
Using TIMS for the Prototyping of SMFs

S. Mazziotta { J. Labetoulle
Institut Eur�ecom,

2229 route des crêtes, B.P. 193,

06904 Sophia Antipolis cedex, France.

fmazziott, labetoulg@eurecom.fr

R. Eberhardt
Swiss Telecom PTT,

Research & Development,

3000 Bern 29, Switzerland.

eberhard@vptt.ch

Abstract

The main objective of the TIMS (TMN-based Information Model Simulator) project is the simulation /
prototyping of TMN Information Models (IM). The main contribution of the project is the de�nition of Managed
Object Behavior Formalization paradigm based on relationships modeling : the Behavior Language (BL). Rather
than describing its features one by one, TIMS BL is presented, in a tutorial approach, through the modeling of a
particular System Management Function (SMF) : the Event Report Management Function (ERMF).

1 Introduction

background Current TMN-based information model (IM) standards take too long to specify, standardize,
implement, test and introduce. The TMN-based Information Model Simulator { TIMS { explore the possibilities
of reducing this development life-cycle. TIMS should enable :

1. the rapid prototyping of TMN agent and manager functions; and later

2. the generation of reference con�gurations.

TIMS approach

� architecture of the MIB : Past experiences in IM design indicated that one of the di�culties which plagued
the TMN was the inability to completely describe the Managed Object IM and its behavior. This is not
the unique problem; Managed Object behaviors are limited to object boundaries. TIMS approach relies on
high{level construct modeling the relationships between objects independently of the type of implementation
(pointers, attribute values, name binding, etc. . .).

� formal but executable speci�cations : The speci�cations must be separable into a "rule" part and an
"algorithmic" part. The "rule" part, i.e. assertions on the static and dynamic properties of the IM, is
implementation{independent and therefore normative. The "algorithmic" part describing the method of
workings of an operation within or on the IM would be considered informative rather than normative.

� keep it simple and stupid : Last but not least, TIMS is to be a tool not only be understood by its creators
but also by engineers. As a result several design limitations were introduced:

{ no engineering issues: distribution, process partitioning, etc. . .

{ no timing / real-time issues, no asynchronism.

{ no mathematical reasoning required.

prototyping SMF A classical TIMS case study is composed on one hand by a TMN con�guration (which is
technology and / or topology dependent) and on the other hand by several scenarios representing a sequence of
management operations ful�lling one or several systems management functional areas (SMFA) (fault, accounting,
con�guration, performance and security management) requirements. These SMFAs are not standardized as such.
Rather, a number of speci�c functions, referred to as systems management functions (SMF) have been de�ned to
provide the basic functionality speci�ed in the �ve SMFAs. Each of the SMF standards de�nes the functionality
for the SMF and provides a mapping between the services provided by the SMF and CMISE. The support of
SMFs is considered as an entire part of the TMN IM.

This explains why the need to support SMFs arises very early in TIMS. Naturally, it has been decided to
simulate SMFs (like other parts of the IM) with TIMS. The prototyping of SMFs reveals as an interesting
challenge since SMFs should be designed in order to be reusable.

Goal of the Paper The idea of the paper is to show, how a user can model a SMF with TIMS and thus in
a tutorial approach. The Event Report Management Function [Ermf] was chosen �rst because it is widely used
and well{known and secondly because it is enough complete to expose all the TIMS BL features.

0This work was done in the context of the TIMS project. TIMS stands for TMN-based Information Model Simulator. This project is

a collaboration between Eur�ecom Institute and Swiss Telecom PTT. It is supported by Swiss Telecom PTT, project F&E-288.

1

Plan of the Paper

� Section 2 gives an overview of TIMS.

� Section 3 presents the ERMF standard.

� Section 4 presents the TIMS modeling of ERMF.

� Section 5 concludes the paper.

2 TIMS

TIMS project has de�ned, designed and implemented mainly two part: the �rst one is a toolkit driving the
simulation (also called TIMS box or platform) and a Behavior Language (BL) that de�nes Managed Object
behaviors which is the basic input to the simulation. These two components are described shortly in this section.

2.1 TIMS Toolkit

This section presents shortly the technical support implemented within the TIMS platform. For more details, the
reader should refer to [Mazziotta et al.96] where these aspects are described more precisely.

TIMS is a single toolkit running under UNIX. It makes uses of the OSIMIS [Pavlou et al.95] development
toolkit and other public domain tools. TIMS consists of the simulator itself called the "TIMS box" and user
interfaces to drive and observe the results of behavior simulations (visualization and browsing tools). The TIMS
box is built as an open system with following interfaces made available : Tcl / Tk for GUI programming and
visualization, a management interface consisting of upper{layer Q3 stack on top of TCP / IP (RFC 1006) and
the Guile programming environment based on the Scheme programming language.

The following three components are relevant for user interaction:

� Q3 interoperable interface (left hand side of �gure 1)

� TMN IM integration (bottom of �gure 1)

� Test Execution Environment and GUI (top of �gure 1)

BL GRM

Scen Snap

GDMO ASN.1
 TMN-System
Information Model

 Mgmt
Platform

Other TIMS
 BoX

 Other
TMN-system

O
S
I
M
I
S

C
M
I
S

I
S
O
D
E

S
T
A
C
K

Q3 Interoperable
 Interface

Graphical User
 Interface

DaVinci
TK

scheme shell>
....
....

Repositories

Beh Propagation
 Engine

Scheme

Figure 1: TIMS and its environment

1. Q3 interoperable interface : TIMS boxes may be accessed via a CMIS API and an underlying OSI
protocol stack. The CMIS API and the OSI stack used are taken from the OSIMIS library and the ISODE
implementation, respectively. Providing CMIS allows for (1) several TIMS boxes to interact in di�erent
roles (agent, manager, manager / agent) and (2) to integrate with real TMN applications (e.g. commercial
management platforms, real network elements, network emulators, etc. . .). This feature is fundamental for
the reuse of TIMS speci�cations in procurement, as reference con�gurations, for education and testing of
real TMN systems.

2. TMN IM integration : One of the main initial objectives of the project was to simulate / prototype
standardized TMN IMs. Classically they are composed of GDMO / ASN.1 and (recently) of GRM speci�ca-
tions which correspond to the static part of the IM. The Dynamic part consists of the behavior speci�cations
which are described in section 2.2.

2

3. Test Execution Environment and GUI : The GUI mainly corresponds to a command panel implemented
in TK. This panel controls the Test Execution Environment and allows the Visualization of the Simulation.

� The Test Execution Environment includes a scenario player (tool that enables to load scenarios: sequence
of management commands) and a snapshot player (tool that enables to save current system state and
to use it as starting point for scenario runs.

� The Visualization of the Simulation is done with daVinci [davinci], a generic graph visualization tool.
It presents the MIB as a graph of information objects and relationships. The user, selecting a given
node of the graph, can then access the managed objects attributes and their associated values presented
in the form of TK widgets. IM dynamics, i.e. the
ow of interactions between objects is also visualized
(Each time an object takes part in an activity, its graphical representation changes its color).

2.2 TIMS Behavior Formalization

This section presents shortly the main features of the TIMS Behavior Language (BL) followed by an introduction
of a behavior. Some examples are shown during the prototyping of ERMF in section 4.

BL Features TIMS follows in essence the approach advocated by Kilov [Kilov92], where both the use of
relationship-based formalization and asserted speci�cations are employed.

� Relationship-based Formalization : provides simpler, more readable and expressive behavior speci�ca-
tion because MOs are identi�ed through roles (participating to a given relationship) instead of raw attribute
pointers or any other mechanism currently available. In the context of TMN IM, the General Relationship
Model (GRM) [Grm] is a natural candidate.

� Asserted Speci�cations : Assertions de�ne the pure speci�cation aspect of the system. IN BL, assertions
are properties that are checked during the execution of the simulation. Although often considered a burden,
assertions prove very valuable during incremental and component-based model development. Experience
shows that the speci�er can not control the whole complexity of its system and especially in case of "behavior
interference".

Structure of a Behavior AMO behavior corresponds to the execution of a piece of code (body clause) when
it receives a message (exec-trigger clause) at one of its interfaces, if the guard (when clause) is evaluated to true
(i.e. enables the execution). The body of a behavior is an imperative / procedural piece of Scheme [Clinger et al.91]
code. There is no a priori structure imposed on it. Since usual programming features (i.e. control
ow structures,
variable notation. . .) are required, the use of an existing and well-known programming language, Scheme reveals
to be a reasonable choice. A MO behavior can either be de�ned in the context of a relationship (behavior
associated to a role) or it can be de�ned associated to a message (i.e classical CMIS operation or GRM abstract
operation). This de�nition is done in the (scope clause). The execution of the body is immediately preceded and
followed by a pre-condition (pre clause) and a post-condition (post clause), respectively.

3 Event Report Management Function

This section describes the Event Report Management Function (ERMF). It is �rst presented the model. Then
follow the description of the di�erent functions associated to the SMF and a description of its components.

3.1 Model

The model is represented in �g 2.

Notifications

Potential Event
 Reports

Event Reports

Responses Control

Event
Pre-processing

Managed
 Object

EFDs

The event report management model describes
the conceptual components that provide for re-
mote event reporting and local processing of PERs
(Potential Event Report). The model also de-
scribes the control messages, event reporting mes-
sages and retrieval messages. The conceptual
event pre-processing function receives local noti�-
cations and forms the PERs. Conceptually, these
PERs are distributed to all EFDs (Event Forward-
ing Discriminators) that are contained within the
local open system. The EFD is used to determine
which event reports are to be forwarded to a par-
ticular destination during speci�ed time periods.

Figure 2 : Event Report Management Model

3

3.2 Functions

Event reporting management provides the means by which discrimination and forwarding can be initiated, ter-
minated, suspended, or resumed and through which the attributes of the EFD can be read and modi�ed.
Event reporting management comprises the following:

� initiation of event forwarding : The PT-CREATE service de�ned in [Omf] is used to allow one open
system to request that another open system create an EFD, thereby requesting that new or additional event
forwarding controls be imposed.

� termination of event forwarding : The PT-DELETE service de�ned in [Omf] is used to allow one open
system to request that another open system delete one or more EFDs, thereby requesting that some event
forwarding controls be terminated.

� suspension, resumption, modi�cation of event forwarding conditions : The PT-SET service de�ned
in [Omf] is used to allow one open system to request that another open system change the administrative
state or other settable attribute of the EFD.

� retrieval of event forwarding conditions :

The PT-GET service de�ned in [Omf] is used for retrieving the attributes of the EFD.

3.3 The Discriminator Object

The basic superclass is the discriminator object class. The discriminator is a managed object that allows a
managing system to exercise control over the management operations that may be accepted and the event reports
that may be forwarded, by a managed system. Discriminators can, therefore, be created, deleted, read and
modi�ed. In addition, the activity of discriminators can be suspended and resumed by means of manipulating
their administrative states.

Attributes

� Discriminator Id : This attribute is used to uniquely identify the instance of a discriminator.
� Discriminator construct : This attribute speci�es the test conditions which will be used by the discriminator
in testing PER.

� Administrative state : This attribute speci�es the administrative state in which the discriminator is to be
created. The discriminator administrative state is a subset of the administrative state de�ned in [Stmf]. The
following administrative states are de�ned:

{ unlocked : processing of the information by the discriminator is permitted by a managing system;
{ locked : processing of the information by the discriminator is prohibited by a managing system.

� Operational state : This attribute speci�es the operational state of the discriminator. The discriminator
operational state are those de�ned for the operational state in [Stmf]. The following operational states are
de�ned:

{ enabled : the discriminator is operational
{ disabled : the discriminator is inoperable

Packages To accommodate various levels of complexity in scheduling event reporting activity periods, condi-
tional packages that are related to scheduling are de�ned for discriminator.
Scheduling packages provide discriminators with the ability to automatically switch between their reporting-on
and reporting-o� conditions. If no scheduling package is present in a discriminator, it is always in reporting-on
condition.

� Availability status package : This package contains the following attribute:

{ Availability status : This attribute re
ects the availability status of the managed object. When the
resource has been made unavailable in accordance with a predetermined time schedule its value will be
"o�-duty".

� Duration package : The duration package provides the ability to automatically control the time that a
managed object starts and stops functioning through the use of the start time and stop time attributes.

{ Start time : This attribute de�nes the date and time at which an object starts functioning.
{ Stop time : This attribute de�nes the date and time at which a managed object stops functioning.

Other packages are available (but are not simulated), the reader should refer to [Ermf] for more informations.

3.4 The EFD Object

The EFD allows speci�cation of conditions to be satis�ed by PERs related to managed objects before the event
report is forwarded to one or several particular destination(s). The EFD is a subclass of the discriminator object
class.

4

Attributes In addition to the attributes inherited from the discriminator, the EFD has the following attribute:

� Destination : This attribute identi�es the destination(s) to which the discriminator forwards event reports.
The destination may be a single AE Title (application entity title) or multiple AE Titles.

Packages

� Backup destination package : This package has two attributes which specify the backup destinations and
the active destination. This package is present when it is required to provide a backup for the destination.

� Mode package : This package has one attribute and is present when a manager can specify / modify the
mode for reporting events.

4 Prototyping ERMF with TIMS

This section presents the model and some of the behaviors implemented in TIMS in order to simulate the ERMF
standard.

4.1 Mapping the ERMF model in TIMS

The �rst step of Prototyping ERMF with TIMS, is to map the standardized model presented in the previous section
into a relationship-based one to be able to plug behaviors. It consists simply of identifying the relationships and
their associated participants. Several MO ful�lling the same behavior must be grouped in a unique role.

Concerning the ERMF standard, it is proposed to de�ne one relationship "EventProcess" where two roles are
present:

1. the mos role that represents every MO susceptible to emit noti�cation; and

2. the efds role that represents every EFD created within the system.

Note that an EFD is also a MO.

Managed
 Object

Event Forwarding
 Discriminators

mos efds

clock

EventProcess

Figure 3: GRM View of Event Report Management

Following the model presented in �gure 3, the GRM speci�cation is presented below. A GRM speci�cation
are composed by relationship class speci�cations and by relationship mappings. In TIMS, only the relationship
classes are speci�ed; mappings are not used1.

EventProcess RELATIONSHIP CLASS

BEHAVIOUR EventProcessBehavior;

SUPPORTS ESTABLISH,

TERMINATE,

QUERY get-current-time,

USER DEFINED modify-current-time,

USER DEFINED send-notifications,

USER DEFINED process-per;

QUALIFIED BY clock;

ROLE mos

PERMITTED-ROLE-CARDINALITY-CONSTRAINT INTEGER(1)

REQUIRED-ROLE-CARDINALITY-CONSTRAINT INTEGER(1..MAX)

BIND-SUPPORT

UNBIND-SUPPORT

1The GRM productions are incomplete, especially in the OPERATION MAPPING template. In fact, TIMS behavior speci�cations can be

used to specify completely precise and unambiguous mappings for abstract operations on relationships.

5

PERMITTED-RELATIONSHIP-CARDINALITY-CONSTRAINT INTEGER(1)

REGISTERED AS { Role 11 }

ROLE efds

COMPATIBLE-WITH eventForwardingDiscriminator

PERMITTED-ROLE-CARDINALITY-CONSTRAINT INTEGER(1)

REQUIRED-ROLE-CARDINALITY-CONSTRAINT INTEGER(1..MAX)

BIND-SUPPORT

UNBIND-SUPPORT

PERMITTED-RELATIONSHIP-CARDINALITY-CONSTRAINT INTEGER(1)

REGISTERED AS { Role 12 };

REGISTERED AS { RelationshipClass 1 };

"EventProcess" relationship is created / deleted dynamically (supports ESTABLISH,TERMINATE) and owns
several internal actions (QUERY and USER DEFINED). Within the relationship an internal attribute is de�ned
(QUALIFIED)2.

The ROLE template allows the speci�er to de�ne the MO class associated to the role (COMPATIBLE-WITH).
It also de�nes the properties associated to the role: cardinality and the dynamic binding / unbinding (BIND /
UNBIND-SUPPORT) to the relationship.

Once the relationship and roles are de�ned, the dynamic part comes, i.e. the behaviors. It is �rst presented the
behavior of the role mos and then it is presented the behavior associated to the role efds . For each behavior
a non formal de�nition, taken directly from the standard, is presented before the BL associated code. This
mimics the modeling process of behaviors, i.e. the speci�er has to gather from the informal speci�cation anything
describing a behavior of interest. For the clarity of the explanation, behaviors are not completely speci�ed. The
reader is informed by ". . . " that a template is not expanded.

4.2 Speci�cation of the mos behavior

The MO associated to the mos role bootstraps the system, by binding to the created MO to the EventProcess
relationship. This allows for behaviors to be plugged in the context of this relationship. Then noti�cations can
be send and further processed by behaviors modeling the event processor.

Binding the EventProcess Relationship

(define-behavior "bind-mos-ep"

(scope (msg Create))

(when ...)

(exec-trigger ...)

(pre ...)

(body ...

(Bind (operation-name) "EventProcess" (param moi) "mos")

...)

(post ...))

Sending a Noti�cation

(define-behavior "send-notif"

(scope (role "EventProcess" "mos"))

(when (and (param Set?)

(param attribute=? "administrativeState")

(not (asn=? (param value) (Get (param moi) "administrativeState")))))

(exec-trigger ...)

(pre ...)

(body ...

(UserDefined (operation-name "send-notifications")

(moi (param moi))

(moc (moclass (param moi)))

(attrlist '((type "stateChange")

(attribute "administrativeState")

(oldvalue (Get (param moi) "administrativeState"))

(newvalue (param value)))))

...)

(post ...))

These two behaviors show :

2thanks to this quali�er, for the simulation of ERMF, it has been decided to represent the clock of the system inside the relationship.

6

� di�erent behaviors scopes: The �rst one is a scope de�ned in the context of the reception of a message (i.e.
creation of the object) while the second one is de�ned in the context of the relationship EventProcess for
the role mos .

� The speci�er can obtain parameters of the trigger (incoming message triggering the behavior) using the
param primitive.

� The guard (when clause) for the second behavior strengthens the the triggering condition of the execution
of the behavior to a Set on the administrativeState. Without the restriction giben by the guard, the
behavior would be executed every times the role is touched.

(define-behavior "from-notif-to-per"

(scope (role "EventProcess" "mos"))

(when (and (param UserDefined?)

(param UserDefined=? "send-notifications")))

(exec-trigger ...)

(pre (not (= (card (ri) "mos") 0)))

(body (let ((time (Query (operation-name "get-current-time") (ri))))

(for-each

(lambda(XXX)

(UserDefined (operation-name "process-per")

(moi XXX)

(attrlist '((moi (val:get '(moi) (msg)))

(moc (val:get '(moc) (msg)))

(evtype (val:get '(attrlist type) (msg)))

(evtime (val:get '(attrlist time) (msg))))

...))))

(Part (ri) "efds")))

(post ...))

4.3 Speci�cation of the efds behavior

Initiation of Event Report Forwarding When an EFD is created, it generates an object creation noti�-
cation. This noti�cation shall be processed by the newly created discriminator. To this end, it has to bind itself
in the efds role.

(define-behavior "bind-efds-ep"

(scope (msg Create "eventForwardingDiscriminator"))

(when ...)

(exec-trigger ...)

(pre ...)

(body ...

(Bind (operation-name) "EventProcess" (param moi) "efds")

(Bind (operation-name) "EventProcess" (param moi) "mos")

(UserDefined (operation-name "send-notifications")

(moi (param moi))

(moc (param moc))

(attrlist '((type "objectCreation")

...))

...)

(post ...))

Forward PER If the discriminator construct evaluates to TRUE, the EFD is in the unlocked and enabled
states, and the availability status, if present, is not "o�-duty", then the discriminator input object passes the
discriminator and will be processed further.

(define-behavior "forward-per"

(scope (role "EventProcess" "efds"))

(when (and (param UserDefined?)

(param UserDefined=? "process-per")))

(exec-trigger ...)

(pre ...)

(body ...

(if (and (asn=? (Get moi "operationalState") 'enabled)

(asn=? (Get moi "administrativeState") 'unlocked)

(asn=? (Get moi "availabilityStatus") 'onDuty)

(filter (Get moi "discriminatorConstruct")

(val:get '(attrlist) (msg)))

7

(if (asn=? (Get moi "mode") 'confirmed)

(EventReport ...)

(EventReportNC ...)

...)))

(post ...))

(define-behavior "maintain-availabilityStatus"

(scope (role "EventProcess" "efds"))

(when ...)

(exec-trigger ...)

(pre ...)

(body (let ((time (Query (operation-name "get-current-time") (ri))))

...

(if (and (> time (Get moi startTime))

(< time (Get moi stopTime)))

(Set moi "availabilityStatus" 'onDuty)

(Set moi "availabilityStatus" 'offDuty))

...))

(post ...))

5 Conclusion

Considering this experience and the relative success of prototyping ERMF, TIMS reveals as a valuable tool for
the prototyping of SMFs. This may reveal very useful to evaluate SMF features, especially for SMFs that are not
yet on the market or still under standardization. When prototyping SMFs, the more important feature of the tool
is not the behavior formalization paradigm, i.e. the use of relationships. In fact, from our experience relationship
models needed to prototype SMFs are not likely to be complex. The features of the TIMS toolkit that revealed
more important are the underlying programming and algorithmic support (given by Scheme) and the ability to
support TMN information model characteristics. In particular, being able to work with complex ASN.1 values is
required in SMFs prototyping even more than with usual MO attribute values.

References

[Clinger et al.91] Clinger (W.) et Rees (J.). { Revised
4 Report on the Algorithmic Language Scheme.

ACM Lisp Pointers, vol. 4 (3), 1991. { Available at http://www.cs.indiana.edu/scheme-
repository/doc/standards/r4rs.ps.gz.

[davinci] The Interactive Graph Visualization System daVinci. Available at
http://www.informatik.uni-bremen.de/~inform/forschung/daVinci/daVinci.html.

[Ermf] Systems Management - Part 5: Event Report Management Function, ISO/IEC 10164-5, ITU
X.734.

[Grm] ISO/IEC JTC 1/SC 21, ITU X.725 { Information Technology { Open System Interconnection
{ Data Management and Open Distributed Processing { Structure of Management Informa-
tion { Part 7 : General Relationship Model.

[Kilov92] Kilov (Haim). { From OSI Systems Management to an Interoperable Object Model: Be-
havioural Speci�cation of (Generic) Relationships. In : Proceedings 3d Telecommunications
Information Networking Architecture Workshop (TINA 92). { Narita, Japan, January 21-23
1992.

[Mazziotta et al.96] Mazziotta (Sandro) et Sidou (Dominique). { A Scheme-based Toolkit for the Fast Prototyp-
ing of TMN-systems. { 1996. submitted to Seventh International Workshop on Distributed
Systems : Operations & Management.

[Omf] Systems Management - Part 1: Object Management Function, ISO/IEC DP10164-1, ITU
X.730.

[Pavlou et al.95] Pavlou (G.), McCarthy (K.), Bhatti (S.), Knight (G.) et Walton (Simon). { The OSIMIS
Platform : Making OSI Management Simple. In : Integrated Network Management IV, �ed.
par Hall (Chapman &), pp. 480{493.

[Stmf] Systems Management - Part 2: State Management Function, ISO/IEC 10164-2, ITU X.731.

8

