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ABSTRACT

The performance of channel estimation is often assessed by deriving

the proper Cramér-Rao Bound (CRB). Depending on how to treat the

symbols and the channel, we have previously derived different ver-

sions of CRB. Specifically, we have dealt with the cases where the

symbols and/or the channel are assumed to be either deterministic

unknowns or random. Moreover, the symbols have been considered

to be either jointly estimated with the channel or marginalized. All

in all, we have derived six different versions of Bayesian and deter-

ministic CRBs. However, we have shown that many of these CRBs

are too optimistic in the sense that they are not strict enough to be

attained by any deterministic or Bayesian estimator. In this paper

we propose modified versions of those loose CRBs in the context of

SIMO FIR system that are valid at least in the moderate and high

SNR regimes. The analytical formulas for the lower bounds intro-

duced are validated by some Monte-Carlo simulations.

1. INTRODUCTION

Traditionally, the transmitter sends some known information to the

receiver to aid the latter in estimating the channel. However, in wire-

less communication the channel varies rapidly with time and as a

consequence more training sequence/pilots are required. This pro-

cess wastes a lot of bandwidth as a result of augmenting the trans-

mission rate to maintain the throughput. In the last two decades

a new branch of channel estimation has emerged focusing on ac-

complishing this task blindly i.e. without the need for a training

sequence. Nevertheless, most wireless standards that have evolved

during this period are still relying on the training sequence/pilots to

estimate the channel. This is due probably to the unsatisfactory re-

sults of the blind channel estimation algorithms. On the other hand,

some powerful channel estimation algorithms that take advantage

of both aforementioned techniques have been also developed dur-

ing the same era. These are known as semi-blind where a superior

performance is achieved although few training sequence/pilots are

transmitted. As usual the performance of these algorithms are lower

bounded by the most famous lower bound namely, CRB. In [1] we

have derived the CRBs that correspond to the different algorithms

elaborated in [2]. Unfortunately, many of these CRBs are shown to

be loose since they don’t take into consideration the coupling be-

tween the channel and the symbol estimates at the level of the Fisher
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Information Matrix (FIM). In this paper we propose modified ver-

sions of these CRBs that are tighter than those derived in [1]. We

will show analytically that these CRBs constitute valid lower bounds

in the moderate and high SNR regimes. This paper is organized as

follows: In section II we develop the SIMO FIR transmission sys-

tem model, while in section III we show a general framework that

permits the derivation of the different CRBs. In section IV we make

use of the framework developed in section III to derive the different

modified CRBs. In section V we conduct some Monte-Carlo sim-

ulations to pictorially compare different modified CRBs with their

corresponding estimators as well as with their corresponding tradi-

tional CRBs.

2. SIMO FIR TX SYSTEM MODEL

Consider a linear digital modulation over a linear channel with addi-

tive noise so that the received signal y(t) has the following form:

y(t) =
∑

k

h(t − kT )a(k) + v(t). (1)

In (1) a(k) are the transmitted symbols, T is the symbol period and

h(t) is the channel impulse response. The channel is assumed to be

FIR with length NT . If the received signal is oversampled at the rate
m
T

(or if m different samples of the received signal are captured by

m sensors every T seconds, or a combination of both), the discrete

input-output relationship can be written as:

y(k) =

N−1∑

i=0

h(i)a(k−i) + v(k) = HAN (k) + v(k) (2)

where y(k) = [yH
1 (k) · · · yH

m(k)]H , h(i) =
[
hH

1 (i) · · ·hH
m(i)

]H
,

v(k) = [vH
1 (k) · · · vH

m(k)]H , H = [h(N−1) · · ·h(0)], AN (k) =[
a(k−N+1)H · · · a(k)H

]H
and superscript H denotes Hermitian

transpose. Let H(z) =
∑N−1

i=0 h(i)z−i = [HH
1 (z) · · ·HH

m(z)]H be

the SIMO channel transfer function, and h =
[
hH(N−1) · · ·hH(0)

]H
.

Consider additive independent white Gaussian circular noise v(k)
with rvv(k−i) = E v(k)v(i)H = σ2

vIm δki. Assume we receive

M samples:

YM (k) = TM (h) AM+N−1(k) + V M (k) (3)

where YM (k) = [yH(k−M+1) · · ·yH(k)]H and similarly for

V M (k), and TM (h) is a block Toepltiz matrix with M block rows



and [H 0m×(M−1)] as first block row. We shall simplify the

notation in (3) with k = M−1 to

Y = T (h) A + V = TK(h) AK + TU (h) AU + V

= AKh + AUh + V .
(4)

Where TK(h) and TU (h) represent respectively the portions of

T (h) that correspond to Ak (MK known symbols) and AU (MU

unknown symbols), see Figure 5 in [1]. On the other hand, A is a

block Toeplitz matrix filled with the elements of A while AK and

AU are block Toeplitz matrices filled with the elements of AK and

AU respectively. Here we assume for simplicity that the known

symbols are gathered at the beginning of the block.

3. A UNIFIED FRAMEWORK FOR DIFFERENT CRBS

We have presented in [1] a complete framework that permits the han-

dling of the different cases of the channel and the symbols estima-

tion. Here we shall present briefly the main results. In [1] the differ-

ent estimation cases have been classified into two main categories.

In the first category the channel and the unknown symbols are esti-

mated jointly by making some assumptions on the channel and the

unknown symbols. If we denote by θ the unknown parameters to be

estimated then it is given by:

θ = [AH
U , hH ]H (5)

Applying the log function to the joint probability density function

(pdf), we get [1]:

ln[f(Y, AU , h)] = ln[f(Y/AU , h)] + ln[f(AU )] + ln[f(h)] (6)

where f(Y, AU , h) and f(Y/AU , h) denote respectively the joint

and conditional pdf. Now, let J represents the Fisher Information

matrix (FIM), it is given by [3]:

Jθθ = E

(
∂ ln[f(Y, AU , h)]

∂θ∗

)(
∂ ln[f(Y, AU , h)]

∂θ∗

)H

= −E
∂

∂θ∗

(
∂ ln[f(Y, AU , h)]

∂θ∗

)H

(7)

As we shall observe later, since we are treating complex parameters

we also need, besides Jθθ , Jθθ∗ which is defined by:

Jθθ∗ = E

(
∂ ln[f(Y, AU , h)]

∂θ∗

)(
∂ ln[f(Y, AU , h)]

∂θ

)H

= −E
∂

∂θ

(
∂ ln[f(Y, AU , h)]

∂θ∗

)H

(8)

When Jθθ∗ 6= 0 we shall resort to θR defined below:

θR =

[
Re(θ)
Im(θ)

]
= M

[
θ
θ∗

]
,M =

1

2

[
I I

−jI jI

]
(9)

Knowing that Jθθ = J∗
θ∗θ∗ and Jθθ∗ = J∗

θ∗θ then (9) yields:

JθRθR
= M

[
Jθθ Jθθ∗

J∗
θθ∗ J∗

θθ

]
MH

(10)

On the other side, when Jθθ∗ = 0 then JθRθR
is defined totally by

Jθθ . This holds true for all the cases where we jointly estimate the

channel and the symbols as we shall notice later. Under some as-

sumptions and regularity conditions [4], the error covariance matrix

of an unbiased channel estimator ĥ(Y ), which is defined as:

C(ĥ) = E

{[
ĥ(Y ) − h

] [
ĥ(Y ) − h

]H
}

(11)

satisfies the following inequality:

C(ĥ) ≥ {JθRθR
}−1 △

= CRB (12)

We usually focus on comparing the Mean Square Error, MSE =

tr
{

C(ĥ)
}

to the minimum error variance which is defined by

tr {CRB} where tr stands for the trace of a matrix. However, in

the second category the channel and the noise variance are the only

parameters to be estimated while the symbols are supposed to be

marginalized during the estimation process.

θ = [hH , σ2
v]H (13)

Again, when we apply the log function to the joint pdf, we get:

ln[f(Y, h, σ2
v)] = ln[f(Y/h, σ2

v)] + ln[f(h)] + ln[f(σ2
v)] (14)

As for FIM, both (7) and (8) are still applicable where only θ is

redefined as in (13).

4. DERIVATIONS OF MODIFIED CRBS

We have derived in [1] six different Bayesian and deterministic

CRBs. Four out of those six CRBs are shown to be loose. We shall

develop in this section modified versions of those loose CRBs. This

will be done by exploiting the framework introduced in the previous

section. For explanation on the way by which we call the different

CRBs, we refer the reader to [1]. As we have observed in (7) and

(8), there is an expectation operator in the definition of the FIM.

When both the channel and the unknown symbols are deterministic,

this expectation operator can be written as EY/A,h. In this case

the expectation means averaging over the noise which is the only

random vector. However, when either the channel or the unknown

symbols or even both of them are considered as random, the ex-

pectation operator means averaging over the different realizations

of the noise, the channel and the unknown symbols. Therefore, the

expectation operator becomes as follows (Baye’s Theorem):

EY,h/AU
= EY/AU ,h Eh (h is random).

EY,AU /h = EY/AU ,h EAU
(AU is random).

EY,h,AU
= EY/AU ,h Eh EAU

(h and AU are random).

(15)

As we have noticed in [1], the deficiency of the traditional Bayesian

and deterministic CRBs is a direct consequence of the implemen-

tation of Eh and/or EAU
in the FIM formulas. Specifically, these

expectations make the channel and the unknown symbols estimates

decoupled although in reality they are coupled. Our main idea is to

postpone the implementation of these expectation operators so that

we compute the inverse of the FIM first then we apply them in the

second step to get the modified CRB. Based on this introduction, the

question now, does this modified CRB still constitute a lower bound

for the channel estimate? Another question that poses itself, is there

any proof that this modified CRB is tighter than the traditional one?

To address the first question, we note that the main drawback of post-

poning the implementation of the expectation operators ( Eh and/or

EAU
) is that our modified CRBs would correspond to estimators that

should be unbiased for every channel and/or unknown symbols real-

izations.

When both the channel and the symbols are considered as de-

terministic unknowns (see SB-ML-ML in [2]), the channel estimate

has been traditionally considered as unbiased. However, in [5] it

has been shown that the unbiasedness doesn’t hold at low SNR!



As a consequence, even the traditional CRB is no longer a valid

lower bound in this SNR regime. Moreover, theoretically once the

channel and/or the symbols are considered as random, the chan-

nel estimate should be biased even at high SNR due to the usage

of the prior information of the channel and/or the unknown sym-

bols. However, as our simulations have shown, the bias is negli-

gible at moderate and high SNR. This encourages us to proceed in

our idea since now J−1
hh (where EY/A,h is used instead of EY,A/h,

EY,h/A and EY,A,h) can be considered as a valid lower bound for

every channel and/or unknown symbols realization. This is true

at least in the moderate and high SNR regimes. Hence, we have

C(ĥ) ≥ J−1
hh . Now if apply the expectation operators on both sides

we get Eh EAJ−1
hh ≥ Eh EAC(ĥ). In other words, the modified

CRB is a valid lower bound for the mean of the channel estimation

error. The mean here is computed by averaging over the different

channel and symbols realizations. As for answering the second ques-

tion raised above, we need to prove that EJ−1
hh ≥ {EJhh}

−1
. In [6]

it has been shown after a tedious derivation that for any positive def-

inite matrix B we have:

tr
(

E
{
[B]−1}) ≥ tr

(
[ E {B}]−1)

(16)

However, we will present here a much simpler proof that this in-

equality holds also without the trace operator. Suppose we have a

matrix which is formed as G = [B
H

2 B
−1

2 ]H, the inner prod-

uct of this matrix is given by < G,G > = E GG
H ≥ 0 where

the inequality stems from the non degeneracy property of the inner

product [7]. Developing the inner product yields:

E

[
E B I
I E B

−1

]
≥ 0 (17)

Now applying the Schur’s complement we get: E B−
(

E B
−1

)−1
≥

0 ⇒ E B ≥
(

E B
−1

)−1
⇒ E B

−1 ≥ ( E B)−1
. It is obvious

now that (16) follows directly. Hence, we can allege that our modi-

fied Bayesian and deterministic CRBs that are based on inverting the

matrix first then applying the expectation operators are tighter than

the traditional ones. This fact is going to be elaborated in the se-

quel where the formulas of the modified Bayesian and deterministic

CRBs are derived.

4.1. DCRBsto,joint and MDCRBsto,joint

This estimator also belongs to the first category, thus the joint pdf is

given by (6). Moreover, f(AU ) = 1

(πσ2
a
)M+N−1−MK

exp[−
AH

U
AU

σ2
a

]

and f(h) = hoδ(h − ho). It is obvious here that ln[f(h)] can be

omitted without affecting the computation of FIM. Hence, (7) and

(15) yield:

Jθθ = EAU

1

σ2
v

[
T H

U (h)TU (h) +
σ2

v

σ2
a

IMU
T H

U (h)A

AHTU (h) AHA

]

(18)

Furthermore, we can write Jθθ = EAU
B where B denotes the

matrix in the square brackets in (18) multiplied by the inverse

of the variance of the noise. Denoting EAU
{A} = A

′

K and

EAU

{
AHA

}
= CK where Ck = A

′H
K A

′

K + MUσ2
aImN and not-

ing that Jθθ∗ = 0, then by inverting Jθθ in (18) which is composed

of four blocks, we get again a matrix composed of four blocks.

DCRBsto,joint is given by the block in the lower right corner of

that matrix:

DCRBsto,joint = σ2
v

(
CK −A

′H
K TU (h)

[T H
U (h)TU (h) +

σ2
v

σ2
a

I]−1T H
U (h)A

′

K

)−1

(19)

Now, if we follow the discussion presented in section IV, the modi-

fied version of this CRB (MDCRBsto,joint) is given by the block

in the lower right corner of EAU
B−1.

MDCRBsto,joint = EAU
σ2

v
(
AH

(
I − TU (h)[T H

U (h)TU (h) +
σ2

v

σ2
a

I]−1T H
U (h)

)
A

)−1

(20)

4.2. BCRBsto,joint and MBCRBsto,joint

In this lower bound both the channels and the unknown symbols are

assumed random with Gaussian distribution and are supposed to be

estimated jointly. Hence, this lower bound in its turn belongs to the

first category and its joint pdf is given by (6). By substituting the

terms in (6) by their corresponding functions and make use of (15),

we deduce the corresponding FIM as follows:

Jθθ = Eh EAU

1

σ2
v[

T H
U (h)TU (h) +

σ2
v

σ2
a

IMU
T H

U (h)A

AHTU (h) AHA + σ2
vCo−1

h

]

(21)

However, we can write Jθθ = EAU
Eh B where B denotes the ma-

trix in the square brackets in (21) multiplied by the inverse of the

variance of the noise. Assuming that both the channel and the un-

known symbol distributions have a zero mean as stated above, we

get [1]:

BCRBsto,joint = σ2
v

(
CK + σ2

vCo−1

h

)−1

(22)

For the reasons discussed in [1], this CRB is considered to be too

optimistic. Once again here following the discussion presented in

section IV, the modified version of this CRB (MBCRBsto,joint) is

given by the block in the lower right corner of EAU
EhB−1.

MBCRBsto,joint = EAU
Eh σ2

v

(
AHA + σ2

vCo−1

h −

AHTU (h)

[
T H

U (h)TU (h) +
σ2

v

σ2
a

I

]−1

T H
U (h)A

)−1

(23)

4.3. BCRBdet,joint and MBCRBdet,joint

In this lower bound we consider the unknown symbols to be deter-

ministic unknowns while the channel is considered to be random

with Gaussian distribution, f(h) = 1
(π)mN |Co

h
|
exp[−hHCo−1

h h].

However, the unknown symbols are considered as deterministic to

be jointly estimated with the channel hence, this estimator belongs

to the first category where the joint pdf is given by (6). Moreover,



here again ln[f(AU )] has no effect on computing FIM so it can be

omitted. Therefore, (7) and (15) yield:

Jθθ = EAU

1

σ2
v

[
T H

U (h)TU (h) T H
U (h)A

AHTU (h) AHA + σ2
vCo−1

h

]
(24)

Again, we can write Jθθ = Eh B where B denotes the matrix in the

square brackets in (24) multiplied by the inverse of the variance of

the noise. Assuming that the channel distribution has a zero mean as

stated above we get:

BCRBdet,joint = σ2
v

(
AHA + σ2

vCo−1

h

)−1

(25)

This CRB is also too optimistic [1]. Once again here following the

discussion presented in section IV , the modified version of this CRB

(MBCRBdet,joint) is given by the block in the lower right corner

of EhB−1.

MBCRBdet,joint = Ehσ2
v

(
AHA + σ2

vCo
h
−1−

AHTU (h)
[
T H

U (h)TU (h)
]−1

T H
U (h)A

)−1

(26)

4.4. BCRBsto,marg and MBCRBsto,marg

This lower bound belongs to the second category since the symbols

are supposed to be eliminated. The joint pdf is given by (14) but

this time ln[f(h)] can’t be omitted. Substituting the terms in (14)

by their corresponding functions and following the same steps men-

tioned in DCRBsto,marg in [1] section IV, we get:





Jθθ = Eh

{
Jsto

θθ

}
+

[
Co−1

h 0
0 0

]

Jθθ∗ = Eh

{
Jsto

θθ∗

} (27)

where Jsto
θθ denotes the FIM that correspond to DCRBsto,marg

in [1]. Now we can resort to (10) to compute JθRθR
. Conse-

quently, we can extract easily BCRBsto,marg from J−1
θRθR

. As

for MBCRBsto,marg , we make use of the modified versions of

Jθθ and Jθθ∗ in (27). This modification stems from postponing the

implementation of Eh. After that we proceed in the same way as in

the case of BCRBsto,marg and compute the modified J−1
θRθR

. Now,

MBCRBsto,marg follows directly from Eh J−1
θRθR

.

5. SIMULATIONS

The goal of this section is to validate numerically the ideas presented

throughout this paper. In each Monte-Carlo simulation we generate

different realizations of the noise and when required for the channel

and the symbols too. As for the channel, we generate a Rayleigh fad-

ing channel with a constant power delay profile (PDP). Specifically,

Co
h is an identity matrix. As for the symbols, we generate random

8PSK symbols to reflect the real world case. The performance of

the different CRBs is evaluated by means of the Normalized MSE

(NMSE) vs. SNR. The SNR is defined as: SNR = ||T (h)A||2

mM σ2
v

. The

NMSE is defined as
avg tr (CRB)

avg ||h||2
where avg stands for average. In

figure 1, we plot the square norm of the bias (||h − EY/AU ,h ĥ||2)

versus SNR for different semi-blind channel estimators presented in

[2]. It is worthy noting that in this plot only one randomly chosen

channel and unknown symbols realization has been generated. How-

ever, the Monte-Carlo simulations have been run over 100 noise real-

izations. The bias of SB-ML-ML which has been thought generally

as unbiased can be used as a reference. As we have indicated before,

we remark that at moderate and high SNR the biases for all estima-

tors are almost negligible whereas at low SNR they are prominent.

In the subfigures of figure 2, we plot the traditional Bayesian and

deterministic CRBs along with their modified versions elaborated in

section IV. Furthermore, we plot also in the same figures the NMSE

for their corresponding semi-blind channel estimators presented in

[2]. It is obvious that our modified CRBs are tighter than their tra-

ditional versions. Moreover, our modified CRBS are attainable by

their corresponding estimators at high SNR. Another remark can be

drawn from these plots namely, our modified CRBs match with their

traditional versions at very low SNR.
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