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ABSTRACT 
 
Facial occlusion is a critical issue in many face recognition 
applications. Existing approaches of face recognition under 
occlusion conditions mainly focus on the conventional facial 
accessories (such as sunglasses and scarf) and thus presume 
that the occluded region is dense and contiguous. Yet due to the 
wide variety of natural sources which can occlude a human face 
in uncontrolled environments, methods based on the dense 
assumption are not robust to thin and randomly distributed 
occlusions. This paper presents the solution to a newly 
identified facial occlusion problem – sparse occlusion in the 
context of face biometrics in video surveillance. We show that 
the occluded pixels can be detected in the low-rank structure of 
a canonical face set under the Robust-PCA framework; and the 
occluded part can be inpainted solely based on the non-
occluded part and a Fields-of-Experts prior via spatial 
inference. Experiments demonstrate that the proposed approach 
significantly improve various face recognition algorithms in 
presence of complex sparse occlusions.    
 

Index Terms — Sparse Occlusion, Inpainting, Face 
Recognition, Robust-PCA, Fields-of-Experts 

 
1. INTRODUCTION 

 
Face recognition, the least intrusive biometric technique 

from the acquisition point of view, has been applied to a wide 
range of commercial and law enforcement applications. With 
the emphasis on real world scenarios (e.g. face recognition in 
video surveillance), a number of challenges including pose 
/illumination changes, image degradation as well as partial 
occlusion is required to be deliberately handled. Facial 
occlusion, as one of those major challenges, has been 
extensively studied in the literature [1-5]. However, previous 
works mainly focus on facial occlusions which are dense and 
contiguous (e.g. sunglasses, scarf, beards, hat and hand on face), 
whereas neglecting the other types of facial occlusions.   

De facto, there exists a large variety of facial occlusions in 
uncontrolled environments. In addition to the well-studied 
facial occlusions in the literature, in this paper, we point out 
that occlusions caused by facial painting, face dirt, and face 
behind fence (where the occluded part is often not dense) can 
also greatly hinder many popular face recognition systems. 
Inherent from the sparsity/density dichotomy in graph theory 
[6], we categorize facial occlusions into 2 classes: the dense 

occlusion and the sparse occlusion (see Fig. 1). Unlike the 
traditional studies, the aim of this paper is to address the newly 
identified sparse occlusion problem in face recognition. 

Recently, researchers have revealed that imposing prior 
knowledge of occlusion can significantly improve results of 
face recognition under occlusion conditions [3-5]. Hence, 
explicit occlusion analysis is an essential step in occluded face 
recognition. However, since the previous focus is primarily on 
dense occlusions, the dense assumption is made intentionally or 
undeliberately in the detection of occluded regions. In [3] and 
[4], faces are divided into pre-defined local patches for 
occlusion detection, where the occluded part is supposed to be 
larger/equal to the patch size and condensed; the occlusion-free 
patches are then used in local feature based face recognition. 
Zhou et al. [5] used a Markov Random Fields (MRF) model to 
incorporate spatial continuity constraints in the modeling of 
contiguous occlusions (in order to exclude the information from 
the occluded part) which improves sparse representation based 
face recognition [2]. Apparently, such methods are 
inappropriate when dealing with sparsely occluded faces.  

Towards the problem of sparse occlusion, we detect 
occluded pixels with emphasis on the sparsity by explicit 
occlusion modeling. In addition, inspired by the work of image 
inpainting [7], instead of simply excluding information from 
the occluded part (as suggested by [3-5]), we propose to further 
recover the occluded part from the non-occluded part via 
spatial inference. The detection and inpainting of sparse 
occlusion are then achieved based on the methods of Robust 
Principal Component Analysis (Robust-PCA) [8] and Fields-of-
Experts (FoE) [9] respectively. 

Contributions: In this paper, we identified a new type of 
facial occlusion (sparse occlusion) which is an important issue 

This work is partially funded by the French national project FR 
OSEO BIORAFALE.  

Fig. 1: Examples of various kinds of facial occlusions: (a) densely 
occluded faces, (b) sparsely occluded faces.  

(a) Dense Occlusions  (b) Sparse Occlusions 



however overlooked in state-of-the-art of occluded face 
recognition. The main contribution of this paper is the idea to 
detect and then inpaint such sparse occlusions via spatial 
inference so as to improve face recognition, which is not 
studied in any prior work according to our best knowledge. 
Based on this idea, we built an automatic system to detect and 
inpaint sparsely occluded faces and demonstrated significant 
improvements of various face recognition algorithms (we tested 
PCA [10], SIFT [11] and LBP [12] based face recognition 
respectively) under different sparse occlusions. 

The rest of this paper is structured as follows. The proposed 
algorithm is described in details in section 2. Section 3 presents 
the experimental results and analysis. Finally, we draw the 
conclusion in Section 4. 

 
2. APPROACH 

 
In this paper, we propose the solution to handle sparse 

occlusions in face recognition. We assume that occlusions are 
large deviations from a low-dimensional face space. A probe 
face (well-aligned) is thus represented as the lowest rank 
reconstruction from a canonical face set (where the faces are 
well-aligned and non-occluded) added with a sparse error 
vector under the context of Robust-PCA [8]. Based upon the 
computed sparse error vector, we can discriminate the large 
error entries from the small facial appearance agitations so as to 
detect the occluded pixels on a face image. For the inpainting 
of occluded pixels, we adopt a generic FoE prior [9] to infer the 
missing part, which demonstrates significant improvements in 
both visual quality and recognition results for faces with sparse 
occlusions. Finally, the recovered face is utilized as input to the 
face recognition system. A high-level work flow diagram of the 
proposed method is shown in Fig. 2.  

2.1. Definition of Dense/Sparse Occlusion 

Let us consider an image as an undirected adjacency graph 
𝐺 = (𝑉,𝐸) in which the pixels represent the vertices and the 
pixel-neighborhoods represent the edges. Given the occluded 
part of a face image as an induced subgraph 𝐺′ = (𝑉′,𝐸′)  of 
the entire graph  𝐺 , the occlusion is called dense when the 
number of edges |𝐸′| in 𝐺′ is close to the maximal number of 
edges in an adjacency graph with |𝑉′| vertices and vice versa. 
By this definition, facial occlusions like sunglasses, scarf, and 
hat (Fig. 1a) are regarded as dense occlusions; whereas 
examples like facial painting, face dirt and face behind fence 
(Fig. 1b) belong to the sparse occlusion category. 

2.2. Sparse Occlusion Detection 

We are given a set of  𝒦 well-aligned and non-occluded 
faces 𝒞 = {𝑐1, 𝑐2, … , 𝑐𝒦}  represented by pixel-vectors { 𝑐𝑖} ∈
ℝ𝑚, where 𝑚 is the feature dimension. Given a probe face 𝑦 ∈
ℝ𝑚, the occlusion modeling method suggested by [2][5] is to 
find a sparse error vector 𝑒 ∈ ℝ𝑚  by solving: 

arg min(𝑥,𝑒)‖𝑥‖1 + ‖𝑒‖1      subj. to   𝒞𝑥 + 𝑒 = 𝑦   (1) 

where 𝑥  is a sparse1 coefficients vector. The prerequisite to 

correctly find 𝑒 relies on a sufficient number of well-aligned 
training samples {𝑎1, …, 𝑎𝑘} ∈ 𝒞 from the same subject of 𝑦, so 
that 𝑦 can be linearly approximated in a low-dimensional space 
by: 

𝑦 ≅ ∑ 𝑎𝑖𝑘
𝑖=1                                        (2) 

However, in many practical face recognition scenarios, the 
training samples of each subject in 𝒞 are often insufficient (the 
“curse of the dimensionality” [13] problem, in the extreme case 
only one template face per subject is available) to correctly 
resolve equation (1). Therefore we loosen the prerequisite by 
only assuming faces in 𝒞 are well-aligned and non-occluded. In 
this sense, we model occlusions as large deviations from a low-
dimensional face space derived by the canonical set 𝒞 (such a 
set can be different from the gallery set, preferably a smaller set 
to accelerate computation).  

To do so, we first integrate the probe face 𝑦 with set 𝒞 to 
build an observation matrix  𝒞+ = {y, 𝑐1, … , 𝑐𝒦} , where 
𝒞+ ∈ ℝ𝑚×(𝒦+1)  was generated by a low-rank matrix 𝒜 ∈
ℝ𝑚×(𝒦+1) with large corruption (occlusion) on  𝒞1+ and minor 
errors (small facial appearance agitations) on  𝒞2~𝒦+1

+ . The 
corruptions are represented by an additive matrix  ℰ ∈
ℝ𝑚×(𝒦+1), where 𝒞+ = 𝒜 + ℰ. Our goal is thus to recover the 
correct corruptions  ℰ′ , more specifically  ℰ1′  . Because facial 
occlusion affects only a portion of the entire face, thanks to the 
“blessing of the dimensionality” [13], the sparse error ℰ can be 
efficiently and exactly separated from the low-rank structure 
of 𝒞+. This problem formulation can be effectively resolved by 
the Robust-PCA framework [8] via the following optimization 
relaxation: 

arg min(𝒜,ℰ)‖𝒜‖∗ + 𝛾‖ℰ‖1      subj. to   𝒜 + ℰ =  𝒞+  (3) 

where ‖∙‖∗ is the nuclear norm which pursues the lowest rank 
𝒜 that aims to regenerate the observations; and ‖∙‖1 is the l1-
norm which pursues the sparsity of errors. We adopt the inexact 
Augmented Lagrange Multiplier [14] (ALM) method to solve 
equation (3) due to its reported accuracy and efficiency.  

Once the sparse error vector  ℰ1′  is computed, we exploit it 
to discriminate the large error entries (regarded as the occluded 
pixels) from the small facial appearance agitations by giving a 
pre-defined threshold: 

𝑀(𝑖) = �1,    |ℰ1′(𝑖)| > 𝜏,∀i ∈ [1,𝑚]
0,                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  (4) 

𝜏 is selected empirically to minimize the detection error. 𝑀 is 
the indicator of occlusion (i.e. 𝑀(𝑖) = 1 if pixel 𝑖 is occluded), 
where 𝑀  will be served as the mask which supervises the 

1 Please notice that here the term ‘sparse’ is different from the term we 
used in the dense/sparse occlusion dichotomy. In a vector/matrix, the term 
‘sparse’ indicates the small number of non-zero entries, but not refer to the 
sparse definition in graph theory. 

Fig. 2: A high-level workflow of the proposed method 



sparse occlusion inpainting approach introduced in the next 
section.  

2.3. Sparse Occlusion Inpainting 

In this paper, we apply an image inpainting method based 
on the Fields-of-Experts (FoE) model [9] to infer the sparsely 
occluded pixels. The FoE model learns a generic image prior  
𝒫𝐹𝑜𝐸 (a high-order Markov Random Field model) from a large 
number of nature image patches.  𝒫𝐹𝑜𝐸 models the local image 
structures over extended image neighborhoods (i.e. the local 
spatial properties), and therefore can be used to predict the 
missing part from existing observations via probabilistic 
inference. 

In a common image inpainting setting, ground truth mask 
of the region to be inpainted is known. In contrast, we are 
facing a more challenging scenario where the part to be 
inpainted (occluded pixels) is unknown. Hence, we supply the 
mask of pixels which should be inpainted by our automatic 
occlusion detection (𝑀(𝑖), 𝑖 ∈ [1,𝑚] , given in Section 2.2). 
Let 𝑀 be the mask used in the inpainting process, given the 
learned image prior 𝒫𝐹𝑜𝐸, the image inpainting method based 
on the FoE prior described in [9] can be casted as the following 
gradient ascent-based process: 

𝑥(𝑡+1) = 𝑥(𝑡) + 𝜂 ∗ 𝑀 ∗ �∇𝑥(𝑡) log𝒫𝐹𝑜𝐸(𝑥(𝑡))�             (5) 

where 𝑡 is the iteration index and 𝜂 is the update rate; the mask 
𝑀 sets the gradient to zero for all pixels outside the masked 
region. 

Fig. 3 shows the inpainting results of various sparse 
occlusions of the same face. In the figure, it is clear that all four 
faces have large distortions where their PSNR are all below 20 
dB. If the ground truth masks are given, using FoE prior based 
image inpainting, the PSNR of inpainted faces improve 
significantly (up to 39.12 dB). When using the masks returned 
by our automatic occlusion detection, the recovered images 
also achieve good visual quality improvements (where their 
PSNR are all above 26 dB); although some occluded pixels are 
not detected and thus not inpainted in the eyes and eyebrows 
region due to the similar appearances.  

When the input face is inpainted by the proposed approach, 
it is then fed into the system for face recognition. Our 
experiments demonstrate that the proposed method cannot only 
improves the visual quality of sparsely occluded faces but also 
significantly improves the results of face recognition systems. 

 
3. EXPERIMENTS 

 
To assess the performance of our proposed approach, we 

performed a series of experiments on AR face database [15], 
with different types of artificially generated sparse occlusions. 
The dataset and detailed configurations of our experiments are 
introduced in Section 3.1. In Section 3.2, we will illustrate that 
the recognition results of face recognition algorithms 
accompanied with our proposed occlusion detection and 
inpainting approach which can significantly surpass the results 
from the standard algorithms (Eigenface [10], SIFT [11] and 
LBP [12]) in presence of sparse occlusions. 

3.1. Dataset and Configurations 

 
The AR face database contains more than 4000 face 

images of 126 subjects (70 men and 56 women) with different 
facial expressions, illumination conditions, and occlusions. For 
each subject, 26 pictures were taken in two separate sessions 
(two weeks interval between the two sessions). The original 
image resolution is 768x576 pixels. Using the eye coordinates, 
we cropped, normalized and down-sampled the face region into 
128x128 pixels. In our experiments, 300 non-occluded faces 
(with facial expression and illumination variations) are 
randomly selected to form the canonical face set  𝒞. For face 
recognition, 100 subjects (half of male and half of female) are 
selected. For each subject, we chose 14 images with different 
illumination conditions and facial expressions: 7 images from 
session 1 as the template faces and 7 images from session 2 as 
the probe faces. The probe faces are imposed by 4 kinds of 
artificially generated sparse occlusions (stain, text, orthogonal 
grid and diagonal grid as shown in Fig. 3) to simulate the real-
world scenarios.  

We tested 3 different face recognition algorithms on the 
proposed dataset, namely PCA, SIFT and LBP based face 
recognition, with and without the proposed occlusion detection 
and inpainting, respectively. For PCA based method, template 
faces (occlusion-free) are used to train the Eigenspace for both 
template and probe faces’ representation. For SIFT and LBP 
based method, features are extracted from both template and 
probe faces for the Nearest-Neighbor (NN) based classification. 
The SIFT feature extraction is adopted from [11], and the LBP 
operator LBP8,2

u2  is used in our experiment. Other settings of the 
experiments are listed here: 𝛾 = 1 √𝑚2⁄ , 𝜏 = 0.004 ; the 
inpainting process are consists of 2 steps: a rough step with 
𝑡 = 500 and 𝜂 = 10, and a refined step to “clean up” the image 
with 𝑡 = 250 and 𝜂 = 0.01 as suggested by [9]. 

3.2. Results 

Fig. 4 shows the recognition rates of PCA, SIFT and LBP 
based algorithms on the clean face set and the faces with 

Fig. 3: Illustration of our sparse occlusion inpainting: (a) faces 
with different sparse occlusions (stain, text, orthogonal grid, and 
diagonal grid), PSNR={19.12 dB, 13.92 dB, 13.25 dB, 12.81 dB 
}; (b) ground truth masks of the sparse occlusions; (c) results of 
our sparse occlusion detection ( 𝜏 = 0.004); (d) faces after 
inpainting using the masks in (b), PSNR={39.12 dB, 34.05 dB, 
33.26 dB, 32.51 dB}; (e) faces after inpainting using the masks 
in (c), PSNR={30.43 dB, 28.30 dB, 26.05 dB, 26.50 dB}. 



different types of sparse occlusions, respectively. It is clear that 
without explicit treatment, sparse occlusions can greatly 
deteriorate the results of those face recognition algorithms (the 
results marked as “Original”). In the figure, SIFT based method 
achieves very accurate recognition rate (97.57%) for non-
occluded faces, however it is very sensitive to the sparse 
occlusion distortions (less than 25% in all cases, since the 
descriptor summarizes the edge-like features which correspond 
to the sparse occlusions located on the probe faces). LBP based 
method are somewhat robust to certain types of sparse 
occlusions (stain, text and orthogonal grid, because those 
occluded parts are located at the boarder of 8x8 LBP blocks); 
however when the occluded part is located inside the LBP 
blocks (e.g. the diagonal grid case) its recognition rate 
decreases drastically (down to 28.57%). Those results illustrate 
that even if local-feature based methods are known to be 
somewhat robust to conventional partial occlusions (such as 
scarf and sunglasses); they are still fragile to sparse occlusions. 

In the figure, the inpainted faces using FoE prior based on 
the ground truth masks (“Recovered 1”) can achieve 
recognition rates as good as the non-occluded faces (with the 
deviations less than 2%). In addition, using the proposed sparse 
occlusion detection and inpainting (“Recovered 2”) can 
significantly promote the recognition rates in comparison to the 
results from the occluded faces. For LBP based method, the 
proposed approach can even achieve recognition results very 
close to the non-occluded faces (97.14%), because the small 
distortions (due to the detection errors) in few LBP blocks do 
not impair the discriminative power of the overall 
representation. In conclusion, explicit occlusion detection and 
inpainting can greatly improve the results of those face 
recognition algorithms when dealing with sparse occlusions. 

 
4. CONCLUSIONS 

 
This paper presents the first solution to a newly identified facial 
occlusion problem: sparse occlusion in the context of face 
biometrics in video surveillance. The proposed system 
automatically detects sparse occlusion on faces (using R-PCA) 
and then inpaints the occluded part (using FoE prior) to 
improve face recognition. We have demonstrated the 
significant improvements of various face recognition systems 
based on the proposed approach via extensive experiments.  
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