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Abstract
This paper presents an original approach to the

problem of function hiding based on Error Correcting
Codes and evaluates the security of this approach. The
novelty of the technique consists in using Error Correct-
ing Codes to hide functions instead of encrypting data
vectors. This protocol mainly deals with the issue of
secure evaluation of functions in potentially hostile envi-
ronments.

1: Introduction

With the advent of new computing paradigms like
mobile code and ubiquitous computing, the privacy and
integrity of software programs become a major concern
beyond classical data security considerations. Running a
program in a potentially hostile environment may lead to
various security requirements, as follows:

- a company might need to prevent the disclosure of
certain sensitive algorithms implemented in its software
products despite extensive code analysis and reverse
engineering by potential intruders including its custom-
ers;

- a mobile software agent acting on behalf of a per-
son might need to ensure the integrity of a critical opera-
tion performed on an untrusted remote host;

- a data collection agent might need to ensure both
the privacy and the integrity of the results computed at
various competing sites.

In this paper we suggest a cryptographic mecha-
nism for evaluating a function on an untrusted environ-

ment while assuring the confidentiality of the function.
The aim of function hiding is twofold:

- algorithm confidentiality, i. e., concealing the
internal behaviour of a program;

- integrity of execution, i. e., if an attacker cannot
derive the algorithm of the program, then he is unable to
find the best way of changing it to his benefit.

The paper is organized as follows: section two deals
with the already existing approaches and a definition of
autonomous protocol is given. In the next section, a
small introduction on cryptosystems based on error-cor-
recting codes is given, with a focus on the importance of
the codes used. Section four gives a presentation of an
original protocol in order to achieve function confidenti-
ality and discuss its security. Section five focuses on
future work and conclusion.

2: Related Work

The problem that is dealt with in this section was
also mentioned in the seminal paper by Abadi, Feigen-
baum and Kilian [2], which focuses on hiding data from
an oracle, or in other words, computing with encrypted
data. Based on this idea, Abadi and Feigenbaum [1]
developed a protocol to secure circuit evaluation, which
allows a player to evaluate his data on another player’s
boolean circuit, thereby preserving the confidentiality of
his data and also hiding the circuit from the data’s owner.
Even though it was originally intended for data confiden-
tiality, this protocol also deals with the problem of func-
tion hiding. The major drawback of the protocol is the



requirement for a large number of interactions between
the two players.

Before, Brassard and Crepeau [6] presented a proto-
col where Alice could convince Bob of good results
achieved by a boolean circuit simulation, without reveal-
ing her inputs, but this protocol does not provide circuit
hiding.

Recently, Sander and Tschudin [27], [26] defined a
function hiding scheme based on an autonomous protocol
as depicted in Figure 1. This protocol is autonomous in so
far as the interactions between the owner of the function
(Alice) and the remote party that evaluates the function
(Bob) consist only of the transmission of the function by
Alice to Bob and the transmission of the result back to
Alice. Unlike the protocol by Abadi and Feigenbaum [1],
an autonomous protocol does not involve the exchange of
information between the players during function evalua-
tion.

In an autonomous protocol, a function f owned by
Alice is evaluated by Bob on the input data x provided by
Bob, while preventing the disclosure of f to Bob. The
confidentiality of f is assured by the transformation E that
satisfies the following properties:

- it is infeasible to derive f from E(f) without the
knowledge of a secret trapdoor;

- the cleartext result f(x) can be derived from the
encrypted result [E(f)](x) in polynomial time using a
secret trapdoor.

Sander and Tschudin [27] illustrated the autono-
mous protocol concept with a method that allows to
encrypt polynomials, based on the Goldwasser-Micali
[18] encryption scheme. Therefore, function hiding is

achieved, when the functions can be expressed in terms
of polynomials.

Another autonomous protocol is described in [4],
where a binary decomposition of all possible terms of a
polynomial is evaluated, so the cleartext result of the
function can be computed by selecting the results corre-
sponding to the components of the function.

In [27], it is also mentioned the possibility of using
the so-called composition technique, but no security eval-
uation is provided. The composition technique consists in
multiplying function f by a random invertible function.

We suggest an original autonomous protocol based
on Error Correcting Codes (ECC) Public Key Cryptosys-
tems (PKC). First of all, a brief overview of ECC crypto-
systems is given.

3: Cryptosystems Based on ECC

Cryptosystems based on Error Correcting Codes
rely on the difficulty of decoding or finding a minimum
weight codeword in a large linear code with no visible
structure. These general problems common to coding the-
ory were proven to be NP complete [13] and were used
on the public key cryptosystems proposed by McEliece
[24], Niederreiter [25] and Gabidulin [14]. These crypto-
systems are closely related and one can see the latter two
as a derivation of the former.

The McEliece scheme uses a generator matrix and
the Niederreiter scheme a parity-check matrix, but they
were proven to be equivalent in terms of security for the
same parameters [33]. For the same parameters, the Nied-
erreiter cryptosystem reveals some advantages [8], for

FIGURE 1. Autonomous protocol for function hiding
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example, the size of the public key and the number of
operations to encrypt.

Generally, the secret key to this kind of public key
cryptosystems is the code itself, for which an efficient
decoding algorithm is known, and the public key is a
transformation of the generator or parity-check matrices.
In other words, the efficient decoding algorithm is the
trapdoor to the public key transformation.

Gibson [17] demonstrated that there is no advan-
tage of using the Gabidulin cryptosystem over McEliece.
Due to an attack developed by Gibson in [17], the size of
the code has to be significantly increased with respect to
the McEliece scheme in order to achieve equivalent
security.

Some identification schemes that take advantage of
these problems were also proposed (e. g. [30]).

3.1: Security of Cryptosystems Based on ECC

Despite the general problem of decoding being NP-
complete, the best known attacks exploit the properties
of linear codes to find a trapdoor, i. e. to recover the
structure of the original code or to find an equivalent
code. That is usually called a Brickell-like attack [7].

The security of the cryptosystem is highly depend-
ent on the kind of codes used. The initial proposal from
Niederreiter used concatenated codes, which were
proven to be insecure [28]. Reed-Solomon codes were
also proven to be insecure [29].

McEliece proposed Goppa codes that proved to be
secure. Nevertheless, Goppa codes generated by a
Goppa polynomial which has binary coefficients are also
insecure [22].

The properties that a code should have in order to
be an eligible candidate for these cryptosystems, which
result from the experience gained from successful
attacks against this kind of cryptosystems, are the fol-
lowing [8]:

- The type of codes must be large enough to avoid
any enumeration;

- An efficient decoding algorithm should exist for
this type;

- The generator or parity-check matrix of a transfor-
mation of the code must not give any information about
its structure.

If the codes obey these rules then the security of the
cryptosystems is equivalent to the problem of decoding
any linear code.

The rest of the discussion will be focused on McE-
liece Public Key Cryptosystem, because the majority of
existing work was dedicated to this cryptosystem and the

use of Goppa codes was adopted because they fulfil
these requirements.

3.2: The McEliece Public-Key Cryptosystem

Let be a q-ary linear code with size , dimension

and minimum distance . Let be a generator

matrix of the code for which an efficient decoding

algorithm exists. The encryption matrix is ,

where is a random invertible matrix over

 and  is a random  permutation matrix.

Encryption: a plaintext message represented by the

vector is encrypted into the cyphertext by

, where is a randomly chosen error vector

that is correctable with the code ( ,

where  is the Hamming weight of z).
Decryption: a cyphertext y is decrypted by

, and is decoded with the

decoding algorithm of to retrieve ( is correct-

able since ). The plaintext is obtained

by .

The public key is and . The secret trapdoor

consists of , , and the decoding algorithm of .

3.3: Goppa Codes

The generator matrix is obtained with a polynomial
of degree t, called a Goppa polynomial, and with a gen-

erating vector ∈ . The decoding of Goppa code-
words requires the knowledge of the generating vector
and either the weights vector or the Goppa polynomial.

The parameters of a binary Goppa code are

related in the following ways: , and

, where t is the maximum number of errors
the code is able to correct.

This kind of codes fulfils all the properties refer-
enced in Section 3.1. There is a significant number of
different Goppa codes, efficient decoding algorithms
exist and there is no algorithm to retrieve the characteris-
tic parameters of the code from a permuted generation
matrix [9]. For more information on Goppa Codes see
[23].
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4: Function Hiding

The original idea presented in this paper consists of
hiding a function represented on a matrix format, with a
transformation similar to the one used to construct the
public key on Error-Correcting Code Public Key Crypto-
systems.

Figure 2 depicts the operations performed by the
two players of the autonomous protocol using the pro-
posed function hiding scheme as described below.

4.1: Protocol Description

Let be a generating matrix for an Goppa

code . Let be a random permutation matrix

and a random matrix, where at least col-
umns consist of the null vector. G, P, and E are kept
secret by Alice. Let F be a matrix over Ζ2 repre-
senting function f. Alice computes the encrypted func-
tion F’ by and sends F’ to Bob. Bob

evaluates F’ on his data by and

sends back the result, which is y’, to Alice.

Alice decrypts the result , and uses C’s

secret decoding algorithm to retrieve the cleartext result

from ( is a correcta-

ble error vector since ).

4.2: Cryptoanalysis

The proposed protocol’s security evaluation has
been inspired from extensive literature about the crypto-
analysis of the McEliece scheme. Two broad types of
attacks have been analysed:

- attacks on the public key, aiming at retrieving the
secret key from the public key;

- attacks on the cyphertext, aiming at the disclosure
of the plaintext.

The second class of attacks has received much more
attention, for example it has been mentioned in [21],
[31], [11], [32], [10] and [9] (to cite a few). Furthermore,
Berson in [5] proved that it is easy to recover the plain-
text if it has been encrypted twice with the same key
using the McEliece scheme, and a different error vector.

Nevertheless, in our solution, the attacks on the
public key are the sole concern since the function hiding
property relies on the difficulty of retrieving the secret
function F from the public key F’. In the sequel of this
section we outline the attacks on the public key.

Brute Force attack
The complexity of the brute force attack on the

original McEliece public key cryptosystem can be meas-

FIGURE 2. Autonomous protocol based on ECC
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ured by searching exhaustively for all the possible com-

binations of permutations (n!), Goppa codes (~2mt / t),

and invertible matrices (~0.29*2k^2)[23]. In the case of
our solution, the complexity of the brute force attack is
increased due to the fact that the matrix F does not have
to be invertible. Using the parameters proposed by McE-
liece [1024, 524, 50], this attack is obviously not feasi-
ble.

Trapdoor attack
The trapdoor attack consists of the analysis of the

code structure in order to find an equivalent code.
Heiman [19] was the first to tackle this specific

problem and proved that the random matrix S used in the
original McEliece scheme serves no security purpose
concerning the protection of the code, because it does
not change the codewords of the original code. The
matrix S serves the purpose of hiding the systematic
structure of the Goppa code matrix G, and increasing the
number of possible enumerations of the public key.

Adams [3] showed that the likelihood of finding a
trapdoor for Goppa codes is small and that there is usu-
ally only one trapdoor. The optimum values of the code
parameters were also found. Having t=37 and k=654
gives the best result for the same n=1024. This is an
important result because it shows that increasing the
weight of the error vector could not bring added security.

It was later proved by Gibson [15], that each per-
mutation applied to Goppa codes can be regarded as a
possible trapdoor and there are at least m.n.(n-1) trap-
doors. This results from the fact that no equivalent
Goppa polynomials are able to generate equivalent
codes. However, this number is still very small when
compared with the n! possible trapdoors.

The same author in [16] describes an efficient way
of obtaining the Goppa polynomial from the public key
and from the generating vector, therefore the secret key
can only be regarded as the generating vector. The con-
crete number of trapdoors is still open, but it renders an
exhaustive search not feasible, according to [16]. In the
author’s opinion the existence of only one trapdoor can,
on the other hand, make it easier to find, as in the Gabid-
ulin cryptosystem [17].

In summary, the best known attack on the secret key
requires an evaluation of m.n.(n-1) trapdoors on an uni-
verse of n! permutations, which can therefore be consid-
ered secure for sufficiently large codes [16].

4.3: Discussion

We reviewed the best known attacks on the McE-
liece scheme in the previous section, proving that our
original utilization of the scheme does not introduce any
security breaches and that function hiding relies on the
notorious security of the scheme. In short, this conclu-
sion is based on the facts that the matrix representing the
function is not relevant for the protection of the code and
that the best way to disclose the function is to search for
a trapdoor.

As an alternative to the McEliece scheme, the Nied-
erreiter cryptosystem could be used for function hiding
by replacing the generator matrix G by a parity-check
matrix. This would eliminate the error matrix E from the
function hiding scheme. However, the error matrix E
used in our scheme enhances the security of the function
hiding, in particular against decomposition or brute force
attacks. Moreover, the use of matrix E as a randomizer is
an important security advantage to our scheme over the
composition techniques based on the multiplication by
random matrices. The other autonomous protocols [27],
[4] do not share this advantage either.

One of the disavantages of our protocol is the
expansion of the matrix that expresses the function. Nev-
ertheless, this expansion also happens to a higher degree,
with the other autonomous protocols previously men-
tioned. This expansion depends on the size of the code
used, which is highly dependent on the number of errors.
On the other hand, the encryption and decryption opera-
tions are less complex when compared with [27].

The description of our scheme was done for binary
codes, like on the McEliece scheme, but can be extended
to q-ary linear codes which were proven to be even more
secure [20]. Nevertheless, the binary matrix format is
suitable for representing boolean functions or circuits. A
straightforward way of representing a boolean circuit
with a matrix would be to use the truth table directly,
similar to the way that it is done in [6].

Unlike the protocol given in [1], our scheme does
not assure the confidentiality of the input data x with
respect to Alice. If the function F is invertible, Alice can
always interpolate the input data x from xF and F.

On the other hand, confidentiality of the input data
x with respect to a third party intruder during transmis-
sion, can be ensured if Bob adds a correctable random
error vector to the result of the computation.



5: Conclusion and Future Work

This paper presented an original approach to the
problem of function hiding based on Error Correcting
Codes and evaluated the security of this approach.

The novelty of the approach consists of using ECC
techniques to hide functions instead of encrypting data
vectors. Future work will focus on more efficient repre-
sentations for boolean functions and the extension of our
protocol to a broader class of functions.

The aim of our protocol is to deal with the issue of
secure evaluation of functions in potentially hostile envi-
ronments. Even though the basic purpose of our scheme
is confidentiality, the confidentiality of the function can
also assure the integrity of its execution. In other words,
if an attacker cannot disclose the original function, and if
the final result is encrypted, he will not be able to tamper
the function to his benefit. On the other hand, it is a step
back for host protection due to the fact that the internal
behaviour of the code is hidden.

In the future, studies will also focus on classes of
codes and transformations which would be more suitable
to our protocol and try to apply this protocol to the area
of software reliability, specifically checking the results
of computations, based on the error detecting capability.
Such an approach is, to our knowledge, new to the area
of result checking.
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