Round Robin Scheduler for 16-QAM

A centralized control flow is sufficient for BPSK, QPSK

and 16-QAM as the processing time of the required DSP

engines is below 8 µs which corresponds to the duration

of one OFDM symbol. More detailed results concerning the

DSP processing time and the communication overhead for a

group size of eight are given in Table IV and Table V. For

the FEP, the DSP processing time takes between 40.1% and

56.03%. Best performs 64-QAM as the additional operations

related to the data detection can be programmed while the

FEP is busy. Thus only the DSP processing time increases

while the additional communication overhead remains al-

most unchanged. For the Deinterleaver, the processing time

takes between 52.41% and 86.76%. The highest value is

achieved for 64-QAM with a code rate of 3/4 as the Dein-

terleaver operates on the largest possible vector in this design

with a size of 8*432 samples. It is strongly recommended to

improve the Deinterleaver in a future version of the platform

as the long processing time causes a significant overhead

especially when processing over large vectors.

1 2 3 4 5 6 7 8
6

8

10

12

14

16

18

20

22

number of grouped symbols

a
v
e
ra

g
e
 p

ro
c
e
s
s
in

g
 t

im
e
 (

u
s
)

BPSK

QPSK

16−QAM

64−QAM

Figure 8. Average FEP Processing Time

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

number of grouped symbols

a
v
e
ra

g
e
 p

ro
c
e
s
s
in

g
 t

im
e
 (

u
s
)

BPSK, rate 1/2

BPSK, rate 3/4

QPSK, rate 1/2

QPSK, rate 3/4

16−QAM, rate 1/2

16−QAM, rate 3/4

64−QAM, rate 2/3

64−QAM, rate 3/4

Figure 9. Average Deinterleaver Processing Time

Table IV
FEP BUSY TIMES DATA FIELD (GROUP SIZE OF EIGHT)

total proc. time DSP proc time com. overhead

BPSK 50.62 µs 20.5 µs 30.12 µs

QPSK 51.26 µs 21.14 µs 30.12 µs

16-QAM 61.74 µs 30.67 µs 31.07 µs

64-QAM 71.75 µs 40.2 µs 31.55 µs

Table V
DEINTERLEAVER BUSY TIMES DATA FIELD (GROUP SIZE OF EIGHT)

total proc. time DSP proc time com. overhead

BPSK (1/2) 11.6 µs 6.08 µs 5.52 µs

BPSK (3/4) 14.61 µs 8.48 µs 6.13 µs

QPSK (1/2) 16.36 µs 10.88 µs 5.48 µs

QPSK (3/4) 25.14 µs 15.68 µs 9.46 µs

16-QAM (1/2) 30.96 µs 22.64 µs 8.32 µs

16-QAM (3/4) 40.24 µs 32.24 µs 8 µs

64-QAM (2/3) 52.15 µs 43.36 µs 8.79 µs

64-QAM (3/4) 55.51 µs 48.16 µs 7.35 µs

VIII. GUIDELINES FOR FURTHER STANDARD

DEVELOPMENT

Based on the previous results, different recommendations

are made when currently processing standards with short

data sets on the ExpressMIMO platform. To decrease

the communication overhead, different solutions like

invoking the local UC in the CSS or a microprocessor or

sequencer on the baseband side are possible. Tasks like

energy detection could be handled on the baseband side,

while the main scheduling is still in the responsibility of

LEON3. Furthermore, the communication overhead can be

reduced by using polling instead of the interrupt handler

and by preparing the commands in advance. For standards

with long data sets like LTE, the real-time behavior is

still guaranteed even if these recommendations are not

considered. E.g. for a FEP vector operation over a size of

4096 samples, the processing time is about 20 µs while the

programming time of the DSP stays at a negligible time of

360 ns in this case.

IX. CONCLUSIONS

In this paper, we have presented the latest design of the

baseband processing engine of the ExpressMIMO platform

as well as an efficient physical layer implementation of the

802.11p receiver. We have shown, that with a centralized

control flow, real-time processing can already be achieved

for BPSK, QPSK and 16-QAM. To guarantee the same for

64-QAM we suggest further improvements of the FEP, the

Deinterleaver and the implementation of a distributed control

flow. The latter could be realized by invoking the UCs or

by a microprocessor or a sequencer on the baseband side.

Based on our results we derived some basic guidelines to

facilitate further standard deployment on the ExpressMIMO

platform. Our future work includes a thorough comparison

of a distributed and a centralized control flow as well as an

analysis of the power consumption and the integration of the

DAB and LTE transceivers.

ACKNOWLEDGMENT

This work is supported by the DeuFraKo Project PRO-

TON / PLATA. Further thanks go to Renaud Pacalet and

Alexandre Becoulet from the System on Chip Laboratory of

Télécom ParisTech.

REFERENCES

[1] [Online]. Available: http://www.simtd.org

[2] Specific requirements part 11: Wireless LAN medium ac-
cess control (MAC) and physical layer (PHY) specifications
amendment 7: Wireless access in vehicular environments,
IEEE Std. 802.11p/D9.0, july 2009.

[3] IEEE 802.11a: Wireless LAN Medium Access Control and
Physical Layer Specifications, High-Speed Physical Layer in
the 5 GHz Band, IEEE, september 1999.

[4] N.-u.-I. Muhammad, R. Rasheed, R. Pacalet, R. Knopp, and
K. Khalfallah, “Flexible Baseband Architectures for Future
Wireless Systems,” in Proc. DSD’08, september 2008, pp. 39
–46.

[5] LinkBird-MX version 3 datasheet, NEC.

[6] E. Lambers, M. Klassen, A. Kippelaar et al., DSRC mobile
WLAN component, NXP Semiconductors.

[7] R. K. Schmidt, T. Leinmuller, and B. Boddeker, “V2X
Kommunikation,” february 2009.

[8] P. Fuxjaeger, A. Costantini, P. Castiglione et al., “IEEE
802.11p Transmission using GNU Radio,” in Proc. WSR’10,
march 2010.

[9] [Online]. Available: http://www.gaisler.com/leonmain.html

[10] VSI Alliance Virtual Component Interface Standard Version
2 (OCB 2 2.0).

[11] [Online]. Available: http://www.ict-sacra.eu

[12] C. Schmidt-Knorreck, M. Ihmig, R. Knopp, and A. Herkers-
dorf, “Multi-Standard Processing using DAB and 802.11p on
Software Defined Radio Platforms,” in Proc. WSR’12, 2012.

[13] A. Fort, J.-W. Weijers, V. Derudder, W. Eberle, and A. Bour-
doux, “A performance and complexity comparison of auto-
correlation and cross-correlation for OFDM burst synchro-
nization,” in Proc. IEEE ICASSP’03, vol. 2, april 2003, pp.
II – 341–4.

[14] L. Bernado and, N. Czink, T. Zemen, and P. Belanovic,
“Physical Layer Simulation Results for IEEE 802.11p Using
Vehicular Non-Stationary Channel Model,” in Proc. IEEE
ICC’10, may 2010, pp. 1–5.

[15] R. Ghaffar and R. Knopp, “Low Complexity Metrics for
BICM SISO and MIMO Systems,” in Proc. IEEE VTC’10,
may 2010, pp. 1 –6.

[16] [Online]. Available: http://www.mutekh.org

