Android Stack Integration in Embedded Systens

Soumya Kanti Datta
Mobile Communication Department
EURECOM
Sophia Antipolis, France
Soumya-Kanti.Datta@eurecom.fr

Abstract—Smartphone usage has increased manifold upon
introduction of Google’s Android. Since its introduction,
Android has evolved at an outstanding pace in termsof
application development, commercialization and markt share
of Android powered devices. Although originally deeloped for
smartphones, now the embedded system industry hasalized
the capabilities of Android. Due to open source nate, rich
user interface, wide range of connectivity, secure
communication, data encryption and multitasking, Ardroid is
being integrated and ported to various embedded siams.
These include set-top boxes, IPTV, Google TV, In-Vicle
Infotainment systems. One major advantage of such
integration is that an Android app can address the
functionalities all these devices powered by Andrdi and
developers need not to write several applicationf different
embedded systems. These systems will also benefibnf
Android power management capabilities. This paper rakes an
attempt to promote Android software stack as a suible
operating system for embedded systems. The Linux keel
modifications introduced in Android are described n details.
The procedure to integrate Android stack in an embdded
system are outlined and Android porting is also brefed. The
power management benefits are also pointed out. Ffly the
paper concludes with several important advantagesfosuch
embedded system with android stack.

Keywords- embedded system; Android stack integration;
Android power management; Linux kernel;

. INTRODUCTION

Tracing the history reveals that Android Inc. wasight
by Google Inc. who pioneered Android platform. Laite
2007, Google along with 78 international firms ammced
the formation of Open Handset Alliance (OHA). The
founding members include T-Mobile, eBay, Google,
Broadcom Corporation, Intel Corporation, Nvidia
Corporation, Qualcomm, Texas Instrument, LG, Samsun
Sony, Motorola etc. OHA has contributed to the aesk &
development of Android platform which is mostly eogd
by BSD and Apache licenses. Since the initial ideaf
Android software stack, it has come a long way widw
versions releasing every few months. The most otirre
version is Android Ice Cream Sandwich. Until vegcent
times, Android was targeted for smartphones andetab
only. The entire software stack, application depaient
tools were designed and developed for those dewinbs
But the sophisticated features of Android (e.gr usterface

This work is partially sponsored by French researdject “Smart 4G
Table” Pole SC¢

and connectivity, secure communication, networkclgta
have made it lucrative for other embedded devides. a
Telecom, medical, automotive and home applicatieviats
are potential candidates for Android integratiod @orting.

Being an open source system is the first advantdge
Android integration into embedded systems. Alsoennt
Process Communication (IPC), multitasking, rich Use
Interface (Ul), OpenSSL for secure communicatio@l-Be
for database and 2G/3G/Wi-Fi/Bluetooth connectivdte
making the platform attractive for any kind of erdded
systems. Such systems which already have a legastyns
running on top of Linux, can integrate Android irtteeir
systems. The integration process modifies the Uyidgr
Linux kernel to support Android specific featuresda
merges Android stack to the legacy system. As altrdsoth
work simultaneously but independent of each othérs is
very important aspect and should be carefully demehat
inclusion of Android does not affect the functiogiof the
present legacy system. Initially, Android supportealy
ARM embedded architecture. But due to its mentioned
advantages, the platform got successfully porteatteer
architectures also. Porting of Android to differemibedded
architecture is also briefed in this paper. Duewtoer
adaptation, now-a-days, Android has found its presdn
devices including set top boxes, cars & In Vehicle
Infotainment [10], IPTV, Google TV, tablet compdgeie-
readers and other embedded devices. The features of
Android which benefit the embedded systems used in
telecom, automobile, medical, home application la&ted
below.

For telecom devices, it provides a complete
solution for network stack, connectivity, secure
communication using SSL, apps to monitor the
traffic and many more.

For futuristic smart cars, Android is the natural
choice as it includes GPS, motion sensors, apps
giving map of places. Location based applications
could inform about the nearest hotel, car parking,
gas station and more. Android also supports audio
and video which could be a part of in vehicle
infotainment.

With the advent of telemedicine, the medical
embedded systems require easily operating user
interface (Ul) and reliable connectivity. Android
provides a rich Ul and also several connectivity
options like 2G, 3G and Wi-Fi.

* Home gateway devices that deal with digital audio Android versions till Honeycomb rely on Linux kefne
and video could use Android as it provides severa.6 while Android Ice Cream Sandwich is based omdte
audio and video libraries and applications to p|ay3.0. Linux kernel is chosen as it provides sevel@lice
them.

« With the advent of Android Open Accessory security and other core services. Google has neatlifihe
Development Kit (ADK), unveiled in Google 1/0 Linux kernel 2.6.33 to address efficient power, roeyrand

2011, developers can build custom hardware to p&untime managements for mobile devices and by eiden

drivers, memory & process management, network stack

controlled by Android [1].

* Android comes with its own power management
extension which is suitable for embedded devices

running with low power and increase battery life.

* An Android app (created to perform some specific
tasks) can function on various embedded device

running Android even if they have different
embedded architecture. The different device

specific architectures. This simplifies maintenance

of application itself, cost and other overheads.

Thus, the embedded industry has been graduallyirghif
its focus on Android for immense benefits. Resthef paper
is organized as below. Section Il highlights someadrtant
underlying features of Android stack that furtheotivate
Android integration to embedded devices. The Likaxnel
additions are described in detail in section lliécon 1V
discusses in details the Android integration stepallenges
and their solutions while section V briefly touchdse
Android porting issue. Section VI describes theadages
of Android integration specially benefits of power
management.

Il. ANDROID STACK OVERVIEW

The Android stack is composed of Linux kernel, veti
libraries, android runtime, application frameworkda
application layer as depicted in Fig. 1 [2].

APPLICATIONS

Contacts Phone

APPLICATION FRAMEWORK

Window
Managor

Lotation
FManager

LIBERARIES ANDRDID RUNTIME

Medi

Core Libearles
Frimework o

-) ik
FreeType “Michine

Sst e

Linux KermMNEL

Flash »

Mwnagement

Android software stack.

Figure 1.

s
(which might have different architectures) can
communicate to each other through one Android
app. This could be achieved by making minima
changes made in the app for different device

other embedded devices.

The native libraries (e.g. libc, libm) are writtan
C/C++. These libraries are designed and developedirt
on devices with limited power and main memory. Main
ibraries include surface manager, 3D libraries @@L
S), Media libraries (Mpeg4, Mp3, JPG etc.), Libeete
(for web browser), SQLite.

Android runtime is composed of Dalvik virtual maaéi

I(VM) and core libraries written in Java [11]. Agathe

constraints of mobile systems like limited poweremory
have played pivotal role behind the birth of DaliV.
Android SDK incorporates a tool ‘dx’ that convejts/a
byte codes from .jar form to .dex which runs on Brvik
VM. Introduction of the Dalvik VM is unique to Andid
and the former is capable of executing any javaethas
application of the embedded system quite efficientl

The capabilities of native libraries are exposedtte
developers through applications framework. The caomepts
(e.g. activity manager, telephony manager, content
providers) are written in Java. The topmost layerthe
Android architecture contains all the applicatioised by the
end-users.

As mentioned, the Linux kernel 2.6.33 is modifiedper
the special needs of smartphones. But these adslitioe
also beneficial other embedded systems. The Andkeridel
introduces changes in memory management, adds new
features (e.g. logger, alarm) and runtime poweragament
driver (wake locks). Following gives the Android riel
specific features [3].

ANDROID LINUX KERNEL

A. Efficient Memory Management

The main goal behind such changes is to amelidhate
memory usage as the amount of RAM available in
smartphones and embedded systems is limited. Achdroi
introduces two features e.g. ASHMEM and PMEM which
are two different ways of allocating memory to ledrrAlso
the standard Out of Memory (OOM) feature of maialin
kernel is modified and low memory killer is addeal t
Android kernel.

e ASHMEM - The Anonymous Shared Memory
(ASHMEM) is used to provide shared memory by
allocating a named memory block that can be
shared across multiple processes. The advantage of
ASHMEM is that it can be freed by kernel. To use

ASHMEM, a process opens “/dev/ashmem” and « USB gadget driver for Android Debug Bridge

performs mmap() on it. mmap() is a system call (ADB).
that maps files or devices in memory.
* PMEM - The Physical Memory (PMEM) on the V. ANDROID STACK INTEGRATION
other hand allows allocating contiguous memory to This section describes the Android stack integratio
drivers and libraries. process for an embedded system that has a legatgnsy

Kill iy inf . based on Linux. The main outcomes of such Android
Low memory killer — It mainly informs running e qration are primarily manifold as mentioneddvel
processes to save their state in case a critigal Io . |ptegration of majority of the Android stack in the

memory situation occurs. When worsened, it starts embedded system.
to terminate processes with low importance. « Execution of Android applications on the
embedded systems.
B. Runtime Power Management e Android running in parallel to the legacy system
Although Android inherits the power management (PM) without affecting its execution.

of Linux kernel but the former has put forward agwn PM o) o .
system [7], [9]. Again the motivation behind sudvanced Thg entire integration process can be sub-divided i
PM is that Android will run on devices having lieit following phases: _ _
battery life and the power saving features is ctffié than + Embedded device requirements
personal computer. A power driver has been addetthéo * Preparing Linux kernel to support Android

Linux kernel and the driver allows Controlling the . Resoh/ing the dependencyon disp|ayhardware

peripherals: screen display & backlight, keyboaadilight - . ;
and button backlight. The power for peripheralsdatrolled Configuring & building Android sources for an
embedded system

by “Wake Locks” which are requested by applications
through a power management API present in applicsti

framework layer. Wake locks are means through WhiChA\' Embedded device requirements

applications keep the screen on, the CPU stays e@k The minimum requirements for an embedded device to
react quickly to interrupts. run Android stack are listed in Table 1.
C. Other Additions and Modifications TABLE 1. EMBEDDED DEVICE
The other additions and modifications to the kerarel REQUIREMENTS
described as below. = —
. H . H eature equirement
IPC Binder: Although st.and.ard Linux kernel h.as Chipset ARM-based
Inter Process Communication (IPC) mechanism, Memory 128MB RAM, 256MB external Flash
Android adds its own IPC. The Android IPC Display TFT LCD, 16-bit color

Navigation keys | 5-way navigation with 5 applicati@ys, power,

implementation is based on OpenBinder and has camera and volume controls

the advantage of being light weight. The binder USB Standard USB interface

driver uses shared memory to pass the messages

between threads and processes [8]. Android integration requires that the device shcwge

ARM chipset. Many embedded devices do not have a
display and navigation keys and Android integrafiothat
case poses a problem. But that can be addressed by
event and radio. including virtual display, keypad & power driveradait is
e Alarm: A driver which provides timers that can discussed later.
wake the device up from sleep and a monotonic _ _ _
time base that runs while the device is asleep. ~ B- Preparing Linux kernel to support Android
« RAM_CONSOLE: Gives ability to save console The unique Android kernel features must be added
n : : eparately to Linux kernel 2.6.33. In this worksiassumed
output to a reserved ram area for diagnostics on that the embedded system has kernel 2.6.33. Thiicedd
Sl_Jbsequent bOOt_‘ o ~could be done using a patch containing all the Aitdr
* Timed output/gpio: It allows chaining a gpio pin gpecific features. Most of these drivers are abglas open
and restores it automatically after a given timeoutsource. The added files are listed in table 2.
and exposes a user space interface used by vibrator

code.

* Logger: Android extends the logging capabilities
by adding four logging classes e.g. main, system

TABLE Il. FILES TO BE ADDED TO LINUX KERNEL AND
THEIR PURPOSE

Name of the file added Purpose

Introduces Android IPQ
drivers/staging/android/binder.c Binder subsystem
drivers/staging/android/binder.h Header file fandgr.c

Introduces the logging syste
drivers/staging/android/logger.c for Android
drivers/staging/android/logger.h Header file fagder.c
drivers/staging/android/lowmemorykilll Adds low memory Killer
er.c driver

Contains Android
drivers/staging/android/Kconfig Configurations
drivers/staging/android/Makefile Makefile to butlie sources

Ability to save console outpy
to a reserved ram area f
diagnostics on a subsequg
drivers/staging/android/ram_console.q boot.

It

drivers/staging/android/timed_gpio.h Header filetfimed_gpio.c

This exposes a user spa
interface for timed GPIOs. |
drivers/staging/android/timed_gpio.c | is used in the vibrator code.

ht

drivers/staging/android/timed_output. Used to walke timed outpuf
drivers/staging/android/timed_output.h Header ifmet_output.c
Serves as header fg
include/linux/ashmem.h ashmem.c
mm/ashmem.c Adds ASHMEM driver
Implementation of proces
drivers/misc/pmem.c memory allocator
include/linux/android_pmem.h Header file for pmem.c
Used for power manageme
kernel/power/wakelock.c files.
drivers/usb/gadget/android.c USB gadget driveAioB
include/linux/wakelock.h Header file for wakelock.c
To support Android alarm
drivers/rtc/alarm.c manager
include/linux/android_alarm.h Header file for alacm

Then existing kernel configuration file of the lega

system of the embedded system has to be modifi¢ak
into account the new features [4]. The file shoodohtain
the following:

CONFIG_ANDROID_KERNEL_CORE=y

#

#Android

#

#CONFIG_ANDROID_RAM_CONSOLE is not set
CONFIG_ANDROID_POWER=y
CONFIG_ANDROID_BINDER_IPC=y
CONFIG_ANDROID_LOGGER=y

CONFIG_ASHMEM=y
#CONFIG_ANDROID_RAM_CONSOLE is not set
#CONFIG_ANDROID_TIMED_GPIO is not set

It is to be noted that the above Android kernel
configuration varies depending upon the embeddstesy
and its usage.

C. Resolving the dependency on display hardware

Android stack has a stromtgpendency on hardwareof
a smartphone. It is evident that the largest degroylis on
the touch screen as user interacts via the toudesc A
majority of the embedded systems still does notaiorany
display. This challenge can be overcome by eitdeing a
USB based touch screen along with its driver otuigiag
virtual display drivers [12]. In either case, thévdr(s) must
be added to the Android Linux kernel using a patths
possible to remove the hardware dependencies, Haut t
there will not remain anything useful in the Andtaitack to
integrate in the embedded system. It is easiedtbvértual
drivers for display along with virtual keypad andwer
drivers to the kernel. Adding virtual drivers isseatial for
integrating Android embedded systems that doeschtde
a touch screen. These drivers could be developgarathe
embedded system.

D. Configuring & building Android sources for an
embedded system

The next step is to download the android sources an
configure them to run on the specific embeddedesysihe
necessary tools required to download and compildréid
sources are explained in [5] and [6]. This paperegia
complete overview of the source code configuralidj.

Basically configuration files related to the embedd
system are to be added to the downloaded Andraicces.
The added files are:

* A product specific makefile: it includes the protuc
name and product device where the product is the
embedded system.

e AndroidProducts.mk: this file points to individual
product makefile.

e system.prop: it is used in case the developer wants
modify any system properties.

e product_config.mk: contains product specific
definitions and without this file the Android build
system will simply fail.

* Android.mk: it is the make file for Android builaif
the new embedded system.

After that the Android sources should be built #nithe
steps till now have been followed correctly, thedfaid
root file system will be created successfully. TAedroid
root file system should be merged with the roa &lstem
of the legacy system running on the embedded sysfem
include path of the libraries of Android and legaystem

overlap, the resulting system will not work. Effornust be
given to identify such issue although normally thelude
paths of libraries are different for both the sysse After the
system boot up when the shell is available, “psthow@nd
can be used to check Android daemons (e.g. lodl,add,
vold etc.), applications (e.g. servicemanager, asstiver),

system_se

rver

and Java applications

com.android.phone) that are running. Figure 2 pgstisuch

a scenario.

root

root

lee@

root

24 root

25 root

root

627 root

1813

root

4 1017

root

37 root

4 root

4 1le6e

1080
10006

6 1801
le801
10015
10020
10009
le@e3
67 10016
10016

180 S
168 S
252 S
556 S
556 S
256 S
544 5
448 S
3728 5
332 §
424 S
136 S
548 S
25244 S
30220 S
19408 S
18936 S
18528 S
18148 S
22068 S
15008 S
17036 S
17228 S
13376 S
1432 D

Figure 2. Android components running on an embedded

/init

/sbin/ueventd
/system/bin/servicemanager
/system/bin/vold
/system/bin/netd

/system/bin/debuggerd

/system/bin/rild

/system/xbin/strace -tt -o/data/boot.strace /system/b
/system/bin/mediaserver

/system/bin/installd

/system/bin/keystore /data/misc/keystore

/sbin/sadbd

/system/bin/vncserver

zygote /bin/app process -Xzygote /system/bin --zygote
system server

com.android. systemui

com. android.inputmethod. latin

com. android. phone

android. process.acore

com.android. launcher

com.android.voicedialer
com.android.providers.calendar

android.process.media

<pre-initialized

/system/bin/dexopt --zip 1@ 11 /system/app/Mms.apk

system.

It is worthy to note that on first booting of Andllp the
process “dexopt” optimizes all the java byte coaled stores
them in the system. Next time when the device @td the
optimized java codes are used and the system hipotsd
works faster.

V. ANDROID PORTING

This section briefs Android porting to a Linux syst
with a previously unseen CPU architecture [14]this case
also, attention should be paid to the followingies

* Firstly, the target Linux kernel needs to be pregar
i.e. patched with Android specific kernel features.

(e.g.

The Dalvik Virtual Machine (VM) needs to be

accurately ported to the new CPU. The Dalvik VM
runtime is written in portable C, but Java Native
Interface (JNI) Call Bridge of runtime is non-

portable. This could be worked around using the
open source Foreign Function Interface (FFI). Dalvi

VM has dependencies on Android core libraries
including OpenSSL, zlib and ICU. These libraries
also need to be ported.

The native libraries must be optimized to suite the
new CPU and then ported. Also additional support
might be necessary for applications framework APIs.

VI. ADVANTAGES OFANDROID INTEGRATION

Embedded systems that have Android integrated into
them benefit from several advantages.

For devices without a display, a USB based touch
screen can be added. This would open new vistas
of application for the device. The device could be
configured at real time using an Android app. The
configuration could be done by interacting through
the touch screen or by remotely sending
commands. The status of the device could be
displayed. An Android application could be written
to control some features of the device. For
example, if the device is being used as router, the
app can monitor the packets passing through and
generate some statistics.

Embedded systems could execute standalone java
modules in Dalvik VM.

Devices that are deployed in rural areas could use
the Android connectivity and secure
communication features to report collected data to
a command center.

During 1/0 2011, Google announced that they are
extending Android for home automation. Android
4.0 is already deployed for Google TV which
promises to revolutionize the TV experience of
users. It would be also possible to customize the
hardware capabilities and use the Android platform
to control home appliances.

Another important advantage is increasing power
efficiency of embedded systems. Android has its
own PM features to control the CPU resources and
is superior to the Linux PM. There are numerous
power widgets available that increase power
efficiency by controlling several features of the
embedded device. The usage of Wi-Fi, 2G/3G,
brightness of display (if any) could be intelligint
controlled by an Android app since these consume
high power. Specific app could be produced to
monitor the power consumption pattern of
embedded systems and automatically control
mentioned features to conserve the battery life.
Thus the battery life will be prolonged and impact
on environment will be reduced.

VII. CONCLUSION

In a nutshell, this paper brings into attention blemefits

Android sources provide internal documentation Wwhic of integrating Android software stack into diffeten

elaborates such porting to unseen CPU architectures

embedded systems. The different features of Andtioéd

can benefit the telecom, residential, automobile redical ACKNOWLEDGMENT

devices are presented. Developers can build Android The author thanks Mr. Antoine Boiteau & Mr. Yannick
applications that will address specific functiotie8 of vjignon of Mindspeed Technologies and Prof. Yves dey
these systems. Android specific kernel addition® areyRECOM for their valuable guidance during an ingip
described in detail and kernel configuration file on Android integration. The author also expressés h
modification is shown with an example. Developeah ¢ gratitude to Prof. Christian Bonnet, EURECOM fors hi
modify the configuration file according to the kefn valuable suggestions on Android power management.
requirement. The files that should be added to Ltimeix
kernel 2.6.33 are listed along with their purpo§ie REFERENCES
important challenge during Android integration @swork [1] http://betanews.com/2011/05/10/google-extends-addnto-
around the dependency of Android stack on display embedded-hardware-home-automation/
hardware (i.e. touch screen). The solution is td widtual [2] http://developer.android.com/guide/basics/whatrgraid.html
display drivers (to the Linux kernel) that emulate real [3] httpi/elinux.org/Android_Kernel Features
hardware drivers. The Android source configurafionthe [4] http://www.kandroid.org/online-pdk/guide/bring_uprt
device and Android porting to unseen CPU architecis [5] http://source.android.com/sourcefinitializing.html
briefed. Such devices will also benefit from théelligent [6] http://source.android.com/source/downloading.html
power management applications. Other notable adgast [7] mp://developer.android.com/reference/android/«mE?Manager.ht
of such integration are highlighted. _ - 4 .

In future work, a power management Android appiacat [g] http'”elr_]'W'k'pe?"a\a'grg./év"zlor)enf/:nder
will be developed that monitors the power consuompti [9] W'e'nux'org ndroid_Power_Management) .
The power Consumption pattern could be studied thed [10] http://www.autoblog.com/2011/07/15/harman-to-bramgdroid-

.. . . : integration-to-cars-finally
power dISSIDated in various hardware componensp(a}y, [11] http://sites.google.com/site/io/dalvik-vm-intern@B08-05-29-

Wi-Fi etc.) could be modeled. An app could be deped Presentation-Of-Dalvik-VM-Internals.pdf
that controls power dissipation using the power ef&d [12] http://www.netmite.com/android/mydroid/developmedit/docs/disp
Using IPC mechanism, the application will be abte t lay_drivers.html

communicate with |egacy system also. Different aaphes [13] http://www.netmite.com/android/mydroid/developmedi/docs/buil

for power saving and their impact on performanct e d_new_device.html
evaluated [14] http://www.kandroid.org/online-pdk/guide/dalvik.htm

