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Abstract—In the context of spectrum sharing, many ap-
proaches were developed and many algorithms were proposed
in order to model and regulate the use of spectral resources.
Despite the proposed solutions and spectrum access policies,
there is still a big issue in cognitive radio networks with users
who may intend (or not) to violate these communication rules
and force their radios to access the spectrum bands when some
other users are already communicating. These users become
hostile terminals in the network and the fusion center has to
eliminate their interfering signals. In this context we1 propose a
mixed signals separation and classification algorithm that helps
eliminating hostile devices. The first step consists in locating the
frequency band over which the hostile terminal is communicating
and then, by some mixed signals separation technique, isolate and
then eliminate its interfering signal by analyzing the obtained
signals from the mixture. For the simulations, we introduced
some metric for the probability of detecting and classifying the
hostile terminal as such.
Index Terms—mixed signal separation, cognitive radio, signals

classification, spectrum sharing

I. INTRODUCTION

During the last decades, we have witnessed a shortage and

high misuse of radio resources. Facing this lack of resources,

telecommunication regulators, and standardization organisms

recommended sharing this valuable resource between the

different actors in the wireless environment. The federal

communications commission (FCC), for instance, defined a

new policy of priorities in the wireless systems, giving some

privileges to some users, called primary users (PU) and less to

others, called secondary users (SU), who will use the spectrum

in an opportunistic way with minimum interference to PU

systems.

Cognitive radio (CR) as introduced by Mitola, is one

of those possible devices that could be deployed as SU

equipments and systems in wireless networks. As originally

defined, a CR is a self aware and “intelligent” device that

can adapt itself to the Wireless environment changes. Such

a device is able to detect the changes in wireless network

to which it is connected and adapt its radio parameters to

the new opportunities that are detected. This constant track

of the environment change is called the “spectrum sensing”

function of a CR device. Thus, spectrum sensing in CR aims

in finding the holes in the PU transmission which are the best

1The research leading to these results has received funding from the
European Community’s Seventh Framework Programme (FP7/2007-2013)
under grant agreement SACRA n ˚ 249060.

opportunities to be used by the SU. Considerable efforts and

lots of algorithms were made within this sensing framework

[1].

Still, a master piece of cognitive radio is missing and

ignored by many many people when talking about cognitive

radio and generally dynamic spectrum access. In a perfect

scenario, cognitive terminals, would be guaranteed to access

the spectral resources and share them in a “fair” strategy.

Unfortunately, this remains as a perfect and an optimistic

scenario i.e, some cognitive terminals may ignore and disobey

the sharing rules leading to the emergence of new group in

the frequency band referred to as “hostile terminals”. These

CR would use the frequency resources at their own will and

thus create interference to the other cognitive radios. In this

sense, locating (in frequency) and eliminating the signals of

those hostile terminals is also considered as a major task in

cognitive radio networks (CRN).

In this paper, we present our algorithm that operates in

three steps in order to locate (in frequency) and eliminate

the harmful cognitive radio signals by separating them from

the mixed signal and recovering back the desired unharmful

signal. By applying a frequency edge detection, we will be

able to target the exact band in which the interfering terminal

is, eliminate it and recover back the signal from the terminal(s)

which is(are) allowed to transmit. In [6], the authors proposed

a wavelet edge detection technique in order to locate the hostile

terminals signals. We propose using a more robust and a less

computational cost approach, which is the algebraic toolbox

for spectrum edge location. The second step of the algorithm,

consists in deploying a blind source separation technique in

order to separate the mixed signal and infer which signal(s) is

the harmful one.

The rest of the paper is organized as following: in section II

we presented the system and the targeted scenario. In section

III, we introduce our proposed solution to the mixed signal

separation and classification problem. Then, in section IV,

some simulation results are presented and discussed. Finally,

in section V, we conclude about the presented work.

II. SYSTEM DESCRIPTION AND TARGETED SCENARIO

The adopted solution to the problem of hostile device

presence consists in tracking and locating the band which is

affected by its communication, separating the signals over this



frequency band, analyzing the separated signals and finally

eliminate the interfering signal.

The two critical phases in this process is how to locate

the interfering signal? and how to separate it from the other

signals?

In the general system and along with the SACRA (spectrum

and energy efficiency through multi-band cognitive radio)

European project [8], we propose the following scenario:

• The primary system is an LTE based system operating in

2.6GHz.

• The secondary network is targeting to use TV white space

(TVWS) in TV bands.

So, the cognition will be done as usual in the TVWS, given

that if a SU is already transmitting, it would be transmitting

in a TVWS free sub-band with LTE specifications and that a

hostile terminal would come interfere in the same band with

DVB-T based signal.

Fig. 1. Targeted wide-band cognitive radio network scenario

As shown in figure 1, connection is established on the

request of the UE5 for various reasons such as originated audio

call. The eNB3 is establishing a connection with the primary

cell in the licensed band which is the main carrier for the UE.

Due to QoS requirements of the application for the UE5, eNB3

is requesting to find additional resources for this UE. eNodeBs

are coordinated to select correct bands for use by UE5. The

eNB1 is configuring carrier component in the opportunistic

band to enhance the throughput for the UE5. eNB1 and eNB3

are coordinating the scheduling of data through two carrier

components allowing simultaneously communication in the

two bands for UE5. In this scenario, we clearly see that the

hostile terminal, starts to use the same sub-band allocated by

the network to UE5-eNB1 communication, this causes harmful

interference to the QoS of the communication established

between UE5 and eNB1.

III. PROPOSED ALGORITHM FOR SIGNAL SEPARATION IN

COGNITIVE RADIO NETWORKS

The proposed algorithm for signals separation in CRN

contains three steps: a frequency edge location, the separation

process and finally a classification step. The frequency edge

location will determine exactly where the interfering signal

location is, and the mixed signal separation will allow us to

eliminate this interference.

Let M be the number of terminals in the proposed CRN

architecture and N be the number of source signals.

The received wideband signal can be written as following:

x(t) = A . s(t) + n(t) (1)

where x(t) is aM -dimensional vector of the observed signals.

s(t) is a N -dimension vector corresponding to the source
signals transmitted by the cognitive radios. The matrix A is

M × N , and denotes the mixing matrix. And n(t) is the
additive white noise vector having the same size as x(t)

A. Frequency Edge Location

In [3]–[5], Guibene et al, developed a spectrum sensing

technique based on frequency edge location and exploiting

spectrum discontinuities detection. Inspired from the already

developed framework, we derive our edge location algorithm.

First we do suppose that the frequency range available in

the wireless network is B Hz; so B could be expressed as

B = [f0, fK ]. Saying that this wireless network is cognitive,
means that it supports heterogeneous wireless devices that may

adopt different wireless technologies for transmissions over

different bands in the frequency range. A CR at a particular

place and time needs to sense the wireless environment in

order to identify spectrum holes for opportunistic use. Suppose

that the radio signal received by the CR occupies N spectrum

bands, whose frequency locations and PSD levels are to

be detected and identified. These spectrum bands lie within

[f1, fK ] consecutively, with their frequency boundaries located
at f1 < f2 < ... < fK . The n-th band is thus defined by:
Bn : {f ∈ Bn : fn−1 < f < fn, n = 2, 3, ...,K}. The
following basic assumptions are adopted:

1) The frequency boundaries f1 and fK = f1 + B are

known to the CR. Even though the actual received signal

may occupy a larger band, this CR regards [f1, fK ] as
the wide band of interest and seeks white spaces only

within this spectrum range.

2) The number of bands N and the locations f2, ..., fK−1

are unknown to the CR. They remain unchanged within

a time burst, but may vary from burst to burst in the

presence of slow fading.

3) The PSD within each bandBn is smooth and almost flat,

but exhibits discontinuities from its neighboring bands

Bn−1 and Bn+1. As such, irregularities in PSD appear

at and only at the edges of the K bands.

4) The corrupting noise is additive white and zero mean.

The input signal is the amplitude spectrum of the received

noisy signal. We assume that its mathematical representation

is a piecewise regular signal:

Y (f) =

K∑

i=1

χi[fi−1, fi](f)pi(f − fi−1) + n(f) (2)



where: χi[fi−1, fi]: the characteristic function of the inter-
val [fi−1, fi], (pi)i∈[1,K]: an N th order polynomials series,

(fi)i∈[1,K] : the discontinuity points resulting from multiply-

ing each piby a χi and n(f) :the additive corrupting noise.
Now, let X(f) the clean version of the received signal given
by:

X(f) = ΣK
i=1χi[fi−1, fi](f)pi(f − fi−1) (3)

And let b, the frequency band, given such as in each interval
Ib = [fi−1, fi] = [ν, ν + b] , ν ≥ 0 maximally one change
point occurs in the interval Ib.
Now denoting Xν(f) = X(f+ν),f ∈ [0, b] for the restriction
of the signal in the interval Ib and redefine the change point
which characterizes the distribution discontinuity relatively to

Ib say fν given by:

yn =

{
fν = 0 if Xν is continuous
0 < fν ≤ b otherwise

(4)

Now, in order to emphasis the spectrum discontinuity behavior,

we decide to use the N th derivative of Xν(f), which in the
sense of Distributions Theory is given by:

dN

dfN
Xν(f) = [Xν(f)]

(N) +

N∑

k=1

µN−kδ(f − fν)
(k−1) (5)

where: µk is the jump of the k
th order derivative at the unique

assumed change point:fν

µk = X
(k)
ν (f+

ν )−X
(k)
ν (f−

ν )

with :

{
µk = 0⌋k=1..N if there is no change point.
µk �= 0⌋k=1..N if the change point is in Ib.

[Xν(f)]
(N) is the regular derivative part of the N th derivative

of the signal.

The spectrum sensing problem is now casted as a change point

fν detection problem. In a matter of reducing the complexity
of the frequency direct resolution, the equations are transposed

to the operational domain, using the Laplace transform:

L(Xν(f)
(N)) = sN X̂ν(s)−

∑N−1
m=0 s

N−m−1 dm

dfmXν(f)⌋f=0

= e−sfν (µN−1 + sµN−2 + ..+ sN−1µ0) (6)

Given the fact that the initial conditions and the jumps of the

derivatives of Xν(f) are unknown parameters to the problem,
in a first time we are going to annihilate the jump values

µ0,µ1,...,µN−1 then the initial conditions as fully detailed in

[3]. After some calculations steps detailed, we finally obtain:

N−1∑

k=0

(Nk ).fN−k
ν .(sN X̂ν(s))

(N+k) = 0 (7)

In the actual context, the noisy observation of the amplitude

spectrum Y (f) is taken instead of Xν(f). As taking derivative
in the operational domain is equivalent to high-pass filtering in

frequency domain, which may help amplifying the noise effect.

It is suggested to divide the whole equation 11 by s l which

in the frequency domain will be equivalent to an integration

if l > 2N , we thus obtain:

N−1∑

k=0

(Nk ).fN−k
ν .

(sN X̂ν(s))
(N+k)

sl
= 0 (8)

Since there is no unknown variables anymore, the equations

are now transformed back to the frequency domain, we obtain

the polynomial to be solved on each sensed sub-band:

N−1∑

k=0

(Nk ).fN−k
ν .L−1[

(sN X̂ν(s))
(N+k)

sl
] = 0 (9)

And denoting:

ϕk+1 = L−1[
(sN X̂ν(s))

(N+k)

sl
] =

∫ +∞

0

hk+1(f).X(ν−f).df

(10)

where: hk+1(f) =

{
(f l(b−f)N+k)(k)

(l−1)! 0 < f < b

0 otherwise
In [2], it was shown that edge detection and estimation is

analyzed based on forming multiscale point-wise products of

smoothed gradient estimators. This approach is intended to en-

hance multiscale peaks due to edges, while suppressing noise.

Adopting this technique to our spectrum sensing problem

and restricting to dyadic scales, we construct the multiscale

product of N+1 filters (corresponding to Continuous Wavelet
Transform in [2]), given by:

Df = ‖

N∏

k=0

ϕk+1(fν)‖ (11)

B. Mixed Signal Separation

Now, in order to proceed with the blind source separation

(BSS) like problem we ended with, and in order to adopt an

independent component analysis (ICA) algorithm we have first

to filter the wideband signal in a band of interest, modulate it

to baseband, decorrelate and center the data, proceed with the

FastICA and finally demodulate back the signal to its original

frequency band.

1) Filtering:

In order to be able to separate the source signals from

the mixture present in each subband, we need to analyse

each subband separately. Thanks to the frequency edge

location algorithm, we can sub-divide the wideband

signal and thus obtain the frequency borders. By choos-

ing two consecutive frequencies from the frequency set

{fn}, we can construct a filter hBn
where Bn = fn −

fn−1 is frequency support and fnm = (fn− fn−1)/2 is
the center frequency.

Then in order to filter the signals between fn−1 and fn,
we get xin: observed signal on each CR given by:

xin = xi ∗ hBn
, i = 1, 2, ..,M (12)

where * denotes the convolution operation.

2) Signal Modulation:

As we intend to use some Blind Signal Separation



(BSS) processing, and as it is generally done in BSS,

we modulate high frequency signals back to base band

frequency. Thus we get:

xinL = xin ∗ hModn, i = 1, 2, ..,M (13)

where, xinL is the modulated signal on each terminal

and hModn represents the modulation carrier according

to the estimated frequency edge. From this modulation

process, we finally get a baseband signals matrix

XnL = [xT1nL xT2nL... xTmnL... xTMnL]
T (14)

3) Signals decorrelation and centering:

In order to proceed with BSS and ICA analysis of

mixute, we have to make sure that the vector XnL

is uncorrelated and zero mean. Thus we proceed as

following:

Centering Phase:

X̃nL = XnL − E[XnL] (15)

now that the matrix X̃nL is a zero-mean matrix, we can

proceed to make it a non correlated matrix as classically

done in BSS and ICA preprocessing. We also chose to

ensure at the output of this process a unity variance for

the uncorrelated matrix components.

Whitening Phase:

X̂nL = E . D
−1
2 . ET . X̃nL (16)

where E is the orthogonal matrix of eigenvectors of

E{X̃nL . X̃T
nL}. D = diag(d1, ..., dM ) is the diagonal

matrix containing the eigenvalues of E{X̃nL . X̃T
nL} .

4) Separation Technique:

Now that the matrix containing mixture signals is well

conditioned, we can proceed to the signal separation

step. In FastICA, which is one of the most used tech-

niques for signals separation, the source signals in base-

band, Ŝ, can be derived from the modulated, whitened,

centered signal using a separation matrix, say W , as

described by the following equation:

Ŝ = WT . X̂nL (17)

In order to briefly describe the separation process, we

initially choose an M-dimential weight vector, say w init.

Afterwards, the vectors has to be computed and updated

in order to converge to W . The first component is

computed at the first iteration by:

w+
1 = E{X̂nL . g(wT

init . X̂nL)}

− E{g′(wT
init . X̂nL)} . winit

(18)

then we normalize w1 as following:

w1 =
w+

1

‖w+
1 ‖

(19)

where g( . ) is a non quadratic function that usually is
chosen among: gaussian, hyperbolic tangent or a cubic

function.

If w1 does not converge, we proceed with equation (19)

until |wT
1 . winit| gets as close as possile to 1.

Now, that w1 converged,we get by successive iteration

the N−1 (N andM are not necessarely equal) missing

vectors of separation matrix. The k th is computed at the

kth iteration by:

w+
k = E{X̂nL . g(wT

k−1 . X̂nL)}

− E{g′(wT
k−1 . X̂nL)} . wk−1

(20)

then we normalize w1 as following:

wk =
w+

k

‖w+
k ‖

(21)

Therefore, after all these computations, we obtain the

matrix W = [wT
1 , wT

2 .... , wT
N ].

Now, having an estimate of the matrix W , we can

compute the source signals and recontract S from the

observed mixture from 17:

Ŝ = WT . X̂nL (22)

where Ŝ = [s̃T1nL s̃T2nL... s̃TinL... s̃TNnL]
T , is the sep-

arated signals matrix. Given this notation, s̃TinL denotes
the separated baseband signal vector.

5) Demodulation:

As a final step, we modulate Ŝ back to its original sub-
bands via the demodulation filter hdemodn constructed

from the knowledge of hModn. and thus we get:

s̃in = s̃inL ∗ hdemodn, i = 1, 2, .., N (23)

where s̃in denotes the recovered signal vector on the

frequency support delimited by fn−1 and fn. And finally
denoting, S̃ = [s̃T1n s̃T2n... s̃Tin... s̃TNn]

T , we do

obtain the recovered signals matrix on each subband

[fn−1 , fn].

Having this process done over one subband the analysis can

be performed now on the entire subbands delimited by the set

of frequencies {fn}, until the whole wideband spectrum is

fully analyzed.

C. Signals Classifications

In the targeted scenario, the cognition will be done as usual

in the TVWS, given that if a SU is already transmitting, it

would be transmitting in a TVWS free sub-band with LTE

specifications and that a hostile terminal would come interfere

in the same band with DVB-T based signal.

Now, we would need a metric on which we can rely to

evaluate the separation algorithm. We suggest defining a new

metric, which can summarize the performance of the output

of the proposed technique. The metric has to consider the

fact that we correctly separated and analyzed the separated

signals. We propose than introducing the probability of right

signals classification. This metric corresponds to the fact that

the hostile terminal is correctly identified as a DVB-T signal

on a the given sub-band of interest.

In order to achieve this, we will add a final classification

step to our algorithm. In this step, in order to perform the



classification of each separated signal, we deploy a cyclosta-

tionary feature detector-like algorithm but with a threshold and

a test statistic adapted to the targeted standard to be classified.

It is shown in literature that for a given signal, say x(n),
optimum feature classification is performed by correlating the

cyclic periodogram with the ideal spectral correlation function

of the targeted standard:

z = maxm

K∑

k=0

Ŝα
x (k)W (m− k) (24)

where Ŝα
x denotes the cyclic periodogram and is the rectan-

gular window function. And as shown in [7] , the test statistic

is given by:

λ =
z

z0
(25)

where z0 is the computed value of the decision function for
targeted standard to be classified. We define afterwards, the

probability of correct classification which is the probability of

classifying x as DVB-T, LTE:

P = p(z = z0|x) (26)

IV. SIMULATIONS AND RESULTS

In order to evaluate the overall system performance, let’s

consider a simulation framework with the following signal

properties:

Bandwidth 8MHz

Mode 2K

Guard interval 1/4

Frequency-flat Single path

Sensing time 1.25ms

Location variability 10dB

TABLE I
SIMULATED SIGNALS PARAMETERS

The probability of correct classification as function of SNR

applied on both separated signals for SNR values from -30 to

15 dB, and a fixed false alarm rate of 1% and a classification

time of 1.25 ms and 250 ms is shown in Figure 2

In the figure 2, the SNR values correspond actually to the

value of the mixture SNR,ie the received signal at the level

of the fusion center. The fact that the performances decrease

in low SNR region, comes from the contributions of noise to

the separation process and its influence on the overall SINR

of the separated signals. SACRA recommendations are shown

to be achieved for classification period of 250 ms.

V. CONCLUSION

In this paper, we presented a novel mixed signal separation

algorithm for cognitive radio networks that helps eliminating

and banning hostile terminals that may violate the spectrum

sharing policy in the network.

This mixed signal separation operates in three stages: the fist

one is a frequency edge location algorithm that helps locating

Fig. 2. Probability of right classification Vs. SNR for the simulated scenario

where the malicious communication operates in the wide band

spectrum. Then, the second stage consists of a blind source

separation like solution adapted to cognitive radio problem.

And finally, in order to infer which of the resulting signals is

the hostile one, a cyclostationary feature detection technique

is applied to the resulting signals to determine on to which

standard they do belong.

Finally, we gave some simulation results about the proposed

technique in terms of probability of correct classification of the

hostile signal versus signal to noise ration.
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