
OpenAirInterface Traffic Generator (OTG): A

Realistic Traffic Generation Tool for Emerging

Application Scenarios

Aymen Hafsaoui, Navid Nikaein, Lusheng Wang

Mobile Communications Department, Eurecom, Sophia Antipolis, France

firstname.name@eurecom.fr

Abstract—Traffic generation represents one of the main chal-
lenge in modeling and simulating the application and network
load. In this work, we present a tool, called OpenAirInterface
Traffic Generator (OTG), for the generation of realistic appli-
cation traffic that can be used for testing and evaluating the
performance of emerging networking architectures. In addition
to the traffic of conventional applications, OTG is capable of
accurately emulating the traffic of new application scenarios
such as online gaming and machine-type communication. To
highlight the capability and new features of the tool, the one-way
delay of OpenArena online gaming application in the presence of
the background traffic is analyzed over the LTE network using
OpenAirInterface emulation platform.

I. INTRODUCTION

Over the last decade, the heterogeneity of the Internet

is constantly increasing, with new access technologies, new

client devices and with more and more services and ap-

plications. High-performance online gaming and machine-

to-machine (M2M) are two examples of emerging massive

applications for next-generation networks. Both applications

are expected to create an increasing number of connected

devices over the following years and to be an integral part

of the traffic transported by the network [1]. At the present

time, the most interesting applications from the commercial

point of view for online gaming class are first-person shooter

(e.g. OpenArena), racing (e.g. kart rider), and sports, and

for M2M are intelligent transport, smart meters (automatic

electricity, water and gas meters reading) and tracking and

tracing. Support for such applications with a massive number

of connected devices and their heterogeneous traffic have deep

implications on the end-to-end network architecture [2], [3].

Consequently, understanding and modeling the traffic of such

applications are a key for designing and optimizing a network

and the applicable QoS scheme capable of providing adequate

communication services without necessarily compromising the

conventional services such as data, voice, and video. This is

critical as the current networks are primarily designed and

optimized for a continuous flow of information, at least in

terms of the time-scales needed to send several IP packets,

and mostly from the server to the client, while the traffic of

emerging applications are considerably sporadic (not continu-

ous) with low-throughput packet arrivals and mostly originated

from the client to the server [4].

In the present work, we propose a realistic packet-level traf-

fic generator, called OpenAirInterface traffic generator (OTG),

that in addition to conventional traffics, it also takes into

account the intrinsic traffic characteristics of the emerging

applications such as online gaming and M2M. In particular

for online gaming, it implements statistical traffic models of

the Open Arena, Team Fortress, and Dirt2 applications derived

from the real measurements, and for M2M it implements

analytical state-full traffic models of Auto-Pilot, Virtual Game,

and Sensor-Based Alarm or Event Detection derived from

rigorous theoretical models [4], [5].

Different from the existing traffic generator [6], [7], [8],

[9], OTG captures the specific characteristics of the emerging

M2M and online gaming application scenarios as well as the

background traffic (e.g. file download, web, email, update),

and thus it is capable of generating mixed human and machine

type traffic patterns. Furthermore, it has a dual operation mode:

soft realtime and hard realtime, based on RTAI under Linux

(i.e. LXRT module) [10], to meet application and/or protocol

timing constraint.

In the next section, we present the main idea of the tool

following the end-to-end one-way delay measurement and

analysis. Finally, we summarize and conclude this work.

II. OPENAIRINTERFACE TRAFFIC GENERATOR (OTG)

OTG is a realistic packet-level traffic generation tool for

emerging application scenarios. It is developed in C under

Linux allowing the traffic to be generated with soft realtime

and hard realtime constraint. The main difference is about

the timing: soft realtime operation is designed to respect

the timing on average making this mode of operation more

suitable for large scale experiment, while realtime operation

is designed to respect the timing strictly as would be in a

real application. If OTG is attached directly to user-plane

protocols, it is capable of reproducing the packet headers as in

a real networking protocol stack according to the user-defined

configuration. Both transmitter and receiver traffic statistics are

generated and analyzed to derive the various measurements

on the application-specific key performance indicators (i.e.

throughput, goodput, loss-rate, latency, jitter). In OTG, the

traffic generation is defined by five ordered processes as

described below [11]:



• State: handling randomly distributed sojourn time at each

state and probabilistic traffic state transitions (e.g. On-Off

traffic models). Note that no traffic is generated within the

idle/off state and during the state transition.

• Inter-departure time (IDT): determining the time be-

tween the transmission of two successive packets.

• Packet size (PS): generating the amount of payload being

transferred by the packet.

• Aggregation: combining traffic of multiple sources into

a single packet for specific nodes such as gateways.

• Background (BG): generating the traffic of back-

ground applications such as file download, email, and

syncs/updates, modeled by PS and IDT derived from [12].

Both IDT and PS processes are modeled as i.i.d. series

of variables following a user-defined distribution (e.g. con-

stant, uniform, gaussian, exponential, poisson, weibull, pareto,

gamma, cauchy and lognormal). OTG allows to reproduce

exactly the same stochastic experiment by choosing the same

seed values for IDT and PS random processes. Fig. 1 shows

the process of packet generation in OTG.

State
Sojourn
Time

IDT

PS

No

Yes

Generate

Packet

Aggregation

State
Transition

No

BG

Fig. 1. Process of packet generation in OTG

In a given traffic state, the decision upon the transition

to the next state is made when the sojourn time in that

state expires. During the sojourn time, packet payloads are

generated according to the application-specified traffic model

(i.e. IDT and PS distributions). If the traffic aggregation is

applicable, payloads of multiple nodes are combined together

to generate a single packet. The background traffic is a parallel

process that generates packets from/to server in order to

emulate the cell load. Please note that OTG is reproducing the

traffic of each single device, which in turn does not mean that

any correlations between machines can be captured [13]. For

example, assume hundreds of temperature sensors are spread

over a small area, on which temperature is uniformly passing

a threshold at a certain point of time. In that case all sensors

would trigger simultaneously, causing strong correlation in

network traffic. Such cases could be also captured by OTG

if the state transition is controlled (e.g. with a predefined

frequency) such that a group of devices are in the same state

at a given time.

Fig. 2 shows the high level architecture we adopt in the

design of OTG. It is composed of five main components as

follows:

• Configuration: sets up the OTG parameters using user-

defined xml traffic descriptor or predefined realistic con-

figuration templates.

• Transmitter (TX): builds packets according to OTG

packet generation process (see Fig. 1) with additional

control information used for traffic statistics, and updates

and log transmitter statistics.

• Receiver (RX): captures the packets and updates and log

receiver statistics.

• Log generation (Log Gen): collects and formats OTG

TX and RX statistics for each traffic flow.

• Statistics and KPIs (Stats/KPIs): analyzes and derives

the measured statistical data sets for both data and back-

ground traffics, and computes key performance indicators

(KPI).

Configuration

TX RX

Log Gen

Stats & KPIs

Log data

Background traffic

Configuration parameters

Data traffic

Network

Fig. 2. High-level architecture of OTG

III. EXPERIMENTATION

The experimentation is performed on the top of OpenAirIn-

terface emulation platform [11], which is an integrated tool

allowing large-scale networking experimentation applicable

to both evolving cellular (i.e. LTE/LTE-A) and adhoc/mesh

topologies. In the cellular configuration, the platform mainly

implements the radio access network (E-UTRAN) following

the 3GPPP specifications. The hardware platform is a laptop

equipped with a quad-core CPU running OAI emulator and

protocol stack using Linux on Ubuntu 11.10. An overview of

the experimentation setup is given in Fig. 3. We carried out

one-way delay (OWD) measurements in the soft realtime mode

for LTE operating in TDD frame configuration 3 for 5MHz

bandwidth, in a simple cellular network topology composed

of one eNB (enhanced-NodeB) and one static UEs (User

Equipment) to measure the best case performance. The rest

of the network including mobile core network, IP backbone,

and application server are emulated in terms of additional



latency as the purpose of the experiment is to measure the

end-to-end OWD in the data-plane. We make use of OAI

scenario descriptor to layout the experiment such that the

reproducibility is preserved and results can be regenerated. The

simulation is run for 1 minute (i.e. 6000 LTE TDD frames). We

applied the traffic pattern of OpenArena (OA) online gaming

application from and to the gaming server characterized by

small constant sized packets with random inter-arrival times

in uplink, and variable sized packets with constant arrival time

in downlink [14], [4]. The data rate is between 1 kByte/s

and 5 kByte/s for most cases, and the RTT should be below

50ms to avoid any impairments in gaming experience [15]. We

further applied the cell background traffic in both directions

as measured and modeled in [12].

To measure the OWD, device synchronization is required.

For the RAN, we used the time synchronization between

eNB and UE in terms of frame and subframe number and

convert it to time in milli-seconds (i.e. each frame represents

10 ms and each sub-frame represents 1ms). For mobile core

network, we applied the latency measurement in [15], and for

IP backbone and application server, we applied the latency

estimation in [1]. The end-to-end network setup is emulated

on the same physical machine, thus avoiding additional time-

synchronization.

Radio Access Network
Mobile Core

Network
IP Backbone

5 – 60ms 1 – 4ms

22 – 217ms

Application

Server

15 – 150ms 1 – 3ms

UE

Game Cons
eNB

Packet

GW
IPX / IP

Backbone

Gaming

Server

Fig. 3. Experimentation setup and OWD latency budget

Gaming Traffic (OA) Background Traffic
0

20

40

60

80

100

120

140

160

180

L
a
te

n
y
 (

m
il
is

e
c
o

n
d

s
)

 

 

UL: Radio access

UL: Core Network

UL: IP Backbone

UL: Application

DL: Radio access

DL: Core Network

DL: IP Backbone

DL: Application

UL

DL DL

UL

2.99 ms

40 ms

41 ms

2.98 ms

54 ms

39 ms

3 ms

38.84 ms

1.42 ms

38.5 ms

3 ms

24 ms

1.5 ms
1.5 ms 1.59 ms

49 ms

Fig. 4. OWD analysis for OpenArena online gaming application

Fig. 3 and 4 present the measured and estimated OWD

performance for OpenArena per network segment. It can be

seen that the delay performance is better in downlink (from

server) than in uplink (to server). The reason is that the LTE

TDD frame configuration 3 has more downlink subframes (i.e.

6) than that of uplink (i.e. 3) indicating that the DL and UL

subframe allocation should be balanced to meet the load condi-

tions. Similar results have been reported in an LTE FDD frame

format with unknown number of users [15]. Furthermore, we

can observe that the delay of the radio access network is

much larger than that of mobile core network, which calls

for further optimization of cell configuration, uplink channel

access method and scheduling especially when the number

of users increases. When comparing with the IP backbone

(Internet), we note that this segment has a large delay in both

direction, which depends on the region, the number of nodes in

the network, and their processing delays [1]. The IP backbone

represents a high delay variation, which can be improved by

providing service locally closer to the client (e.g. within the

mobile packet gateway). From the results, we can conclude

that 4G network is not yet ready to host certain applications.

IV. CONCLUSION

Accurate modeling and generation of realistic application

traffic are difficult and challenging tasks in view of emerging

application scenarios. In this work, we briefly discussed three

new traffic features - state-full, aggregated, and background -

that OTG implements to generate realistic application traffic.

The tool is used to measure and analyze the one-way-delay

of online gaming in presence of background traffic over LTE

network. We plan to extend the scope of our analysis to the

M2M traffic with large number of user equipment to validate

state-full traffic generation and add supports for application-

specific key performance indicators.

ACKNOWLEDGMENT

The research leading to these results has received fund-

ing from the European Research Council under the Euro-

pean Community Seventh Framework Programme (FP7/2007-

2013) no 248993 (LOLA) and n
o 257616 (CONECT).

REFERENCES

[1] N. Nikaein and S. Krco. Latency for real-time machine-to-machine
communication in LTE-based system architecture. In EW’11, 17th

European Wireless Conference, Sustainable Wireless Technologies, April

27-29, 2011, Vienna, Austria, 2011.
[2] M. Claypool and K. Claypool. Latency and player actions in online

games. 2006.
[3] H. Lenz and J. Koss. M2m communication - next revolution on wireless

interaction, 2008.
[4] LoLa Consortium. Lola project (achieving low-latency in wireless

communications), ”d3.5 traffic models for m2m and online gaming
network traffic,”. 2011.

[5] LoLa Consortium. Lola project (achieving low-latency in wireless com-
munications), ”d2.1 target application scenarios,” available on: www.ict-
lola.eu. 2010.

[6] A. Botta, A. Dainotti, and A. Pescap. A tool for the generation of
realistic network workload for emerging networking scenarios. 2012.

[7] Vishwanath, K. Venkatesh, and A. Vahdat. Realistic and responsive
network traffic generation. In Proceedings of the 2006 conference on

Applications, technologies, architectures, and protocols for computer

communications, SIGCOMM ’06. ACM, 2006.
[8] J. Sommers and P. Barford. Self-configuring network traffic generation.

In Proceedings of the 4th ACM SIGCOMM conference on Internet

measurement, IMC ’04. ACM, 2004.
[9] www.netperf.org/.

[10] www.rtai.org/.
[11] www.openairinterface.org.
[12] M. Laner, P. Svoboda, S. Schwarz, and M. Rupp. Users in cells: a data

traffic analysis. WCNC, 2012.
[13] M. Laner, P. Svoboda, and M. Rupp. Modeling randomness in network

traffic. In Proceedings of the Sigmetrics/Performance, 2012.
[14] www.openarena.ws.
[15] M. Laner, P. Svoboda, P. Romirer-Maierhofer, N. Nikaein, F. Ricciato,

and M. Rupp. A comparison between one-way delays in operating HSPA
and LTE networks. In 8th International Workshop on Wireless Network

Measurements (WinMee), 2012.


