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Sphere decoding complexity exponent for full rate
codes over the guasi-static MIMO channel

Joakim Jaldén and Petros Elia

Abstract—In the setting of quasi-static multiple-input multiple-
output (MIMO) channels, we consider the high signal-to-nase
(SNR) asymptotic complexity required by the sphere decodig
(SD) algorithm for decoding a large class of full rate linear
space-time codes. With SD complexity being a function of the
code and having random fluctuations with varying channel, nise
and codewords, the introducedSD complexity exponent manages
to concisely describe the computational reserves requiretly the
SD algorithm to achieve arbitrarily close to optimal performance
in decoding the such codes. It is worth noting that, to date,
this asymptotically describes the minimum known complexiy
required for a decoder and time-out policy to provably allow
a gap to maximum likelihood performance that vanishes for

This naturally raises the intriguing open question of how to
optimally traverse the reliability-complexity limits ofokere
decoding.

While this question is hard to answer in general, or even
ask in a rigorously meaningful way, we show herein that by
following [5] and considering the decoding of families of
codes in the high signal-to-noise ratio (SNR) limit, notyonl
can the question be made rigorous: It also admits surpiysing
simple explicit answers for several settings. Drawing from
the DMT setting which has already been successfully applied
to concisely describe the high SNR diversity exponent in

increasing SNR. Bounds and exact expressions for the SDreliability analysis [6]-[8] of decoders, we here introguc

complexity exponent are then obtained for a large set of exigg
code designs of varying performance characteristics. For |a
currently known unified explicit code designs that are unifamly
optimal with respect to the diversity multiplexing tradeoff (DMT),
the SD complexity exponent is shown to take a particularly
concise form as a function of the multiplexing gain.

Index Terms—Diversity-Multiplexing Tradeoff, Sphere Decod-
ing, Complexity, Space-Time Block-Codes, Large Deviation

|. INTRODUCTION

The past decade has seen the abundant use of the sp

decoding (SD) algorithm as a tool for facilitating maximu
likelihood (ML) decoding over the coherent delay-limitemt (
guasi-static) multiple-input multiple-output (MIMO) chael.

The SD algorithm allows for efficient optimal or near optim

time [1]-[4]. With the algorithm’s computational cost nelly

fluctuating as a function of the channel, it is generally know
that in implementing a SD, one can tradeoff computation
complexity for error performance by selectively choosing
when to decode and when not to. Equivalently, in the presence

of constraints on the computational reserves, the alguarith

faced with the prospect of encountering channel realiratio .

that force it to violate these run-time constraints, thusirg

to declare decoding outages, and inevitably introducing
performance gap away from the optimal ML performanc%
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al
detection of a large number of high rate space-time codés t§
map constituent constellation symbols linearly in spacé a

the notion of anSD complexity exponerds a measure of
complexity of the SD algorithm when applied to the problem
of decoding different codes. To this end we characterize
the decoding complexity in the high SNR limit under the
assumption that the code-rate scales with SNR in order to
provide a given multiplexing gain. This approach naturally
takes into account the dependency of the SD complexity on
the codeword density and the codebook size, as well as the
SNR and the fading characteristics of the wireless channel.
§gpélar to previous work on the DMT relating the code
rate’ and probability of decoding error, it is seen that also

n%he complexity, although hard to characterize at any finite

SNR, has mathematically tractable characterizations @& th
E]igh SNR asymptote. These characterizations in turn yield
gluable insights into the behavior of the algorithm. Very
importantly, this exponent accepts a special role becaose,
ate, it represents the minimum known complexity reserves
required to maintain an arbitrarily small SNR gap to the ML
choder.
The SD algorithm is usually described as a branch-and-
ound type search [4] over a regular tree and in line with
most other works on SD complexity (cf. [2], [4], [9]-[11])
we equivocate the complexity with the number of nodés
visited in the traversal of the search tree. In the contexhef
DaMT it is useful to note that in order to achieve a multiplexin
ain of » the code must in the high SNR limit have raté of
= rlogp + o(log p) bits per channel use wheyedenotes
the SNR. Consequently, the cardinality of the codebook is
|X| = p"T whereT is the codeword length and where
denotes equality in the SNR exponent (cf. [5] and Section
[-B). It is rather straightforward to show that in the worase
the sphere decoder is in essence forced to perform a complete
search over the entire codebook, and its complexity is i thi
case (up to the high SNR exponent) equaptd. However,

IHerein, log denotes the base-2 logarithm an() is the standard Landau
notation wheref (p) = o(¢(p)) implieslim,— f(p)/¢(p) = 0. Similarly,
£(p) = O(¢(p)) implies thatlimsup,, .., | £ (p)[/(p) < oo for ¢(p) > 0.
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although feasible, this event is also highly improbableus;h i.e., corresponding to a complexity exponentc6f) = 0 [8].

in order to quantify the probability of the event that th&his is lower than the SD complexity exponent that we will
sphere decoder visits an (atypically) large number of nodes present in what follows. However, as the sphere decoder has
introduce a (complexity) rate-functiob(z) over0 < z < T become somewhat of the de-facto decoder for linear disgersi
given implicitly by P (N > p®) = p~¥(®) where N is the space-time codes, the analysis of its complexity is intergs
complexity of the SD algorithm. In shorfy(z) captures the in its own right. It should also be noted that the statements
decay-rate of the probability that the complexity exceedsmaade herein are stronger in terms of error probability ag the
given SNR dependent threshqiél. This decay-rate should benot only imply full diversity but also a vanishing SNR gap
contrasted with the minimum probability of decoding errotp the ML decoder (cf. Theorem 1 for details). Such a results
which vanishes in the high SNR limit as (") whered(r) is was not established for the decoders in [8], [20].

the diversity gain of the code under maximum likelihood (ML)

decoding. We can thus judiciously argue that for anguch 5 outline and contributions

that ¥ (z) > d(r), the probability that the complexity exceeds _— . .
o is at high SNR insignificant in comparison to the overall The general definition of the complexity exponent is given

probability of error of the decoder. In other words: Impcg;sin'n Deﬁmh_on L Theo_re_m 1 describes how sphere decoding
a run-time limit of p* on the complexity of the algorithm, and the time-out pol_|C|es 0 b_e empk_)yed, can guarantee a
and declaring a decoding outage or an error whenever t &P to_ ML that van||shes for_ mcfreasmg SNRB 'I:heorem 2
limit is not met, would cause a vanishing degradation in Eerrﬁhen gives a general expression for an upper bat(nil on

of the overall error probability at high SNR. This motivated® .SD c_omple_xity expc_)ner@(r) of any full .r'.i‘tte code with
us to introduce a quantity(r) defined as the infimum of multiplexing gainr and diversityd(r). An explicit closed form

all z for which U(z) > d(r), and refer to this quantity expression foi(r) is then given in Theorem 3 for all DMT

as the complexity exponent_oosely speakingpc(") is the optimal full rate codes. The boundr) is already useful in

tightest runtime-constraint that can be imposed upon tnglf in that it establishes that the SD complexity expdrign

algorithm without sacrificing performance. It also reprase m.uch lower than the worst case SNR exponeﬁ_tassom_ated
th a full search of the codebook. However, in the interest

the minimum computational reserves required for achievi . : .
DMT optimal performance using the SD algorithm. Precisﬁ({éﬁ al_so establishing the t|g_ht_ness of .th's bound, Lemma 2
gwdes easy-to-check sufficient conditions on the geéoera

definitions of the above asymptotic measures, and a rigorcﬂf trix of th de lattice. that tee the tightness of
treatment of the notion of a vanishing probability of errsr jmatrix ot the code 1attice, that guarantee Ihe tg nesxng

given in Section IlI-D, and by Theorem 1. The main topic Ol?uilding on this, T_heorem 4 establishes that, gi"ef‘ any full
this work will then be to give closed form expressions, andte design of arbitrary DMT performance, there is always

bounds, for the complexity exponent of a class of full ratal least one non-random SD detection ordering for which

linear codes, to be described later, including the spane-ti (") = ¢(r). i-e., for which the exact(r) can be explicitly
codes proposed in [12]-[17]. calculated from the result of Theorem 2. Theorem 5 goes one

Most other works on sphere decoding complexity considg}ep further and establishes the exact SD complexity expione

: : : threaded code design and the natural detection
uncoded (spatially multiplexed) systems and asymptosiglte given any T : .
in terms of the signal space dimension, cf. [9], [10], [18p] °'d€ring. to bec(r) = ¢(r) while Theorem 6 provides an

Our work is instead more related to the analysis in [11], \hrhiceXIOIICIt expression for(r) for any DMT optimal threaded

considers the complexity tail distribution for a fixed signaCOOIe design. Surprisingly this simple expression (see Ejg.
rves as an upper bound efr) for any full-rate code,

space dimension. However, unlike [11] we also incorporaf

& ) : o) o .
the space-time codes into the analysis, as well as the Sg spective of the fading statistics. Finally, and going @
scalings of these codes mandated by the DMT characteristi fferent path, Theorem 7 establisheg-) for any 2 x 2

In parallel with our work the work in [20] provides an_COde that achieves DMT optimality for all fading statistics

analysis of the complexity tail distribution for unconsied irrespective of the specific structure of such code thuslergab

lattice sequential decoders, in the presence of DMT optim%'fs.samec(r) to hold for even pOSS'ny undiscovered code
random lattice codes. A fundamental difference with ourkvor ¢ 91S- $ome general discussions of these results are then
and [20] is that [20] considers unconstrained lattice detmpd provided in Section V.

whereas we explicitly take into account the constellation Note here t_hat th(_a class of threa_ded codes, for Wh(ﬁb'.
boundary in the decoder. Another difference is that théckatt IS fully established in Theorem 5 includes "’_‘" code designs
codes considered in our work can be explicitly constructedi ath"’lt are currently known to a9h|eve the optimal DMT over
can have arbitrary DMT performance, unlike the random cod?% r < nr. The .SD complexity expone.nt fOY t.he class of

in [20] which are non-explicit and which are restricted tange .UI rate DMT-optimal threaded codes with minimum delay,
DMT optimal. We also take our analysis one step further Hé}:'

coupling the complexity tail distribution to the DMT perfor

mance of the code in order to obtain the complexity expone;‘-.e results_ shown in the figure ap_ply to codes SUCh_ as those
Regarding the ultimate complexity limits on DMT Olotimalpresented in [12]—-[17]. Before proving the aforementioreed

decoding, we have previously established that lattice ot sults, it is worth commenting on the somewhat counteriivielit
(LR)'aided linear decoders are sufficient f(?r achieving thezp giosed form expression for the complexity exponeft) shown in the
entire DMT tradeoff at a worst case complexity@flog(p)), Fig. 1 is given by (50) in Theorem 6.

, for whichnt = T' = n wherent denotes the number
transmit antennas, is shotwin Fig. 1 forn = 2,...,6.
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10 We leto(A) < ... < 0,(A) denote the ordered (struc-
9 turally) non-zero singular values [21] of a matuk € C™*"
% sl wherem > n. We will on occasion use,.x(A) to denote the
S 7t largest singular value when the dimensionbfs not explicit.
S 6l We will also use);(A) <...< \,(A) to denote the ordered
< 5l | (real) eigenvalues of a Hermitian matrig = A" ¢ ¢
q; al n = 6| and note that?(A) = \;(A™ A) for any A € C"™*™ where
'% al n=>5 | m > n. We make no notational difference between random
o n=4 variables and their realizations. We will use the notation
g 2r n=:3 1 Q2{.--} to label the stochastic event within the brackets.
o 1 =2 \ Finally, in order to simplify notation we will make use of the
% 1 > 3 4 : 5 = (and<, >, <, >) notation for equalities (and inequalities)
Multiplexing gainr in the SNR exponent, cf. [5]. Specifically, we wrifgp) < p*
andg(p) > p® to denote
i ooy ST opi oo - 7T, M a2 < g 29
The complexity exponent is illustrated by the bold lineseThin lines show p—oo 108 p—oo lOgp

the quadratic function given by(n —r) which provides the exact complexity , )
exponent at integer multiplexing gains. The same exponieotserves as an gnd f(p) = p* Whenf(p) <p® andf(p) > p”. The definition

upper bound to the SD complexity exponent for any minimunayl@MT : : ;
optimal ful rate linear dispersive code. of < and > follows after replacing< by < and> by >.

. - Il. CHANNEL MODEL AND SPACE-TIME CODES
result suggested by the SD complexity exponent in Fig. 1.

Namely, that whilec(r) initially increases as a function of We consider the standard block Rayleigh fading x
the multiplexing gainr, it then decreases asapproaches its ng quasi-static point-to-point MIMO channel model with
maximal valuenr. The initial increase can easily be explainedoherence-timg’ given by

by the fact that the cardinality (density) of the codebook

X increases as a function of However, the decrease at Y=HX+W 1)

high multiplexing gains can be understood in light of th?vhereX e CixXT Yy ¢ CmxT and W e CnnxT

coup.l|_nQ ﬁf Ehet E(_)n;]plexlltt_ylan_d the. ovtehrall probabill?ty %denote the transmitted space-time block codeword, thekbloc
error: in short, at high muliiplexing gains the error proligh of received signals, and additive spatially and temporally

is also higher and this implies that the decoder may tim ite Gaussian noise. The channel galise C"**" are

out for a larger set of problem instances without affeCtingssumed to be i.i.d. circularly symmetric complex Gaussian

:jheecoo(;/iﬁraiopﬁrzce);?an;ﬁ;A?:dlph% tgogg_ doevforggrregilﬁg]ari.e., Rayleigh fading) and constant over the duration ef th
9 P Y- 9 P transmission. We shall assume throughout that> nr. The

the maximal data rate does therefore not imply that tl?? nsmitted codewordX are assumed to be drawn uniformly

decoding complexity is maximized. This effect is discusseﬁjgm a codebookt’ and we assume that
further in Section V-A.

1
E{| X3} = — X2 = pT, 2
5 Notation (IR = 7 3 IXIE = @
We let Z, R, and C, denote the set of integer, real and . .
. X so that the parametgrtakes on the interpretation of an average
complex numbers respectively aft and F the set of S
: SNR. Note also here that one use of (1) is viewed asses
n-vectors andm x n-matrices ovef € {Z,R,C}. Vectors : ; -
' of the wireless channel in the definition of the data-rate.
are denoted by lower-case bold lettessmatrices are denoted We shall herei trict ttention to full rat |
by upper-case bold letterd. We use(-)T and (-)! to denote i N 3 all herein r((ajs rlczgurgg enfltt)hn ]? ull rate (complex
the transpose and Hermitian (conjugate) transpose of reectd €Al CISPErsion codes [22], [23] of the form
and matrices, andec(-) : C"™*™ — C™" the matrix to vector K
operation whereby the columns of the argument are stacked X = 92 siD; 3)
=1

on top of each other. We usk, € C" to denote ther x n

identity matrix, and us® to denote the zero vector or matrixyheres; ¢ S  C are information symbols drawn from a

where the dimensions are given by the context in whidS  finjte alphabets, {D;}%_, is a set of linearly independent

used. Deviating slightly from standard usage, we refer @lla tgispersion matricesands is a parameter regulating the trans-
matrixU € C™*" wherem > n as unitary ifU"U = I. For  mit power. The notion of full rate implies that each codeword
imaginary parts of.. Fora € R we use|a] to denote the floor gympols. We will further make the additional restrictiorath

operation defined as the largest integer smaller than orl eqgae|ongs in the class of QAM-like alphabets of the form
to a, [a] to denote the ceil operation defined as the smallest

integer larger than or equal tg and we letla)™ £ max(a, 0). S=S,&{s|R(s),S(s) € ZN[-n,7n} 4)
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where > 0 is a parameter regulating the size of thevhere the notationi(r) accentuates the dependence of the
constellatiod. We will useS.,, to denote the extended (infinite)diversity on the multiplexing gaim.
constellation obtained by letting = oo in (4), and note  One of the main features of the linear dispersive codes, as
that S, is nothing but the set of Gaussian integers. QAMvas noted in the introduction, is that their lattice struetu
constellations will in general also include a translatiord a allows for efficient — optimal and near optimal — solutions to
scaling of the underlying lattic®... However, as including (8) using the sphere decoding algorithm, cf. [24]. Using the
such a translation would not affect the results obtainediher linearity of the map fronms to x = vec(X) we obtain (cf. (5))
and as the scaling can easily be included in the dispersion
matricesD; or §, we omit these variations and concentrate on y=Ms+w (10)
(4) in the interest of notational simplicity. where the code channel generator maftik is given by

The channel model in (1) may also be equivalently ex-
pressed in a vectorized form according to (cf. [24]) M£6(Iy ® H)G € C™, (11)

y=Ir® H)x +w (5) We can thus instead of solving (8) directly equivalentlyaoit

an estimate o through
wherey = vec(Y), x = vec(X), andw = vec(W), and

where® denotes the Kronecker product [25]. We shall mainly Sur, = arg min ||y — M 3|, (12)
work with (5) rather than (1) directly. In the vectorized rfor €85
the codewords: are given by where (12) is an optimization problem suitable for the spher
o — 0Cs decoder, and then easily reco\v®n,, from Sy.
for s € S5, and where the full rank matrix A. The Sphere Decoder
G = [vec(Dy) -+ vec(D,)] (6) The sphere decoding algorithm solves (12) by a branch-and-

bound like traversal of a regular tree. Detailed descniygtiof
e algorithm are found in [1] and the semi-tutorial papers
1-[4], and most implementation issues will not be repdate
Jlerein. However, in order to make our results precise and to
introduce notation we need to review some or the key ideas
as they apply to (12).

To this end, note that by the rotational invariance of the

is referred to as thgenerator matrixof the code. The linear
dispersive codes form a subset of the lattice codes [23]&as [E
codewords constitute a subset of the (complex) lafliGS . .

The parameterg andn are, as noted, chosen in order t
satisfy given transmit power and rate constraints. In palei,
in order to ensure a multiplexing gain of

2 1 log|X]| @) Euclidean norm it follows that (12) is equivalent to
p—oo T logp ’ . : 112
. . S$mr, = arg min ||r — RS|| (13)
or equivalently a rate ofR = rlogp + o(logp), it must sesr

hold that . = pg—f‘f which by (2) and_ ) implies_ that where QR = M is the thin QR-decomposition aM (i.e.
02 = p'=% . The co_de structure described above mcludeé € C"rTx* s unitary andR € C*** is upper triangular)
the codes proposed in [12]-[15], [17], as well as the QAMaind wherer — Q'y. The sphere decoder solves (13) by

bgsed _codes of [16], as special cases. Einglly,_ we V\{i” lienea enumerating symbol vectose S within a given sphere of
with slight abuse of terminology but still in line with [12]- radiusé > 0, i.e., & that satisfy K

[17] also use the ternfull rate linear dispersive codevhen
referring to the wholdamily of codes that is generated by a |lr — R8||* < &2. (14)

single generator matri& for different multiplexing gains and ) . R
Ié (14) is satisfied for at least oné € Sy, then also the

SNRs, and trust that no confusion should follow by this usagML solution must satisfy (14) as the ML solution yields the

minimum metric in (12). The set of vectors that satisfy (14)

I11. DECODING . . o .
) is found by recursively considering partial symbol vectors
The coherent ML decoder for (1) is well known to be 8 € Sij for k = 1,...,x. Specifically, if 3, is the vector
Xy = arg min [|[Y — HX||2. (8) containing the lask: components o, a necessary condition
Xex for (14) to be satisfied is given by

The resulting diversity gain of the code, under ML decoding,
is correspondingly given by (cf. [5])

ot
d(r)2 — lim 8 (iZ{L 7 X)
p—o0 p

[k — Risel* < &, (15)

wherer; € C* denotes the lagt components of, and where
, (9) Ry € CF** denotes thé: x k lower right corner ofR. Thus,
any set of vectors € S;; with common lastt components

3The assumption of a square constellation is made here foplisity that f_a” to satisfy (15) may be eXC|UdeQ from the set of ML
of exposition and in line with practical encoding schemesisTassumption candidate vectors. Enumerating all partial symbol vectioas

though can readily be relaxed without affecting the pressgmesults, as long satisfy (15) beginning withe = 1 extending these té = 2
as the constellation is the same forgll ¢« = 1, - - - , k. A detailed exposition ' ’

of the mathematical machinery that allows for this reloo@ttan be found in and so on, erst a recursive procedure for enumerating all
[8, Section 111] s € Sy that satisfy (14).
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The enumeration of partial symbol vectass is equivalent for simplicity assume that is non-random and that (18) holds,
to the traversal of a regular tree withiayers — one per symbol with z chosen in order to ensure vanishing degradation to
s, Where s, is the kth component ofs — and |S,,| children the overall probability of error. This said, the SD comptexi
per node [4]. There is a one to one correspondence betwesponent would be the same if we considered adaptive radius
the nodes at layet (the layers are enumerated with the roatipdates as used in the Schnorr-Euchner (SE) implementation
node corresponding tb = 0) and the partial vectors,. We [2], [3]. This may be shown by following the argument in [10],
say that a node is visited by the sphere decoder if and onlyaifid we sketch a proof of this statement in the present setting
the corresponding partial vectey, satisfies (15), i.e., there isin Appendix B-D.
a bijection between the visited nodes at layesnd the set

N 2{3, € SZ | [|rr — Ridsl> < €2} (16) C. Decoding Complexity
The sphere decoder complexity, or equivalently the number

E‘jvisited nodesN, is as stated a random variable with a

Due to this relation we will in what follows not make the
.. . . 0
distinction between nodes and partial symbol vectors an

simply refer tos, as nodes at layek when discussing the istribution that depends on a number of parameters, é4g., t

search. The total number of visited nodes (in all layers ef tﬁy§tem dimensionsg, nr a_ndT, the SNRy, the mul_tlplexn_wg
tree) is given by gainr, the generator matri, and the search radigs This

K is well known and follows by the randomness of the bound in
N = Z Ny . (17) (15). Naturally this randomness must be considered in plppe
k=1 analyzing the sphere decoder complexity.
In order to illustrate one of the problems with studying

where N, £ is the number of visited nodes at layeof . .
AL ye me worst case complexity consider the event that= 0

the search tree. The total number of visited nodes is comyno o .
taken as a measure of the sphere decoder complexity [9], [ lwll* < 5?' yvhere itis easily seen that (14) an_d (15)
and this will also be done in what follows. Note however that" always satisfied. As a consequence, the complexity of the
as the total number of floating point operations (flops) resgli sphere decoder would be equal to

for evaluating the bound in (15) may be upper and lower L b N fT .

bounded by constants that are independenp @fur results N= Z [Syl* = Zp TEP

relating to the SD complexity exponent would not change if k=1 k=1

we instead considered” to be the number of flops spent by\yhere we have used that = p% to obtain the size of,

the decoder. in (4). The worst case complexity would thus end up being
comparable to that of a full search ovat as |[X| = p'7.
B. The search radius However, there is also no point in decoding wheh = 0

The description of the sphere decoder is not comple?é all codewords would yield the same ML metric which in

without specifying how the search radius is selected. In (e implies a hig_h probability of error. Essentially thara
gument, for opting out of decoding, can be made whenever

interest of obtaining the complexity exponent, we may argl?é: > : .
that any reasonable choice of a fixed (non-random) seaf _ MIMO_ channel is in |nf,or_mat|on _theoreuc outage [.5.]' In
this case it follows by Fano’s inequality that the probabpitf

di hould sati
radius should satisfy 0 detection error will be bounded away from zero. In fact, for a
E=p". (18) . . . ) .
code with a diversity gain of(r) any set of channel matrices
To see this, it is sufficient to note that the metric in (13} for which P (H € H) < p~%"), may be neglected by the
satisfies decoder with vanishing degradation of the overall proligbil
| — Rs|* = |Q"w]|? of error. However, rather than identifying and excludingea s

. . of bad channel matrices directly, a more pragmatic appr@ach
for the transmitted vectas. Thus, if |Q"w||? > &2 the trans- y prag PP

. ) ~ to impose a run-time constraint on the decoder and ensure tha
mitted symbol vector is excluded from the search, resuiting P

a decoding error. By considering a radius that grows slowjglis constraint is such that the probability of it being witeld
with SNR, saye? — 2 logp = 20, it can be shown that insignificant in relation to the probability of error. Bleads

to the following measure of the decoding complexity, which
p(||QHw||2 > £2) <p 9, (19) we will use throughout.

provided z > 0 is sufficiently large, i.e., the probability of Definition 1: Let

excluding the transmitted vector will vanish faster thae th \I/(x)é— lim logP (N > p*)
probability of error and cause vanishing degradation to the p—oo log p
overall probability of error. At the same time, if the radiu%vhere]\f
does not tend to infinity with increasing, it will follow
that P(||Q"w|?> > ¢2) is bounded away from zero. This
implies a non-vanishing probability of error and a resugjtin c(r) £ inf{z|¥(z) > d(r)} (21)
diversity gain of zero, which is clearly undesirable. Thus, . . . .
as the complexity exponent is not affected by the particulﬁ' ere d(?a) (Cf'_ (9)) Is the diversity gain of the code at
choice ofz, we shall unless otherwise stated in the following1UItlpleXIng gainr.

(20)

is the number of nodes visited by the sphere decoder
(cf. (17)). TheSD complexity exponeig then given by
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D. Vanishing SNR gap to the ML performance approximate the number of nodes at layesf the search tree,

We recall that in addition to the instances where the MLE-, the size ofVii. defined in (16), we are primarily concerned
decoder makes an incorrect decision, a time-limited sphékgh the volume of([—n,n] + v/=1[—n,n))* N & whereé;
decoder can additionally make decoding errors when tifethe elliptical set given by (cf. (16))
search radius is se_Iecte_d too small, i.e., whégnf 0 (pf.(16)), &= {8, € CF||lre — Ri3i|? < €2} . (23)
or when the run-time limit ofp® becomes active, i.e., when o ]

N > p*. These extra errors cause a gap to ML performang@e use of the volume principle for assessing the sphere

which can be quantified as decoder complexity was previously used in [2], [11], [28] al
. though its prior use in the communications literature isttah

g(z) 2 P{XwmL # X} U N =03 U{N > p"}) to the case of lattice decoding (i.e., where the constefiati
P(XwmL # X) boundary constraint imposed by-n,7] is ignored by the

describing the ratio between the probability of error of tthCOdef)- Herein, we have to take the constellation boyndar

time-limited sphere decoder and the ML decoder. With retspdRfC account to obtain tight bounds on the SD complexity
to ¢(r) we then have the following. exponent.

) . ) , The upper and lower bounds presented in this section
Theorem 1:The SD complexity exponem(r) is the tight- 5o essentially obtained in three main steps: 1) The volume

est _Iower boun‘?' on the SNR exponents of all run—tlm(_a C_OB'rincipIe is used to obtain an expression for the numNgr

strainsp® for which a sphere decoder can allowforavamshlngf visited nodes at layet in terms of the singular values

gap to ML performance, i.e., where of Ry; 2) the singular values oR; for k = 1,...,k are
lim g(z) = 1, for anyz > ¢(r). (22) related to the singular values of the channel mafidx and
p—oo 3) the theory of large deviations is used similarly to [5] to

The above simply states that for any> ¢(r) it is possible to identify random events Iikel_y to cause an atypically large
design a decoder based on the SD algorithm that achie@€§0ding complexity. Establishing the upper boundcor)
a vanishing SNR gap to the ML decoder, at a worst caligns out to be easier mathematically. The reason for this is

complexity of p. To see this apply the union bound to get primarily in the second step \_/vhere the interlacing property
of singular values of sub-matrices [21] can be used to lower

(@) < P(XwuL # X) " P(évr > §) n P(N > p®) bound the singular values @, by the singular values off,
T P(XamL#£X) P(XauL#X) P(Xu#X) toyield results that are universally applicable for any fahk
generator matrixG, cf. Theorem 2. Although the interlacing

=1 —0 —0 . )
roperty gives both upper and lower bounds on the singular

wheret;he secondt an? thollrd tterm tendt to ?er(t) W'tht'ni;]eas'aglues ofRy., the upper bounds are unfortunately not sufficient
p as e numerator tends 1o zero at a laster raie than %g?establishing tight lower bounds atfr). We are therefore

denominator cf. (19),(21). This immediately translatesato]c d to develop tighter bounds that d d teghni
vanishing SNR gap to the ML decoder at high SNR. In shor‘fme 0 devetop tighter bounds that depend on some nie

L : ssumptions oitx, cf. Lemma 2. While these conditions are,
the probabilities of the events that the search space isyemp

hat th lexity of th . ined seh fleast in principle, easily verified for any given code dasi
or that the complexity o t_e _rl_m—tlm_e—unconstr_ame SP efhey are generally hard to verify for arbitrary classes afe
decoder exceeds® are insignificant in comparison to the

bability of ML decodi Nevertheless, for some important classes discussed iio8ect
probability ot ML decoding errors. . ... IV-D we are able to conclude that the upper bound:0n is
Furthermore it is the case that one cannot time-limit tf}

. fyht, thereby establishing(r) exactly.
sphere decoder {@” for somez < ¢(r) _a_nd expect an arbitrary gThe deriv)f;tion of thegfjgper bo}led arfr) is given in
small gap to ML performang(gs Specifically, one can show (cf,o following sub-sections, while the derivation of the &w
(67)) ﬂllatfP(N” 2 g )>¢] for any :E)I <t C(g)’t and as 1), nd, which is similar in spirit to the upper bound but
a resuft, Tor all codes where we are able fo de ernaifg complicated by some technical details, is primarily givan i
exactly, it follows that forz < c(r) then Appendix B, and discussed in Section IV-D.

(z) > P(N > p”)
I = P(Xme # X) A. The volume principle
NG As noted, we begin by establishing boundsién= |Ny| in

implying that any attempt to significantly reduce the completerms of the eigenvalues of the matd; in (15), the sphere

ity beyond (™) will be at the expense of the vanishing SNF{adiusg and the constellation sizg To this end, consider the
gap to ML decoding. ollowing lemma, which corresponds to rigorous applicasio

of the volume principle discussed above.

IV. THE SPHERE DECODER COMPLEXITY EXPONENT Lemma 1:Let £ C R™ be the ellipsoidal set given by

We proceed to establish upper and lower bounds on the SD EA{dcR" | |c— Dd|? < &%} (24)
co_mplexﬂy exponent, in essence th_rough the applicatioa O]:NhereD € R"*" andc € R, Let B C R be the hypercube
principle (dating back to Gauss) which states that the nmmbelven b
of integer lattice points within a (large) set is well app'lcoxg y

mated by the volume of the set [26], [27]. Thus, in order to B2{deR"||d;i| <n,i=1,...,n}. (25)
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Then, the number of integer points contained in the interseghereo;(R;) and o;(R) denotes theth singular values of
tion of £ and 5 is upper bounded as R, and R respectively. AsR = Q" M whereQ has a set of
n 2 orthogonal columns that span the rangeldf it follows that
ENBNZ"| < H {\/54— min (—, 2\/577” , (26) o0i(R) = o,(M). Further, by the definition ofV/ in (11) we
i oi(D) have thar;(M) > 6~0; (I ® H) wherey 2 o1 (G) > 0 due

and the number of integer points contained dnis lower to the aSSUmption tha® is full rank. The Singular values of

bounded by I+ ® H are the same as those of the channel malixn
" % n (1), albeit with a multiplicity ofT’, i.e.,
o> [ S — . .
|ENZ |_11:[1<\/EC71(D) ﬁ) (27) crl-(IT®H):crbT(i)(H), 1=1,...,n7,
whereo;(D), i = 1,...,n denote the singular values &. Where ;
Proof: Given in Appendix A. vr(i) 2 [f} (30)

Although Lemma 1 is phrased in terms of real valued quan- ) -
tities, it is easily applied to complex valued sets by coesiy 1hiS €an be seen by noting thatf = UXV™ is the SVD
each complex dimension as two real valued dimensions. 3hH then
particular, the expression in (14) is equivalent to (Ir@U)Ir2X)(Ir® Vi)

2 2
Iz, = Bysill” < € is an SVD of I ® H (albeit with a non-standard ordering of

where the singular values). Alternatively, on can apply [25, Tieso

R(rs) R(Ry) —S(Ry) 4.2.12] to the eigenvalues dfr © H"H. _

Tr= | s Ry = | ) Combining the above yields a lower bound on the singular
S(re) S(Ry)  R(Ry) : :
values of R in terms of the singular values of the channel
and matrix H according to
_ [%(Sk)}
= S(sk) oi(Ry) > 0y0,, 0y (H), i=1,...,k,

By noting that if R, = UXV" is the singular value and an upper bound on the number of nodes visited by the
decomposition (SVD) [21] oy, then sphere decoder at layéraccording to

B = [ggg _g((g))] E g} [igig _g((x‘//;))] N, < ﬁ [\/ﬁﬂnin (L ,2\/%7”2 . (31)

. . _ Oy, iy(H)

is the SVD ofR,,, it follows that the singular values d®,, are

the same as those @&, albeit with a multiplicity of2. Thus, In order to bound the probability that the right hand side of

applying (26) in Lemma 1 toV}, (cf. (16)) yields an upper (31) is atypically large in the high SNR regime it is useful to

bound on the number of nodes visited at lajeaccording to introduce the SNR dependent parameterization of the sangul
values (or eigenvalues) df™" H introduced in [5], i.e., SNR

k 2 a . .
Ny = [Ni| < H [\/ﬁ—k min ( 2}2 ’2\/%77)] (28) dependent random variables, for i = 1,...,ny, defined by
i=1 oi(R) A log N(H"H)

a2 & NHVH)=p. (32
log p

where o;(Ry), @ = 1,...,k denote the singular values of

R;.. Here, in essence, the additivg2k term accounts for _ o ) _

edge effects in the volume approximation, the first term plote that by this definitionr;(H) = p~2. The variables,

the minimum accounts for the size of the search sphere, d@tdfor @ = 1,...,nt are refereed to as thengularity levels

the second term in the minimum accounts for the finiteness ¥ H as they give an indication of how close to singular the

the constellation. channelH is in relation to the inverse SNR L. As ¢ = p9,
The lower bound in (27) will be used later in order to assefs= £2 2 andn = p2~ it holds that

the tightness of the upper bound ofr) developed next. The 2 2

reason for providing a lower bound ¢é N Z™| and not|E N [\/E—i— min (ﬁ ,2\/@7)} <p”

BN 7" is that we cannot a-priori rule out thatin (24) is V92 (i) (H)

such thatt N B = (), a case which if not ruled out would leadwhere

to the trivial lower bound& N BN Z"| > 0. ” ﬁmm(ﬁ o E)Jr _ (33)
B. Singular value bounds By (31) it follows that

The interlacing theorem of singular values of sub-matrices k
(cf. [21, Th. 7.3.9] and [25, Corollary 3.1.3]) states thiaé t Ny < Hpui =p v (34)
singular values ofR; are bounded by the singular values of i
R according

However, as the SNR exponent on the right hand side of (34)
Oivn—k(R) > 0i(Rg) > 0i(R), i=1,...,k, (29) is non decreasing i it must for the total number of visited
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nodesN hold thatN = Y7 | N;, < pXi=1¥i or for any given From (42) it follows that the complexity exponertt) is upper
0 > 0 hold that bounded bye(r) where

N < prizivitd (35)
. . . &(r) £ inf{z| f(x) > d(r)} =sup{z| f(z) < d(r)} (43)
providedp is sufficiently large.

Consider now the set (cf. (33) and (35)) and where the last equality follows g@$z) is non-decreasing.
K PT\T Further, by the left-continuity off(z) it follows that the
T(x)2 {a ‘ Zmin(— =1+, ) > x} , supremum on the right is attained, i.e., the supremum can be
i=1 v replaced by a maximum.

(36)
wherea = (aq, ..., an). As (35) holds (asymptotically) for
any o > 0, and sincex ¢ 7 (y) implies thatN < p* for any
y < z by (35) and (33), it follows that

logP (N 2p*) _ . 1ogP(a€T(y))

Note however that the condition thAtx) < d(r) is satisfied
if and only if there exist amx € 7 (z) such that/(a) <
d(r). Thus,é(r) in (43) could alternatively be obtained as the
solution to a constrained maximization problem accordng t

lim

p—00 log P T~ p—ooo log p ’ IE&IX x (44a)
Equivalently (cf. (20)) K T TN
log P (o € T(y)) st me<7 — 1t au, ;) >x  (44D)
U(r) > — lim ——————= (37) i=1
P00 log p nr
for y < z. The value of the bound in (37) is that the right hand > (e —nr+2i—1)a; < d (44c)
side is readily computed using large deviation theory [29]. =1
ap > ... 2 app 20, (44d)

C. Large deviations _ where (44b) follows from the constraink € 7 (z), and
A sequence of random vectofs, € R" parameterized by where (44c) and (44d) follows froni(a) < d(r). It is
p is said to satisfy théarge deviation principlg29] with rate  straightforward to show that the optimalin (44) must be

function, such that (44b) is satisfied with equality. By further noting
I:R"— {Ry, oo}, that the sum in (44b) contains onlyr distinct terms, each

if for every open seff C R™ it holds that with multiplicity 7', it can be seen that

.. logP(B,€0) , (T rT\"

lim inf gy > —ggfg 1(B) (38) ;mln — ~ @, —
and if for every closed sef C R it holds that nr r r\ 7T

ZZTmin<— -1+, —) ,
logP (8, € F) nr nr

lim inf
p—00 og p BeF
Although not stated formally, one of the central resultsSf [
is that the sequence of random variables giverohy= o =
(o1, ..., amy) (cf. (32)) satisfies the large deviation principle Theorem 2:The complexity exponent(r) of any full rate
with rate function (cf. (38), and proof of Theorem 4 in [5]) linear dispersive code with multiplexing gainand diversity
d(r) is upper bounded agr) < &(r) where

< — inf I(B). (39) i=1

where we have also used the full rate assumption that
ntT. We summarize the above in the following theorem.

nr

I(a) =Y (ng —nr + 2i — 1oy (40) o N
i=1 é(r) £ max ZTmin(L -1+, L) (45a)
if a1 > ... > an, > 0 andI(a) = co otherwise. This = nr nr
observation was key in establishing the DMT in [5]. iy ,
By combining (37) with (39), and noting th&f (y) is a st Z(”R —nr+2i—1)a; <d(r)  (45Db)
closed set, it follows that =1
a1 > .. 2> anp >0, (45c¢)
W) > f)E il I(a) (41)
acT (y)

The upper bound given by Theorem 2 can naturally be

foranyy <. As7(z) C 7(y) forall y < it follows that computed given explicit values for the multiplexing gain
f(y) is non-decreasing and it can additionally be verified thgp TPt . . o N
F(y) is left-continuous, i.e and diversity gaif d(r). However, it is also possible in some

cases to give general solutions as a function-ofhen the

sup f(y) = f(x), DMT curved(r) of the code is known explicitly. In particular,
y<z DMT optimal codes such as those presented in [12]-[17] have
which implies that a diversity gain ofd(k) = (nt — k)(nr — k) at any integer
U(z) > f(x) = inf I(a). (42)

aeT (z) “Note that Theorem 2 does not assume a diversity optimal code.
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multiplexing gainr = k [5]. In this case it is straightforward D. Establishing the exact complexity exponent

to verify that afl optimal« in (45) is given by We now turn to specific cases where we can exactly

af =1, fori=1,....nr—k establish the complexity exponentr) by establishing that
the upper bound(r) < &(r) is in fact tight. To this end, we
and begin with the following lemma, which provides a sufficient
af =0, fori=nr—k+1,...,nr. condition fore(r) = &(r), i.e., for the tightness of the upper
bound.

To see this, note that the objective function in (45a) is Lemma 2:Let G|, € C**77 be the matrix consisting of the

symmetric with respect to permutations of the setngffor . . o
i =1,...,n7. As the sum in the diversity constraint (45b)ﬂrst Tp columns of the generator matrG € C of some

places more weigh om; than onas, for j > i, it is glv.enfulllrate Ilneardlsperswecgde. Iftherefoe=1,... . nr
; . : . gy exists unitary matrice&/,, € C"**? such that
optimal to increasev; until the term in (45a) containing;
saturates (i.e., when; = 1), then to increasev, etcetera H
) o L . . o ’ rank((Ir @ U, )G,,) = pT, 48
until the constraint is satisfied with equality. This yieltise (( T p) \p) p (48)
aforemgnnone_d solution. Note also tk@, coe,ap, are the thenc(r) = &(r) for all r € [0, ny], whereé(r) is given by
same singularity levels that give the typical outages in(&  (45) in Theorem 2.

Section V-A). Inserting the optimal solution into (45a) lie The proof of Lemma 2 is similar in spirit to the proof

) — Tk(nt — k) of Theorem 2, although riddled with technical details, and
(k) = n ' therefore relegated to Appendix B. In essence, the comditio
T

S . . osed in (48) implies that there are certain orientationthef
which is a remarkably simple (tight) upper bound on thEght singular vectors of the channdf (in relation to the

com_pIeX|_ty exp_onent of any DMT optimal code at Intege(Eode generated b@) for which the lower bound in (29) is
multiplexing gainr = k.

For a DMT optimal code at a possibly non-integer value 0t' ht. Details are provided in Appendix B, and some adddion
r. let k be the integer such thate [k, k +1), i.e., k = |7, interpretations of (48) and the general applicability o€ th

The optimal solution is in this case given b lemma can be found in Section V. However, we first apply
P 9 y Lemma 2 to finde(r) in some very important special cases.

of =1, fori=1,....np—k—1, To this end, it is useful to first note that permuting the
columns ofG, i.e., replacingG with GII wherelIl € R**"
af =0, fori=ny—k+1,...,np, is a permutation matrix, does not change the cadénstead,
the effect such a permutation would have is that it would
and change the order in which the symbolssimre enumerated by
Ok =k+1-r. the sphere decoder described in Section IlI-A (cf. [3, Secti

IV]). In the present context, the firgtl" columns ofGII, i.e.,

[GII] ,, may differ from those ofG. Thus, we see that (48)

B + depends not only on the code itself, but also on the order in

e(r) = nr (T(nT —k—=1)+ (nk —r(ny 1)) ) : which the constituent symbols are enumerated by the sphere
decoder (cf. [3], [4] where the topic of detection or column

ordering is discussed in detail).

Substituting the above solution back into (45a) yields

We summarize the above in the following theorem.

Theorem 3:The complexity exponer{r) of any DMT op- In the context of Lemma 2, it can be seen that(&s ®
timal full rate linear dispersive code with integer muléping U;I)G € C"I'** have rankpT for any unitaryU, due to the
gainr = k is upper bounded as full rank assumption ot+, one can always selepfl” linearly

Thk(nr — k) independent columns, or equivalently, find a permutation ma
clk) <élk)= ——=. (46) trix IT such that(Ir ® U?)[GH]W has full rank. Using a
nr similar argument, we can recursively construct a (sindle)
For general- where0 < r < nt the complexity exponent for which there ardJ,, for p = 1,...,ny satisfying
¢(r) is upper bounded aqr) < &(r) where
T ) rank ((I7 ® U?)[GH]“)) =pT
dr) = nr (r(nT r]=D+ (nT r]=r(ne 1)) ) - (47 by constructingU,_; from U, by removing a column,

selecting the appropriate columns fro, and starting the

The functionc(r) in (47) is a piecewise linear function inrecursion with an arbitrary/,,.. Interpreting the above in
r, although unlike the optimal DM(r) it is not as simple |ight of Theorem 2 and Lemma 2 we can thus establish that

as the set of straight lines connecting its values at integgy any full rate linear dispersive code desigity;) as defined
multiplexing gains. Fomr = 7' = n the function in (47) in Theorem 2 and given in Theorem 3 for DMT optimal codes,
coincides with the curve foe(r) shown in Fig. 1. is the tightest upper bound on the complexity exponent that

can possibly hold under arbitrary detection orderingssTii
5In general, (45) does not have a unique optimal pointras(a, b)* is formalized in the foIIowing
constant ina for a < 0 anda > b. :
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Theorem 4:Given any full rate linear dispersion codeof B;_;C. ConsequentI)G‘ipé [Gil Gi,,] e Cnxnp
achieving diversityi(r), there is always at least one detectiohas rankp and contains exactly non-zero rows. This holds
ordering for whiche(r) = ¢(r). for any n andp < n. Now, let U, € C™"*P be a unitary

However, while Theorem 4 is useful in the sense th&atrix with the property that any rows of U,, are linearly
it tells us that one could not improve upon the tightnedgdependent. Such matrices can clearly be constructedamnd
of &(r) without introducing further assumptions regardingx@mple is the matrix that contains the fipstliscrete Fourier
the particular code design considered, it is obviously rfot §ansform (DFT) vectors of length. Let G);, € C**"* be the
practical interest to use the worst possible detectionrorge Matrix containing only the non-zero rows Gk, € C"?,
Therefore, we turn our attention to the important class @nd letU;, € C**? be the full rank matrix consisting of the
threaded codes [30] for which we will show that thatural rows of U, matching the non-zero rows ;. It follows
detection orderindI = I,. implies ¢(r) = &(r). that

1) Threaded codesThe class of threaded code designs is o &
of particular interest, as it includes full rate codes tharf@rm p p
very well in a variety of settings. The threaded aIgebraic(In ®U;I)G|p = : € croxnp
space-time (TAST) codes [30], codes constructed from CDAs o é‘np
[31], [32], and specifically modified CDA codes [14]-[17] 2P —
that were shown (cf. [15]) to achieve the DMT tradeoff, are U, Gip

prime examples. The CDA based threaded designs are also

the only currently known explicit constructions capable df full rank as bothy,, € C™"7 and Gy, € C™*"* are full
achieving the DMT for all values ofir and simultaneously rank and square matrices. Note also that the same argument

over allr € [0, ny]. All these codes have a common threadetf"! be made reg_ardless of the ordering of the_ threads, and for
structure. Specifically am x n threaded code is built from N other code with a threaded structure, provided the sisnbo

n component codes mapped cyclically in threads (or layel) S &re grouped into layers as in (49). This is stated in the
to the codewordsX. For example, in the special case ofollowing.

n =nt =T = 4, the thread structure is given by Theorem 5:The SD complexity exponent, given any
threaded code witm = nt = T that is decoded with

; 411 Z g the natural detection ordering or under any other threaewi
3 9 1 4 grouping, isc(r) = ¢é(r) whereé(r) is given in Theorem 2.
4 3 2 1 Consequently directly from Theorems 3 and 5, we have the

o ) following result for thent x ng quasi-static Rayleigh fading
where the numbers, 2, 3,4 indicate the thread to which apvo channel.

particular entry ofX belongs. In general, symbglin thread
lis mapped taX ; , wherek = mod (j—1, n)+1 and where
mod (-, n) denotes the module operation. For example, in
the case of perfect codes [16], [17] which also employ

Theorem 6:Sphere decoding with thread-wise grouping of
any DMT optimal threaded code with = nt = T', achieves
BMT optimality with a complexity exponent of

threaded structure, the code follows from e(r) = r(n— |r] — 1) + (TLU’J —r(n— 1))+ (50)
B()C S1 B . . .
which, for integer values of = k, simplifies to
lay(X) = : (49)
B, 1C] [s, c(k) = k(n — k). (51)
T

We briefly note that as expected the complexity increases
where with increasingny for any fixedr which is quite natural as

Bi2Diag(L, 1, . 1,77 s7)y =0, m—1 Fhe size of the codebook’ and the signgl space dimension

ARV NSRRI increase. One can however note thét) is independent of

n —dentries i entries the number of receive antennas (providedng > nr).
are full rank diagonal matrices incorporating a properlgsdn This is specific to the DMT optimal behavior and threaded
thread-separating scalay whereC € C™*" is a (unitary) full structure of the codes, and may be explained by the fact
rank generator matrix for the component code of each thredliat even though the channel quality generally improves by
s, € S} are the constellation symbols of thregdand where adding receive antennas - thus generally reducing contplexi
lay(X) denotes the matrix to vector operation obtained bythe same improvement also occurs in the error probability
stacking the elements oX according to their thread (cf. the performance of the code, and these two effects cancel each
column based stacking of thec(-) operation). other in the complexity exponent.

Regarding the decoding complexity introduced by such 2) 2 x 2 approximately universal codesiVe here go one
codes, we note that the corresponding generator méirix step further and identify classes of codes for which we can
Cn*xn* is related toY through a permutation of the rows instate, without limitations on the actual coding structuhat
such a way that théi, j)th block G;; € C"*™ of G contains ¢(r) = &(r) for any detection ordering. This is done herein for
exactly one non zero row which it self is one of the rowthe class of alR x 2 approximately universal codes, i.e., all
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minimum delay codes that can achieve DMT optimality ovetr + 2i — 1)a; < d(r) if and only if >°,(1 — o)™ > r. We

the 2 x ng channel irrespective of fading statistics [33]. can thus obtain the boundr) by solving

We are able to show, albeit only for the specific case of
nt Xx T = 2 x 2, that (48) follows from the so called é(r) = max &(r: a) (52a)
non-vanishing determinant (NVD) condition [32] which is @ -
well known to be a necessary and sufficient condition for st Z(l —a)t > (52b)
approximate universality. We consequently have the fdahow P Y

Theorem 7:Any 2 x 2 full rate approximately universal a; > .= A, >0, (52c)
linear dispersive code, irrespective of its structureroiditices
a SD complexity exponent of which may be interpreted as the worst case complexity (bpund

over all channels that are not in outage.
The concept is illustrated fony = T = 2 in Fig. 2

As the NVD property is not dependent on the ordering of thiherec(r : a) is plotted as a function of = (a1, o2) over
columns of@, it also follows that the conclusion of Theorem 71 = @2 = 0. In this casez(r) = max(r,2 — ). Note also

holds irrespective of the detection ordering. here that we know by Theorem 7 that) = ¢(r). Singularity
levels that are in the outage regign,(1 — a;)™ < r are

shown in a darker shade. It can be seen that increasing

the multiplexing gainr increases the codeword density and

A. Decoding complexity and information theoretic outages consequently broadens the set of singularity levels that ca

otentially lead to higher complexity. However, increasin

e multiplexing gain also reduces the set of channels that
support the data-rate, thus limiting the set of singuldatels

>+ for which the decoder needs to be applied, leading to an

e(r) = max(r,2 — r).

V. IMPLICATIONS AND DISCUSSIONS

The claim of Theorem 2 may be expressed in terms of tt
function (cf. (45a))

nr
E(T:a)ﬁZTmin<L—1+ozi, -

o nr overall reduction in the complexity exponentagpproaches
=1

its maximum value.

which provides a conditional, asymptotic, upper bound @ th However, in general, the observations made above are
sphere decoding complexity accordingo< p°("*®) in terms one-sided in the sense that we may omit to decode when
of the singularity levekx. The final upper bound(r) is then the channel is in outage, but a channel not in outage does
given as the worst casgr : «) over all singularity levels not necessarily imply low decoding complexity. There can
that occur with a probability that is larger than or equalhe t be channels that incur high decoding complexity while not
probability of error, given asymptotically by the diveysgain in outage. For the sphere decoder, such channels may be
d(r) of the code. constructed by allowing one or several to be negative,
This interpretation is similar to the notion of typical erroi.e., for one or several eigenvalues H' H to be atypically
events in [5]. In particular, the characterization of the DM large. However, as these channels occur with a probability
in [5] relies on the asymptotic probability of outages athigthat vanish exponentially fast with, they can also be safely
SNR, i.e., the probability that the i.i.d. Rayleigh fading/&N ignored when decoding without degrading the probability of
channel given by error in the high SNR asymptote, as was argued in Section
y, = Hxy + w, [1I-D. Essentially, any set of channels with probability $sa
less than the probability of outages may be safely ignored by
with a power constraink {||z.||*} < p cannot support an the decoder. This is intrinsically captured in the compiexi
asymptotic data-rate a® = rlog p + o(log p). As was shown measure given by the complexity exponent as it is tied to the
in [5], this occurs when the singularity levels belong to thprobability of error directly rather than the set of chamsnel
outage setd(r) = {a| >°,(1 —a;)™ < r}, and the diversity in outage. Finally, it is illustrative to note that the dission
of the outage event is given by the most likely set of singtylar above does not explicitly depend on the i.i.d. Rayleighrigdi
levels that satisfy this condition, i.ed(r) = infqc () I(e) assumption. Therefore, (52) provides a universal uppentbou
(cf. 40). on the SD complexity exponent given any fading distribution
If we restrict attention to the set of singularity levels vgBo for which (52c) is violated with a probability that vanishes
probability of occurring does not vanish exponentiallytfas., exponentially fast.

forwhich I(a) < oo or equivalentlyo,. > ... > a1 > 0,we  Towards gaining further intuition for the result of Theo-
can for DMT optimal code’s make an interesting connectioryem 6, and in particular (51), it is illustrative to consicer
between the decoding complexity and information theorefisuristic argument involving low rank channel matricks
outages. In particular, fob < r < nr the infimum of /() ~ As noted in [5], the typical outages at integer multiplexing
is not attained overd which implies (cf. 40) thab_;(nr — gainsr = k are caused by channels that are close to the set of
rank k& matrices, i.e., that have — & small eigenvalues. If we
®To be precise, we are assuming here that we are working wiphogp  for the purpose of the illustration assume tit&thas rankk, it
mately universal codes for which it is known that errors any dikely when
the channel is in outage [33]. All explicitly constructed fiate DMT-optimal follows thatI, ®I{_- ande have ranknk., a_nd Qonsequently
codes known to date, are also approximately universal. a null-space of dimension(n — k). This implies that the
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r=23/2

r=1

0 0 o aq

Fig. 2. Conditional complexity exponent bouatix) as a function of singularity levetx = (a1, a2). Singularity levels that corresponds to outage events
at the target multiplexing gain are shown in dark grey, while singularity levels capable wporting the target multiplexing gain are shown in ligheygr

n(n — k) x n(n — k) lower right block of R is’ identically 4
equal to zero, and the sphere decoder pruning criteria becorr
totally ineffective up to and including layet(n — k). As the
size ofS, is [S,| = p» for r = k, we see that the number
of nodes searched at laye n — k) of the SD search tree
is [Sp" M| = pk(n=k) (cf. (51)). In order to ensure close
to optimal performance, the sphere decoder must be able t 3
decode for channels where— k singular values are close to & r
zero. However, channels with even more singular valuezclos & 1t
to zero occur with a probability that is small in relation tet e(r)
outage probability or the probability of ML decoder erranda

can thus be safely ignored by the decoder. 0

2r

ponent

0 1/2 1 3/2 2
Multiplexing gainr
B. Fast decodable codes

In [34]-[36] a family of DMT optimalnr xT = 2x 2 space- Fig-(3- Compa)riggN tF?e SD ngp)lexljtyhemonflem‘) =h minér, 2; ), Wgh "
H e (worst-case expon r) of the regular sphere decoder, and wit
time codes C?"ed fast decodable co_des [37] were Consm’l_cq'fhﬁe maximal SNR exponerit) of the simplified sphere decoder.
The complexity exponent (and also its upper bound) provides

an interesting approach for comparing regular codes wigh th

fast decodable codes. Before doing so it should be notgdy g a faster, linear, ML decoding. This simplified versi
that these fast decodable codes are not, strictly speakiBfithe real valued sphere decoder can be viewed as a search
of the form in (3) as the real and imaginary part of €achyer a regular tree where each node hag? children up
constituent symbol is dispersed separately. Nevert_heihes to layer 4, but only one child per node for thé remaining
fast decodable codes may be decoded by an equiveaht |ayers. Consequently, the worst case number of nodes disite
valued sphere decoder that performs a search over a reg%@,rthe simplified sphere decoders,|# + 3°2_,[S,|% =
tree with 2« layers andsS, | branches per node, and we cans 12 =, as opposed (35, [S,|5 5 o foﬁﬁe :egular
compare the reported worst case complexity of this realedalurea| valued sphere decoder,_ cf. [37]. Thus, fast decodbili
sphere decoder to the complexity of the complex valued €0hGh jjies a reduction by a factor of 2 in the worst case SNR
decoder considered herein. , exponent, which is significant at high SNR.

The fast decodable codes have the appealing property thalowever, this worst case SNR exponent of the simplified

1 X

the upper rightl x 4 block of the real valued? € R™™ (cf.  gp sy be viewed in light of the complexity exponent of
(13)_) |s_always a dlggonal matrix, regardless of the padicu any?2 x 2 approximately universal code as given by Theorem 7,
realization ofH. While the regular real valued sphere decoder,’ ¢(r) = min(r, 2—r). The worst-case SNR exponent of the
for a2 2 full rate code would perform a (bounded) searcfgjar sphere decoder and of the simplified sphere decoder,

over .the entire tree, it. is s_ufficient for the fast decodabldes and the SD complexity exponest-) are shown in Fig. 3. For
to (without loss of optimality) perform a search over onlg th multiplexing gains lower than or equal tothe SD complexity

first layers, and extend each node at layes a valid codeword exponent and the worst-case SNR exponent of the simplified

_— _ _ _ _ sphere decoder actually coincide, while the SD complexity
This also requires that the firatc columns of R are linearly independent.

In fact, the rigorous treatment of the technical detail igddy responsible for exponent !S strictly Ipwgr for mUItipleX_ing gains hi.gherat‘n
much of the difficulty in establishing the lower bounds @) in [?). one. The interpretation is that a run-time constrained phe
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decoder will yield asymptotic ML performance fany 2 x 2
approximately universal code at a complexity that is corapar C2
ble to the reported worst case complexity of the fast dededab
codes at low multiplexing gains, and significantly better at
high multiplexing gains. Thus, in a sense, all approximatel

universal codes are fast decodable at high SNR. However, w
hasten to add that the fast decodable structure can nagturall
still be desirable in many cases of practical interest.

C. The applicability of Lemma 2

Finally, we discuss the application of Lemma 2 to codes <
not considered herein. To this end, note that for any given \
generator matrixG' of some code not covered by Section IV-D,
it should be clear that if (48) holds then Lemma 2 could be
used to establish a tight lower bound ofr). This said, we
also wish to caution the reader that (48) only represents ¢
sufficient condition fore(r) = &(r). It does not necessarily
follow that ¢(r) < &(r) if (48) is not true. In other words, the
question of if there are code designs that improve upon the
boundé(r) is not answered in the positive by finding code
designs for which (48) does not hold. Fig. 4. lllustration of the proof of (26) in Lemma 1 in the casen = 2.

AS for testing (48) it should also be noted that one does e #77S Poves 21 oper b on e er fiteomaotty,
have to restrict the search fbF, to the set of unitary matrices. consteliation boundary.

Any full rank matrix A € C"**?P can be factored, e.g., by the
QR decomposition, a&/, T = A whereT € CP*? has rank
p and wherelJ,, is unitary. Hence, aél+ @ T") is full rank, bounds the complexity required for achieving decoding with
it follows that an ML gap that vanishes with increasing SNR.
(Ir® ANG,, = (Ir © T")(Ir 2 UNG The introduced SD complexity exponent was computed for
T Ip T B X' a large family of lattice designs, and often assumed a simple
is rank deficient if and only if (48) fails to hold. Henceclosed form; especially when the DMT performance of the
the statement of Lemma 2 could be phrased in terms of thede designs is known. We hope that this simplicity will
existence of any/,,, not necessarily unitary. provide insight and guidance in designing robust encodeis a
Further, let decoders. In light of Lemma 2, the results may help in further
unifying encoding and decoding methodologies, and mayeserv
p(A)=[(Ir ® AH)G“" ’ as f():longstruction ?:riteria for fasgter-to-decodge linear dlis£
where | - | denotes the determinant, and note thaa) is lattice codes. The provided limits and guarantees can b& use
a polynomial in the elements ofi. It can thus be seen for planning operational policies in networks: for exampie
that if p(A) # 0 for some A € C"t*?, ie. p(A) is the presence of complexity limitations the results cansagsi
not the zero polynomial, it follows that the set of for selecting preferable rate-SNR regions of operation, tiegyl
which p(A) = 0 has zero Lebesgue measure. It is then if savings on power, hardware and processors.
straightforward extension to show that (48) holds eithelene TODO can say that we have set the stage for the race
or almost always with respect to the set of unitary matricé$ reducing this exponent, given ML vanishing (shift of the
U, over the Stiefel manifold (i.e., the set of all unitary< p fundamental task)
matrices) endowed with the Haar (uniform) measure. This
suggests a rather interesting conceptual method for vegify APPENDIX A
(48). Given a specific generator matrix one could at least in PROOF OELEMMA 1
theory test the condition of Theorem 2 by selectliig (or A)
uniformly at random, and the condition of Theorem 2 would b\ﬁi
proven with probability one if true. However, finite precisi
computations will limit the practical applicability of shican
approach, although symbolic computations could poténtia

In the following, we provide a proof of Lemma 1, starting
th the upper bound in (26) and then establishing the lower
bound in (27). To this end, note that the length of tite
Isemi-axis of€, denotede;, is given by

be a way to test a specific code design. 0. & 3
" ouD)’
VI. CONCLUSION Let C; be the smallest orthotope (box), aligned with and

The work applies as an analytical tool in communicatiocontaining &, i.e., C; is an orthotope with side lengths
settings where rate, reliability and computational comipye (cf. Fig. 4). LetC, be a hypercube with side-length/nn,
are principal intertwined concerns. In this setting, therkvo centered at the origin and aligned with (cf. Fig. 4). As the
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diagonal of3 is 2y/nn it follows thatB  C,, regardless of the decoder contains close 16") nodes with a probability that
orientation ofC,. LetCs be given byC; = C;NC2 and note that is large with respect to the probability of decoding error
ENBCC3asE C CpandB C Cy. AsCy andCs are aligned, P (X # X) = p~4),
it follows that Cs is also an orthotope. Ldf, ..., [, denote  To this end, letH"H = UAU" be the eigenvalue
the side-lengths of; and note that; < min(e;, 2v/nn). decomposition off'' H, where

As noted in Section IV the number of integer lattice points n - -
in a set may be approximated by its volume. This notion can be A =Diag(M(H"H), ..., \n (H"H))

made precise by noting that for any (bounded and measurallgy /57 — 1. Let U, denote the lasp2 nr — ¢ columns

setC C R™ it follows that of U (corresponding to thg largest eigenvalues) and lat=
Vol(€) = [ 12" e+ uldu (53) {0355 N sonaston the sat of sonctens (or Gventa) give
where by
Us[-33" DM E{al—2W<a;<al—6,i=1,...4q,
denotes the unit cube R", i.e., the volume of the set equals O<a;<é,i=q+1,....,n1}, (55a)

the average number of integer points in the set when pedurbe .
by a uniform random perturbation over the unit cube [27]. LdP" SOme given (smally > 0,

C_4 be the orthotope, aligne_zd with and centerec_i arc_cmdvith QW 2{o((Ir® UE)GIP) >}, (55b)
side lengthd; + /n (cf. Fig. 4). By construction, it follows
that for some giveru > 0,
C3CCi+u
o Q3 2{|Q"w|| <1}, (55¢)
for anyu € U. It therefore follows by (53) that and
n Sy 1
csnzn| < volcy) =[] [Va+1] a=llsl = 3m}- (55d)
=1 Note also that by choosing sufficiently small, we may
where 5 without loss of generality assume tHat implies thata; > 0
ligmin<—€’2\/ﬁn)_ foralli=1,...,n.
oi(D) The following proof is structured as follows: First, in
As £ N B C C3 the upper bound in (26) follows. Sections B-A and B-B, it is established that (55) represent

In order to establish the lower bound in (27) we magufficient conditions for the number of nodé§; visited in
redefineC; to be the orthotope, aligned with the semiaxd@yerk = ¢T" to be close tg°"). Then, in Section B-C, it is

of £ and with the same center, having side-lengths established that the set of conditions in (55) are simutiasky
2 satisfied with a probability that is large with respect to the
b; = m , probability of error.
for i =1,...,n. Now, by constructior®; C £ which implies

that|C1NZ™| < |ENZ™|. LetC2 be another orthotope, aIignedA' The Constellation boundary
with C; and with side-lengthsiax(b; —/n, 0). It follows that ~ We begin by proving that, given (55), the constellation

Co+u C C; for anyu € U, whereld = [_%, %]n denotes the bou_ndary may be ignorgd, i.e., thd} may be rgplaced by
unit cube. By reasoning similar to what is used in the proéf. in (16) without changing the result, thus making the lower
of the upper bound (cf. (53)) it follows that bound (27) in Lemma 1 applicable. To this end, 3gtc S*_
n be an arbitrary point in the-dimensional infinite constellation
|ENZ™| > vol(Ca) = Hmax(bi —/n,0), (i.e., the Gaussian integer lattice) and assume dhaatisfies
i the sphere constraint at laykri.e.
which establish the lower bound in (27). v — Ridil| < €.
APPENDIX B Note thatr, = Rjs; + vi, wWhere s, denotes the last
PROOF OFLEMMA 2 components of the transmitted symbol vectore S; and
A ~H
Let o = (af,...,a%.) be an optimal point of (45) and \f/vrI}ere v;F] denotes the lask components ofv = Q" w. It
let ¢ be the largest integer for which (cf. (45a)) oflows that
L _14ar>o0. (54) [rk — R8skl = [ Ri(sk — 8&) + vl
v > o1 (R)||8k — sill = llokl|
It follows thata; > 0 for i = 1,...,¢ and we may without

loss of generality assume that < 1 fori =1,...,nr as which implies that

the objective in (45) does not increasecdn beyonda; = 1.
The goal will be to show that layet = ¢T' of the sphere

(€ + llvll)

5 — s || <
(E S’“”—al(Rk)
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and where = denotes the partial ordering induced by the positive

(56) semidefinite cone it follows that

MM, = °\ 1 (H'H)GJ) (I7 @ U, UG,

[[8%]| < €+ lvkll) + llskll -

1
o1(Ry)
By the interlacing property of singular values (cf. (29)) it
further follows that Considering the smallest eigenvalue bf M, yields

M (M M) > 6°X 1 (HYH)M (G (I7 @ U,UY)G )

where we recall that = pz~ %+ is the power scaling and and for the smallest singular value
v = 01(G) > 0, and where the last inequality is implied by

(55a) anda* < 1. As ¢ = p° and ||| < [|Q"w]| < 1 by
(55c) it follows that

1 . 7‘T716
e — + ||lv S 2k 29
RS

rT 1 rT

o1(Ry) > Oy (H) = p3 =575 > psd=5

0'1(M1) Z U90q+1(H) = y (59)

where the first inequality follows by (55b) and the last in-
equality follows by (55a) together with = p%*% and as

u > 0 is fixed (independent of). Further,

By (56), (55d),|/sx|| < ||s|| < n and sincepss —2° < In, it oi(M) = 0o;(Ir ® H)G) < 0o, .;(H)

foll that
oflows tha 18]l < WhereFéamaX(G) = 0,(@G), and it follows from (55a) that
k|l >

it W
given thatp is sufficiently large. This implies that, € SE. oi(M)<pz 2 2%r® (60)
Thus, any integer point that satisfies the sphere constraist for ; — 1,... ¢7. Asa* > 0 fori = 1,...,q, it follows

also belong to the constellation, and we can proceed usifig (By comparing (59) and (60) that;(M) < o(M;) for
to lower bound the complexity. i =1,...,qT, given thaté is sufficiently small and thap
is sufficiently large, making Lemma 3 applicable for= ¢T'.

B. Singular value bounds For the maximal singular value d¥Z we have (cf. (59))

We proceed to provide bounds on the singular valueR pf
in order to lower bound the number of nodes visited in layer ) ) . )
k = qT. However, as stated previously the interlacing theoref¥€re the last inequality follows as,. > 0. Combined with
is, unlike in the derivation of the upper bound, not suffitier{>9) it follows that

1_rd 1 T

§p2 2k 2% Sp%_ﬁ

o (M)

proven in Appendix C.

for our purposes. Instead, we consider the following lemma, {

y
+ 1] <pz?,
o1(My) } P

Lemma 3:Let A € C™*", m > n be an arbitrary matrix anq from (58) and (60) that

and QR = A be the QR decomposition oA. Partition A,
Q@ and R according to

Ry

4 )=l @) [ R

Ry

where A; € C™*"~* and Ry, € C**%, Then, assuming that

0i(A) < o1(Ay) fori=1,... k, it holds that

on(A)
g1 (Al)

+1

Applied to the effective channel matrix it follows that

o (M)
0'1(M1)

where M, contains the firspT columns § = nt — ¢q) of
M, assuming that;(M) < o1(M) as will be shown for
1 =1,...,¢T later. In order to lower bound; (M) note
that

oi(M) (58)

oi(Ry) < [ 1 1:

M, =0(Ir®» H)G,,,
whereG |, denotes the firspT" columns ofG and
MM, =0°G,(Ir ® H"H)G|, .

As
H"H = A\, (H"H)U,U,

fori=1,...,¢T. Consequently (cf. (27)),
2& CorTlax 1 3g
> @ 2k T2%p ()T 272 , 61
Vokoi(Ry) " (61)

given thaté is sufficiently small. Further, as

rT 1 1 1/
B 300 3 =3 (3 -1+ 0o
fori =1,...,k wherek = 2¢T by the condition foiy in (54),
it follows that the lower bound in (61) tends to infinity with
increasingp provided thaty is small, and we may conclude
that
2€

V2koi(Ry,)

where the last inequality holds, again, providet small.

Combining (27) in Lemma 1 and (62), and making the real
valued expansion as we did for Theorem 2, yields a lower
bound on the number of nodes visited by the sphere decoder
in layer k = ¢T given by

2
- \/2k] Sp R0 S 0 (62)

k
S | (63)
=1
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b rT
A *
’U:;?—FOLLT(Z-) 1
i T
_ZT(—+Q;—1). (64)
nr

By noting that

T T
0< —+af—1<—
nr nr

for ¢« = 1,...,q by the assumption that; < 0 and the
definition of ¢, it follows that
T T T +
T(—+a:—1)—Tmin<——1+af,—) (65)
nr nr nr

fori=1,...,q. Further, as

L tar—1<0
nr

for i > ¢, also by the definition of;, the right hand side of
(65) is equal ta) for i > ¢. Thus, it follows that

(

where the last equality follows due to the optimality@f in
(45), and we then obtain from (63) that

nr

v = ZTmin

=1

T T +
T )
nr nr

e(r)

N = Ny 2 p" 075,

given thatp is sufficiently large and that > 0 is small.
However, asé > 0 can be chosen arbitrarily small it is

concluded that (55) represents sufficient conditions undd
which the number of nodes visited is arbitrarily close to th

upper bound op®(") given by Theorem 2.

C. Probabilities
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be shown thafP (€2,) converges to a strictly positive lindit
and that therefor® (Q4) = p°. It follows that

P(N > pé(r)fb’ké) ZP (Ql) )

The probability of2; may again be assessed by using large
deviation techniques as in [5]. In particular, it is notedttthe
condition imposed by, (cf. (55a)) specifies an open set of
admissiblea.. Applying (38) and (40) yields

logP (Q1) _ _
Y 42— 1)(aF —2
Jim ogp = i:1(nR nt +2i — 1)(a} J)
<d(r) —2(nr —nr +q)gé < d(r),

(66)

where the second inequality follows from (45b) and the

feasibility of a*, and wherei(r) is the diversity of the code.

Thus,

10gP(N > pé(r)fb’ké)
log p

By the definition of the complexity exponeatr) (cf. (21)) it
follows by (67) thate(r) > &(r) —3k§. As the bound holds for
arbitrarily small§ > 0, it follows thate(r) = &(r), establishing
the tightness of (45) and Lemma 2.

— lim

p—00

<d(r). (67)

D. The extension to adaptive radius updates

The derivation above make the assumption that the search
radius¢ is a non-random function of that satisfiest = p°.
It is thus natural to ask if the SD complexity exponent could
be potentially be improved by choosirtgadaptively based
on the problem datdd andY, as is done when using, e.g.,
the Schnorr-Euchner SD algorithm implementation [2], [3].
pwever, we shall end this appendix by arguing that it can
Rot, and therefore that the assumption of a non-adaptivesad
is made without loss of generality. The argument is simitar t
the one in [10].

The reason that adaptively choosiggcannot reduce the
complexity exponent is that even § is adaptively chosen,

We now turn to the probability that the conditions impose@ cannot be chosen smaller than the distance to the closest

by (55) are simultaneously satisfied. The events in (55)
independert As (55) imply N > p(") =2k it follows that

P (N > pé(r)—?»ké) > ﬁp (),
i=1

given thatp is sufficiently large.

¢adeword, i.e., the (square root of the) minimum metric in

arg

(13), if we wish find any codewords in the search. As was
already argued in Section IlI-B, the distance to ttasmitted
codeword is always|Q"w| and P(||Q"w]|| > ¢) can be
made arbitrarily close to one by appropriately choosing0.
Consequently, whenever the transmitted codewardithe ML
decision, i.e., yields the minimum metric in (13), we could

The assumption made in Lemma 2, i.e., condition (48yse > e wheree = p° as an (arbitrarily likely) probabilistic

guarantees that

o (I®@U)G,) >0

for someU,. However, by the continuity of singular valueﬁh

[21] it follows for sufficiently smallu > 0 (cf. (55b)) that
P (Q2) > 0, which impliesP (Q) = p° as(, is independent
of p. The same is true fofs, i.e., P (Q3) = p°. It may also

8The independence &¢t; and2; follows by the i.i.d. Rayleigh assumption
on H, which make the eigenvalues and eigenvectordBf H independent
[38].

lower bound on an adaptive search radfus1 the proof of
the lower bounds on the complexity (e.g., in (62)) and obtain
the same SNR exponents in these bounds.

Thus, to complete the argument we must only rule out
e possibility that the probability that yields the minimum
metric in (13) under the conditions &t imposed in (55) is
small, as the lower bound is derived explicitly unéerTo this

9This is provided that > 0 in which case the the subset of the constellation
defined by$24 contains an asymptotically deterministic and strictly ifyos
fraction of the full constellation, cf. the proof of Lemmarl[B]. Whenr = 0
the statement thai(r) is tight is trivial as¢(0) = 0.
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end, assume that it is false, i.e., tHatsyy, # s|Q2) > € for Theorem 9 (Stewart)For B,C € CP*9 such that
any (fixed and SNR independent)> 0. In this case we could rank(B) = rank(C),
lower bound the probability of the ML decoder according to )
(ct. 66) T — TS| < min(| B[, [CT)[B-C.  (69)
C dlr where ()T denotes the Moore-Penrose pseudo inverse [21].
P(suL # 8) > P(swr # s|Q)P () > €P () > p~ 1), By n(o)ting that P [21]
which would violate the definition ofi(r) as the diversity B A — Al — o
order of the ML decoder. Consequently, at sufficiently high 14— Al < JlA - All = 0:(4), (70)
SNR it must hold thaP(syr, = s|Q?) > 1 — € for anye > 0. for [ = 1,2 and using the assumption thaf(A;) > o0;(A)
We can thus choose> 0 such that, undef, it follows that it follows by Theorem 8 that
smrL = s and ||Q"w]|| > e with arbitrary high probability,
implying that&yr, > € whereé2,; is the minimum metric in 7! (41) 2 01(A1) = [[ A1 = Ay | 2 01(A1) — 05(A) > 0
(13). In other words, there is some> 0 for which implying that A, is full rank. As o1(A;) > 0 is directly
C_d(r) implied by 01(A1) > o0,(A) it follows that rank(A,) =
POU LG = e})>p ' rank(A, ) which makes Theorem 9 applicablelib; —TT}; .
Completing the proof of Lemma 2 with= p° in place of¢ (as  As
¢ > &un > e throughout the search) proves thét) = ¢(r) S -
under (48) also if we allow for SD implementations that adap- P-P= HAI A, FA142
tively update choose and update the search radignally, it = (I, —II4 )A, + Iy (A — Ay)
should be noted that what is shown here is not that adaptiv'ﬁ%llows that
choosing the search radius cannot reduce complexity — & doe
— but only that this reduction is not significant enough to ||[P — P|| < | Al[|]|A; — A, ||| A, ] + || A2 — A,

reduce the complexity exponent. where we used Theorem 9 and the fact th@C||

<
|IBlIC|| and [TI5| < 1 [21]. By noting that||A]| =
<

APPENDIXC 1/01(A1), that | A, || < |A|| = 0n(A), that||A; — A, ||
P L 3 . !
ROOF OFLEMMA o:(A) and that]| Ay — A, || < 0;(A) (cf. (70)), it follows that
Consider the matrixA, given by on(A)
2| 9n 1| 0;(A) > |P - P|. 71
A2UZV, [cn(Al) ’ }”( e

where X = Diag(0,...,0,0:41(A),...,0n(A)), and where BY again applying Theorem 8 to (71) it follows thaf(P) <
U and V denote the right and left singular vector of ©i(P) + . Note however that

respectively. Partitiomd € C™*™ according to rank(A) = rank(A, ) + rank(P)
A=[A, A)] where P2TI4 A, € C™**. Asrank(A,) = n—k and
where A, € Cmxn—k and A, € cmxk. rank(A) <n — i it follows that
By the nature of the QR decomposition, it holds that rank(P) < k — i
P2TI, Ay = Q,Ry, ando;(P) = 0. Thus,o;(R2) = 0;(P) < 11 establishing the

wherel‘[j1 denotes the projection onto the orthogonal Conl1(_amma.

plement of the range ofd; (i.e. the nullspace ofAIf).

Additionally, let APPENDIXD

P PROOF OFTHEOREM7

P=1II4 A,. .
= Let X be the un-normalized extended codebook correspond-

As Q, is a unitary matrix it follows that ing to the un-normalized lattice point&'S.., i.e., where

oi(Raz) = :(P). X C #X. A space-time code is said to satisfy the non-
! ! vanishing determinant (NVD) condition if (cf. [24])

In what follows, we will consider the singular values Bfin .

order to establish the lemma. To this end, we will make use glen&f\o X[>0. (72)

of two results due to Weyl and Stewart. For a modern proPE

of Theorem 8, see e.g. [21, Corollary 7.3.8]. The statement j

Theorem 9 follows by combining [39, Theorem 2.3] and [3

Theorem 2.4]. In the following|| B|| = omax(B) denotes the

if there are non-zero un-normalized codewords with
érbitrarily small determinants. The proof of the theoremves
S}rom the well known fact that the NVD condition is a
. necessary condition for achieving approximate univergali
spectral matrix norm. ) . and divides the problem into a few (exhaustive) cases where
Theorem 8 (Weyl)For arbitraryB, C € CP*4 it holds that either the condition in Lemma 2 is shown to hold, or the
lo:(B) —0s(C)| < |B—-C||. (68) NVD property is shown to be violated, thus eliminating the
possibility of NVD codes that would violate the rank conaiiti
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in Lemma 2. To this end, consider a partitioning of the 4 B. Case b

generator matrix according to WhenG,; andG.; are full rank we can always find a vec-

G G111 Gy tor w such thatu™G,; andu™ G5, are linearly independent
T |Ga1 Goo (thus satisfying the condition of Lemma 2) unle&§; and

. Gy are linearly dependent, i.e., whéh; = aG2, for some
.. 2x2 . ) [} )

WhereG”_e_ C. F_:|r§t of all, I.Et us note that the case \(vher% € C. However, in this case we have th@t1s; = aGa1s1

p = 2 is trivially satisfied asz is full rank, i.e., the matrix

for any s; which implies that the columns oX are linearly
(I, ® Ugl)G dependent, and the rank &f is zero. This concludes case b.

is full rank for any unitaryU, € C?*2. We can thus restrict
attention to the case gf = 1 and consider the rank of C. Case c

wHGyy 22 23 In this case we may assume th@t; = biall hgs rank
ul Gy € (73)  one andG,; has rank two (the opposite case is handled

- equivalently). Here, as both the setwffor which ub; = 0
whereu = U; € C***. In the cases where the NVD propertyynq whereu'Gy, is linearly dependent of!! have zero

is shown to not hold, it is sufficient to consider non-zerg,easure. we may picke such thatu'd, # 0 and such

(I, @ u")G|, = [

(unnormalized) codewords of the form thatuf Gy, is linearly independent oi!!, thus satisfying the

G Guiz| [s1 conditions of Lemma 2. Actually, case c is not that interesti
=7 [G21 GQJ [32] in the first place as one can easily show that in this case the
) code cannot satisfy the NVD condition either. Anyhow, this

wheres; € S5, ands; # 0, and wheres, = 0. The .,h0 des the proof of Theorem 7.
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