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Abstract—In this paper, we study the sum rate performance of
zero-forcing (ZF) and regularized ZF (RZF) precoding in large
MISO broadcast systems under the assumptions of imperfect
channel state information at the transmitter and per-user channel
transmit correlation. Our analysis assumes that the number
of transmit antennas M and the number of single-antenna
users K are large while their ratio remains bounded. We
derive deterministic approximations of the empirical signal-to-
interference plus noise ratio (SINR) at the receivers, which are
tight as M,K → ∞. In the course of this derivation, the per-user
channel correlation model requires the development of a novel
deterministic equivalent of the empirical Stieltjes transform of
large dimensional random matrices with generalized variance
profile. The deterministic SINR approximations enable us to
solve various practical optimization problems. Under sum rate
maximization, we derive (i) for RZF the optimal regularization
parameter, (ii) for ZF the optimal number of users, (iii) for
ZF and RZF the optimal power allocation scheme and (iv)
the optimal amount of feedback in large FDD/TDD multi-user
systems. Numerical simulations suggest that the deterministic
approximations are accurate even for small M,K.

Index Terms—Broadcast channel, linear precoding, limited
feedback, multi-user systems, random matrix theory.

I. INTRODUCTION

THE pioneering work in [1] and [2] revealed that the
capacity of a point-to-point (single-user (SU)) multiple-

input multiple-output (MIMO) channel can potentially in-
crease linearly with the number of antennas. However, practi-
cal implementations quickly demonstrated that in most propa-
gation environments the promised capacity gain of SU-MIMO
is unachievable due to antenna correlation and line-of-sight
components [3]. In a multi-user (MU) scenario, the inherent
problems of SU-MIMO transmission can largely be overcome
by exploiting multi-user diversity, i.e., sharing the spatial
dimension not only between the antennas of a single receiver,
but among multiple (non-cooperative) users. The underlying
channel for MU-MIMO transmission is referred to as the
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MIMO broadcast channel (BC) or MU downlink channel. Al-
though much more robust to channel correlation, the MIMO-
BC suffers from inter-user interference at the receivers which
can only be efficiently mitigated by appropriate (i.e., channel-
aware) pre-processing at the transmitter.

It has been proved that dirty-paper coding (DPC) is a
capacity achieving precoding strategy for the Gaussian MIMO-
BC [4]–[8]. However, the DPC precoder is non-linear and to
this day too complex to be implemented efficiently in practical
systems. It has been shown in [4], [9]–[11], that suboptimal
linear precoders can achieve a large portion of the BC rate
region while featuring low computational complexity. Thus,
a lot of research has recently focused on linear precoding
strategies.

In general, the rate maximizing linear precoder has no
explicit form. Several iterative algorithms have been proposed
in [12], [13], but no global convergence has been proved.
Still, these iterative algorithms have a high computational
complexity which motivates the use of further suboptimal
linear transmit filters (i.e., precoders), by imposing more
structure into the filter design. A straightforward technique
is to precode by the inverse of the channel. This scheme is
referred to as channel inversion or zero-forcing (ZF) [4].

Although [9], [12], [13] assume perfect channel state in-
formation at the transmitter (CSIT) to determine theoretically
optimal performance, this assumption is untenable in practice.
It is indeed a particularly strong assumption, since the per-
formance of all precoding strategies is crucially depending
on the CSIT quality. In practical systems, the transmitter
has to acquire the channel state information (CSI) of the
downlink channel by feedback signaling from the uplink. Since
in practice the channel coherence time is finite, the information
of the instantaneous channel state is inherently incomplete. For
this reason, a lot of research has been carried out to understand
the impact of imperfect CSIT on the system behavior, see [14]
for a recent survey.

In this contribution, we focus on the multiple-input single-
output (MISO) BC, where a central transmitter equipped
with M antennas communicates with K single-antenna non-
cooperative receivers. We assume M ≥ K, i.e., we do not
account for user scheduling, and consider ZF and regularized
ZF (RZF) precoding under imperfect CSIT (modeled as a
weighted sum of the true channel plus independent noise) as
well as per-user channel correlation, i.e., the vector channel
hk ∈ CM of user k (k = 1, . . . ,K) satisfies E[hk] = 0
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and E[hkh
H
k ] = Θk. To obtain insights into the system

behavior, we approximate the signal-to-interference plus noise
ratio (SINR) by a deterministic quantity, where the novelty of
this study lies in the large system approach. More precisely,
we approximate the SINR γk of user k by a deterministic
equivalent γ◦k such that γk−γ◦k → 0 almost surely, as the sys-
tem dimensions M and K go jointly to infinity with bounded
ratio 1 ≤ limM,K→∞

M
K = β <∞. Hence, γ◦k becomes more

accurate for increasing M,K. To derive γ◦k , we apply tools
from the well-established field of large dimensional random
matrix theory (RMT) [15], [16]. Previous work considered
SINR approximations based on bounds on the average (with
respect to the random channels hk) SINR. The deterministic
equivalent γ◦k is not a bound but is a tight approximation,
for asymptotically large M,K. Furthermore, the RMT tools
allow us to consider advanced channel models like the per-
user correlation model, which are usually extremely difficult
to study exactly for finite dimensions. Interestingly, simula-
tions suggest that γ◦k is very accurate even for small system
dimension, e.g., M = K = 16. Currently, the 3GPP LTE-
Advanced standard [17] already defines up to M = 8 transmit
antennas further motivating the application of large system
approximations to characterize the performance of wireless
communication systems. Subsequently, we apply these SINR
approximations to various practical optimization problems.

A. Related Literature

To the best of the authors’ knowledge, Hochwald et al.
[18] were the first to carry out a large system analysis with
M,K → ∞ and finite ratio for linear precoding under the
notion of “channel hardening”. In particular, they considered
ZF precoding, called channel inversion (CI), for M > K
under perfect CSIT, and showed that the SINR for independent
and identical distributed (i.i.d.) Gaussian channels converges
to ρ(β − 1), where ρ is the signal-to-noise ratio (SNR),
independent of the applied power normalization strategy. They
go on to derive the sum rate maximizing system loading β?◦

for a fixed M . Their results are a special case of our analysis
in Section III-B and Section V-A. The authors in [18] conclude
by showing that for β > 1, ZF achieves a large fraction of the
linear (with respect to K) sum rate growth. The work in [9]
extends the analysis in [18] to the case M = K and shows
that the sum rate of ZF is constant in M as M,K → ∞,
i.e., the linear sum rate growth is lost. The authors in [9]
counter this problem by introducing a regularization parameter
α in the inverse of the channel matrix. Under the assump-
tion of large M,K, perfect CSIT and for any rotationally-
invariant channel distribution, [9] derives the regularization
parameter α = α?◦ = 1

βρ that maximizes the SINR. Note
here that [9] does not apply the classic tools from large
dimensional RMT to derive their results but rather find the
solution by applying various expectations and approximations.
In the present contribution, the RZF precoder of [9] is referred
to as channel distortion-unaware RZF (RZF-CDU) precoder,
since its design assumes perfect CSIT, although in practice,
the available CSIT is erroneous or distorted. It has been
observed in [9] that the RZF-CDU precoder is very similar

to the transmit filter derived under the minimum mean square
error (MMSE) criterion [19] and both become identical in the
large M,K limit. Likewise, we will observe some similarities
between RZF and MMSE filters when considering imperfect
CSIT. The RZF precoder in [9] has been extended in [20]
to account for channel quantization feedback under random
vector quantization (RVQ). The authors in [20] do not apply
tools from large RMT but use the same techniques as in [9] and
obtain different results for the optimal regularization parameter
and SINR compared to our results in Section VI.

The first work applying tools from large RMT to derive the
asymptotic SINR under ZF and RZF precoding for correlated
channels was [21]. However, in [21] the regularization param-
eter of the considered RZF precoder was set to fulfill the total
average power constraint. Similar work [22] was published
later, where the authors considered the RZF precoder in [9]
and derived the asymptotic SINR for uncorrelated Gaussian
channels. Moreover, they derived the asymptotically optimal
regularization parameter α?◦ = 1

βρ , already derived in [9],
which is a special case of the result derived in Section IV.
Another work [23], reproducing our results, noticed that the
optimal regularization parameter in [9], [22] is independent of
transmit correlation when the channel correlation is identical
for all users.

In the large system limit and for channels with i.i.d. entries,
the cross correlations between the user channels, and therefore
the users’ SINRs, are identical. It has been shown in [24] that
for this symmetric case and equal noise variances, the SINR
maximizing precoder is of closed form and coincides with
the RZF precoder. Recently, the authors in [25] claimed that
indeed the RZF precoder structure emerges as the optimal pre-
coding solution for M,K → ∞. This asymptotic optimality
further motivates a detailed analysis of the RZF precoder for
large system dimensions.

B. Contributions of the Present Work

In this paper, we provide a concise framework that directly
extends and generalizes the results in [9], [18], [22], [23], [26]
by accounting for per-user correlation and imperfect CSIT.
Furthermore, we apply our SINR approximations to several
limited-feedback scenarios that have been previously analyzed
by applying bounds on the ergodic rate of finite dimensional
systems. Our main contributions are summarized as follows:
• Motivated by the channel model, we derive a deter-

ministic equivalent of the empirical Stieltjes transform
of matrices with generalized variance profile, thereby
extending the results in [27], [28].

• We propose deterministic equivalents for the SINR of
ZF (β > 1) and RZF (β ≥ 1) precoding under im-
perfect CSIT and channel with per-user correlation, i.e.,
deterministic approximations of the SINR, which are
independent of the individual channel realizations, and
(almost surely) exact as M,K →∞.

• Under imperfect CSIT and common correlation (Θk =
Θ ∀k), we derive the sum rate maximizing RZF pre-
coder called channel-distortion aware RZF (RZF-CDA)
precoder.
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• For ZF and RZF, under common correlation and different
CSIT qualities, we derive the optimal power allocation
scheme which is the solution of a water-filling algorithm.

For uncorrelated channels, we obtain the following results:
• Under ZF precoding and imperfect CSIT, a closed-form

approximate solution of the number of users K maximiz-
ing the sum rate per transmit antenna for a fixed M .

• In large frequency-division duplex (FDD) systems, under
RVQ, for β=1 and high SNR ρ, to exactly maintain an
instantaneous per-user rate gap of log2 b bits/s/Hz, almost
surely as M,K →∞, the number of feedback bits B per
user has to scale with
– RZF-CDA: B=(M−1) log2 ρ−(M−1) log2(b2−1)
– RZF-CDU/ZF: B=(M−1) log2 ρ−(M−1) log2 2(b−1)

That is, the RZF-CDA precoder requires (M−1) log2
b+1

2
bits less than RZF-CDU and ZF.

• In large time-division duplex (TDD) systems with chan-
nel coherence interval T , at high uplink SNR and down-
link SNR ρdl, the sum rate maximizing amount of channel
training scales as

√
T and 1/

√
log(ρdl) for a fixed

ρdl and T , respectively under both RZF-CDA and ZF
precoding.

The remainder of the paper is organized as follows. Section
II presents the transmission model and channel model. In
Section III, we propose deterministic equivalents for the SINR
of RZF and ZF precoding. In Section IV, we derive the sum
rate maximizing regularization under RZF precoding. Section
V studies the sum rate maximizing number of users for ZF
precoding and the optimal power allocation when the CSIT
quality of the users is unequal. Section VI analyses the optimal
amount of feedback in a large FDD system. In Section VII, we
study a large TDD system and derive the optimal amount of
uplink channel training. Finally, in Section VIII, we summarize
our results and conclude the paper.

Most technical poofs are presented in the appendix. In these
proofs, we apply several lemmas collected in Appendix VI.

Notation: In the following, boldface lower-case and upper-
case characters denote vectors and matrices, respectively. The
operators (·)H, tr(·) and E[·] denote conjugate transpose, trace
and expectation, respectively. The N ×N identity matrix is
denoted IN , log(·) is the natural logarithm and =(z) is the
imaginary part of z ∈ C. ‖X‖ and λmin(X) are the spectral
radius and the minimum eigenvalue of the Hermitian matrix X,
respectively. The imaginary unit is denoted i. The sets R+ and
C+ are defined as {x : x > 0} and {x= r + iv : r∈R, v >
0}. A random vector x ∼ CN (m,Θ) is complex Gaussian
distributed with mean vector m and covariance matrix Θ.

II. SYSTEM MODEL

This section describes the transmission model as well as the
underlying channel model.

A. Transmission Model

Consider a MISO broadcast channel composed of a central
transmitter equipped with M antennas and of K single-
antenna non-cooperative receivers. We assume M ≥ K, thus

user scheduling is not taken into account. Furthermore, we
suppose narrow-band transmission. The signal yk received by
user k at any time instant reads

yk = hH
kx + nk, k = 1, 2, . . . ,K,

where hk ∈ CM is the random channel from the transmitter
to user k, x∈CM is the transmit vector and the noise terms
nk ∼ CN (0, σ2) are independent. We assume that the channel
hk evolves according to a block-fading model, i.e., the channel
is constant at every time instant but varies independently from
one time instant to another.

The transmit vector x is a linear combination of the inde-
pendent user symbols sk and can be written as

x =

K∑
k=1

√
pkgksk,

where gk ∈CM and pk ≥ 0 are the precoding vector and the
signal power of user k, respectively. Subsequently, we assume
that user k has perfect knowledge of hk and the effective
channel hH

kgk. In particular, an estimate of hH
kgk can be

obtained through dedicated downlink training by precoding the
pilots of user k by gk. The precoding vectors are normalized
to satisfy the average total power constraint

E[‖x‖2] = tr(PGHG) ≤ P, (1)

where G, [g1,g2, . . . ,gK ]∈CM×K , P = diag(p1, . . . , pK)
and P > 0 is the total available transmit power.

Denote ρ,P/σ2 the SNR. Under the assumption of Gaus-
sian signaling, i.e., sk ∼ CN (0, 1) and single-user decoding
with perfect channel state information at the receivers, the
SINR γk of user k is defined as [29]

γk =
pk|hH

kgk|2
K∑

j=1,j 6=k

pj |hH
kgj |2 + σ2

. (2)

The rate Rk of user k is given by

Rk = log (1 + γk) (3)

and the ergodic sum rate Rsum is defined as

Rsum =

K∑
k=1

E [Rk] , (4)

where the expectation is taken over the random channels hk.

B. Channel Model

Each user channel hk is modeled as

hk =
√
MΘ

1/2
k zk, (5)

where Θk is the channel correlation matrix of user k and zk
has i.i.d. complex entries of zero mean and variance 1/M . The
channel transmit correlation matrices Θk are assumed to be
slowly varying compared to the channel coherence time and
thus are supposed to be perfectly known to the transmitter,
whereas receiver k has only knowledge about Θk. Moreover,
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only an imperfect estimate ĥk of the true channel hk is
available at the transmitter which is modeled as [30]–[33]

ĥk =
√
MΘ

1/2
k

(√
1− τ2

kzk + τkqk

)
=
√
MΘ

1/2
k ẑk, (6)

where ẑk =
√

1− τ2
kzk + τkqk, qk has i.i.d. entries of

zero mean and variance 1/M independent of zk and nk. The
parameter τk ∈ [0, 1] reflects the accuracy or quality of the
channel estimate ĥk, i.e., τk = 0 corresponds to perfect CSIT,
whereas for τk = 1 the CSIT is completely uncorrelated to
the true channel. The variation in the accuracy of the avail-
able CSIT ĥk between the different user channels hk arises
naturally. Firstly, there might be low mobility users and high
mobility users with large or small channel coherence intervals,
respectively. Therefore, the CSIT of the high mobility users
will be outdated quickly and hence be very inaccurate. On
the other hand, the CSIT of the low mobility users remains
accurate since their channel does not change significantly
from the time of the channel estimation until the time of
precoding and coherent data transmission. Secondly, different
CSIT qualities arise when the feedback rate varies among
the users. For instance, if the CSIT is obtained from uplink
training, the training length of each user could be different,
leading to different channel estimation errors at the transmitter.
Similarly, if the users feed back a quantized channel, they
could use channel quantization codebooks of different sizes
depending on their channel quality and the available uplink
resources. However, for simplicity, we assume identical CSIT
qualities τk = τ ∀k for the optimization problems considered
in Section VI and Section VII.

Remark 1: The model for imperfect CSIT in (6), is ade-
quate for instance in a FDD system, where the channel hk
is finely quantized using a random codebook of i.i.d. vectors.
Since the correlation matrices Θk are known at both ends,
user k solely quantizes the fast fading channel component zk
to the closest codebook vector ẑk, which can be accurately
approximated as ẑk =

√
1− τ2

kzk + τkqk. Subsequently,
the user sends the codebook index back to the transmitter,
where the estimated downlink channel is reconstructed by
multiplying with

√
MΘ

1/2
k . For uncorrelated channels, this

specific FDD system is studied in Section VI.
Define the compound estimated channel matrix Ĥ ,

[ĥ1, ĥ2, . . . , ĥK ]H ∈ CK×M . Therefore, the matrix 1
M ĤHĤ

can be written as

1

M
ĤHĤ =

K∑
k=1

Θ
1/2
k ẑkẑ

H
kΘ

1/2
k . (7)

The per-user channel correlation model (also called gen-
eralized variance profile) is very general and encompasses
various propagation environments. For instance, all channel
coefficients hk,i of the vector channel hk may have dif-
ferent variances σ2

k,i resulting from different attenuation of
the signal while traveling to the receivers. This so called
variance profile of the vector channel is obtained by setting
Θk = diag(σ2

k,1, σ
2
k,2, . . . , σ

2
k,M ), see [27], [28], [34]. An-

other possible scenario consists of an environment where all
user channels have identical transmit correlation Θ, but where

the users are heterogeneously scattered around the transmitter
and hence experience different channel gains dk. Such a setup
can be modeled with Θk = dkΘ. From a mathematical point
of view, a homogeneous system with common user channel
correlation Θk = Θ ∀k is very attractive. In this case, the
user channels are statistically equivalent and the deterministic
SINR approximations can be computed by solving a single
implicit equation instead of multiple systems of coupled
implicit equations. A further simplification occurs when the
channels are uncorrelated Θk = IM ∀k, in which case the
approximated SINRs are given explicitly.

The model in (7) has never been considered in large
dimensional RMT and therefore no results are available. The
most general model studied, assumes a variance profile, first
treated in [27] and extended in [28], which is a special case of
the model in (7). Therefore, to be able to derive deterministic
equivalents of the SINR, we need to extend the results in [27],
[28] to account for the per-user correlation model in (7), which
is done in the next section.

III. A DETERMINISTIC EQUIVALENT OF THE SINR

This section introduces deterministic approximations of the
SINR under RZF and ZF precoding for various assumptions
on the transmit correlation matrices Θk. These results will
be used in Sections IV-VII to solve practical optimization
problems.

The following theorem extends the results in [27], [28], [35]
by assuming a generalized variance profile. This theorem is
required to cope with the channel model in (5) and forms the
mathematical basis of the subsequent large system analysis of
the MISO BC under RZF and ZF precoding.

Theorem 1: Let BN = XH
NXN + SN with SN ∈ CN×N

Hermitian nonnegative definite and XN ∈ Cn×N random.
The ith column xi of XH

N is xi = Ψiyi, where the entries
of yi ∈ Cri are i.i.d. of zero mean, variance 1/N and
have eighth order moment of order O

(
1
N4

)
. The matri-

ces Ψi ∈ CN×ri are deterministic. Furthermore, let Θi =
ΨiΨ

H
i ∈ CN×N and define QN ∈ CN×N deterministic.

Assume lim supN→∞ sup1≤i≤n ‖Θi‖ <∞ and let QN have
uniformly bounded spectral norm (with respect to N ). Define

mBN ,QN
(z) ,

1

N
trQN (BN − zIN )

−1
. (8)

Then, for z ∈ C \ R+, as n,N grow large with ratios
βN,i , N/ri and βN , N/n such that 0 < lim infN βN ≤
lim supN βN <∞ and 0 < lim infN βN,i ≤ lim supN βN,i <
∞, we have that

mBN ,QN
(z)−m◦BN ,QN

(z)
N→∞−→ 0, (9)

almost surely, with m◦BN ,QN
(z) given by

m◦BN ,QN
(z)=

1

N
trQN

 1

N

n∑
j=1

Θj

1+eN,j(z)
+SN−zIN

−1

(10)
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where the functions eN,1(z), . . . , eN,n(z) form the unique
solution of

eN,i(z) =
1

N
trΘi

 1

N

n∑
j=1

Θj

1+eN,j(z)
+SN−zIN

−1

(11)

which is the Stieltjes transform of a nonnegative finite measure
on R+. Moreover, for z<0, the scalars eN,1(z), . . . , eN,n(z)
are the unique nonnegative solutions to (11).
Note that (11) forms a system of n coupled equations, from
which (10) is given explicitly.

Proof: The proof of Theorem 1 is given in Appendix I.

Proposition 1 (Convergence of the Fixed Point Algorithm):
Let z∈C\R+ and {e(k)

N,i(z)} (k≥0) be the sequence defined
by e(0)

N,i(z)=− 1
z and

e
(k)
N,i(z) =

1

N
trΘi

 1

N

n∑
j=1

Θj

1 + e
(k−1)
N,j (z)

+ SN − zIN

−1

(12)
for k>0. Then, limk→∞ e

(k)
N,i(z)=eN,i(z) defined in (11) for

i∈{1, 2, . . . , n}.
Proof: The proof of Proposition 1 is given in Appendix

I-B and I-C.
To derive a deterministic equivalent of the SINR under RZF

and ZF precoding, we require the following assumptions on
the correlation matrices Θk and the power allocation matrix P.

Assumption 1: All correlation matrices Θk have uniformly
bounded spectral norm on M , i.e.,

lim sup
M,K→∞

sup
1≤k≤K

‖Θk‖ <∞. (13)

Assumption 2: The power pmax = max(p1, . . . , pK) is of
order O(1/K), i.e.,

‖P‖ = O(1/K). (14)

A. Regularized Zero-forcing Precoding

Consider the RZF precoding matrix

Grzf = ξ
(
ĤHĤ +MαIM

)−1

ĤH, (15)

where Ĥ, [ĥ1, ĥ2, . . . , ĥK ]H∈CK×M is the channel estimate
available at the transmitter, ξ is a normalization scalar to
fulfill the power constraint (1) and α>0 is the regularization
parameter. Here, α is scaled by M to ensure that α itself
converges to a constant, as M,K →∞.

From the total power constraint (1), we obtain ξ2 as

ξ2 =
P

trPĤ(ĤHĤ +MαIM )−2ĤH
=
P

Ψ
,

where we defined Ψ , trPĤ(ĤHĤ+MαIM )−2ĤH. Denot-
ing Ŵ , (ĤHĤ + MαIM )−1, the SINR γk,rzf of user k in
(2) under RZF precoding takes the form

γk,rzf =
pk|hH

kŴĥk|2

hH
kŴĤH

[k]P[k]Ĥ[k]Ŵhk + Ψ
ρ

, (16)

where Ĥ[k], [ĥ1, . . . , ĥk−1, ĥk+1, . . . , ĥK ]H∈CK−1×M and
P[k],diag(p1, . . . , pk−1, pk+1, . . . , pK).

To derive a deterministic equivalent γ◦k,rzf of the SINR γk,rzf

defined in (16) such that γk,rzf−γ◦k,rzf
M→∞−→ 0, almost surely,

we require the following assumption.
Assumption 3: The random matrix 1

M ĤHĤ has uniformly
bounded spectral norm on M with probability one, i.e.,

lim sup
M,K→∞

∥∥∥∥ 1

M
ĤHĤ

∥∥∥∥ <∞, (17)

with probability one.
Remark 2: Assumption 3 holds true if supK |{Θk : k =

1, 2, . . . ,K}| < ∞, where |A| denotes the cardinality of
the set A. That is, {Θk} belongs to a finite family [36]. In
particular, if Θk = Θ ∀k, then Assumption 3 is satisfied, since
1
M ‖Ĥ

HĤ‖ ≤ ‖Θ‖‖ẐHẐ‖, where Ẑ = [ẑ1, . . . , ẑK ]H and both
‖Θ‖ and ‖ẐHẐ‖ are uniformly bounded for all large M with
probability one [37].

A deterministic equivalent γ◦k,rzf of γk,rzf is provided in the
following theorem.

Theorem 2: Let Assumptions 1, 2, and 3 hold true and let
α > 0 and γk,rzf be the SINR of user k defined in (16). Then

γk,rzf − γ◦k,rzf
M→∞−→ 0, (18)

almost surely, where γ◦k,rzf is given by

γ◦k,rzf =
pk(1− τ2

k ) (m◦k)
2

Υ◦k(1− τ2
k [1− (1 +m◦k)2]) + Ψ◦

ρ (1 +m◦k)2
, (19)

with m◦k = ek, where the e1, . . . , eK form the unique positive
solutions of

ei =
1

M
trΘiT (20)

T =

 1

M

K∑
j=1

Θj

1 + ej
+ αIM

−1

(21)

and Ψ◦ and Υ◦k read

Ψ◦ =
1

M

K∑
j=1

pje
′
j

(1 + ej)2
, (22)

Υ◦k =
1

M

K∑
j=1,j 6=k

pje
′
j,k

(1 + ej)2
, (23)

with e′ = [e′1, . . . , e
′
K ]T and e′k = [e′1,k, . . . , e

′
K,k]T given by

e′ = (IK − J)
−1

v, (24)

e′k = (IK − J)
−1

vk, (25)

where J, v and vk take the form

[J]ij =
1
M trΘiTΘjT

M(1 + ej)2
,

v =

[
1

M
trΘ1T

2, . . . ,
1

M
trΘKT2

]T
,

vk =

[
1

M
trΘ1TΘkT, . . . ,

1

M
trΘKTΘkT

]T
.
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Proof: The proof of Theorem 2 is given in Appendix II.

Corollary 1: Let Assumptions 1 and 2 hold true and let
α > 0 and Θk = Θ ∀k, then γ◦k,rzf takes the form

γ◦k,rzf =

pk
P/Km

◦(1− τ2
k )
[
e22 + αβ(1 +m◦)2e12

]
e22(1− pk

P ) [1− τ2
k (1−(1 +m◦)2)] + e12

ρ (1 +m◦)2
,

(26)
where m◦ is the unique positive solution of

m◦ =
1

M
trΘT (27)

T =

(
Θ/β

1 +m◦
+ αIM

)−1

(28)

and eij is given by

eij =
1

(1 +m◦)j
1

M
trΘiTj . (29)

Proof: Substituting Θk = Θ ∀k into Theorem 2, we have
ei = m◦k = m◦ given in (27), e′i = e′ = [β(1+m◦)2e12]/(β−
e22) and e′i,k = ẽ′ = [β(1+m◦)2e22]/(β−e22). Therefore, the
terms Ψ◦ and Υ◦k become (P/K)e12/(β−e22) and (P/K[1−
pk/P ])e22/(β − e22), respectively. Furthermore, m◦ can be
written as

m◦ =
1

M
trΘT

(
Θ/β

1 +m◦
+ αIM

)
T

= α(1 +m◦)2e12 +
1

β
(1 +m◦)e22. (30)

Substituting these terms into (19) yields (26) which completes
the proof.
Note that under Assumption 2, the term pk

P in (26) can be
omitted since the convergence in (18) still holds true. We
will make use of this simplification when studying different
applications of the SINR approximations.

Corollary 2: Let Assumption 2 hold true and let α > 0 and
Θk = IM ∀k, then γ◦k,rzf takes the form

γ◦k,rzf =

pk
P/Km

◦(1− τ2
k )
[
1 + αβ(1 +m◦)2

]
(1− pk

P ) [1− τ2
k (1− (1 +m◦)2)] + 1

ρ (1 +m◦)2
,

(31)
where m◦ is given as

m◦ =
β − 1− βα+

√
(β − 1)2 + 2(1 + β)αβ + α2β2

2αβ
.

(32)

Proof: Substituting Θ = IM into Corollary 1, we have
e12 = e22 which yields (31). Moreover, (27) becomes a
quadratic equation in m◦ with unique positive solution (32),
which completes the proof.

In particular, we will consider two different RZF precoders.
The first RZF precoder is defined by α = 1

βρ and is
referred to as RZF channel distortion unaware (RZF-CDU)
precoder. Under imperfect CSIT the RZF-CDU precoder is
mismatched to the true channel. The second RZF precoder is
called RZF channel distortion aware (RZF-CDA) precoder and
does account for imperfect CSIT. The optimal regularization
parameter for the RZF-CDA precoder is derived in Section IV.

Moreover, there are two limiting cases of the RZF precoder
corresponding to α → ∞ and α → 0. For α → ∞ the RZF
precoder converges to the matched filter (MF) precoder Gmf =
ξĤH. A deterministic equivalent γ◦k,mf for the MF precoder
can be derived by taking the limit γ◦k,mf = limα→∞ γ◦k,rzf .
However, since the performance of the MF precoder is rather
poor and γ◦k,mf does not involve Stieltjes transforms anymore,
we will not discuss this precoding scheme in the present work.
The reader is referred to [38] or [39] for a detailed large system
analysis of the MF precoder. In the case of α → 0, the RZF
precoder converges to the ZF precoder, which is discussed in
the next section.

B. Zero-forcing Precoding
For α=0, the RZF precoding matrix in (15) reduces to the

ZF precoding matrix Gzf which reads

Gzf = ξĤH
(
ĤĤH

)−1

,

where ξ is a scaling factor to fulfill the power constraint (1)
and is given by

ξ2 =
P

trP(ĤĤH)−1
=
P

Ψ
,

where Ψ , trP(ĤĤH)−1. Defining Ŵ , ĤH(ĤĤH)−2Ĥ,
the SINR γk,zf of user k in (2) under ZF precoding reads

γk,zf =
pk|hH

kŴĥk|2

hH
kŴĤH

[k]P[k]Ĥ[k]Ŵhk + Ψ
ρ

. (33)

To obtain a deterministic equivalent of the SINR in (33),
we need to ensure that the minimum eigenvalue of ĤĤH

is bounded away from zero for all large M , almost surely.
Therefore, the following assumption is required.

Assumption 4: There exists ε > 0 such that, for all large
M , we have λmin( 1

M ĤĤH) > ε with probability one.
Remark 3: If Θk = Θ ∀k and λmin(Θ) > ε > 0 (i.e.,

in contrast to Theorem 2, Θ must be invertible), for all
M , then Assumption 4 holds true if β > 1. Indeed, for
β > 1, from [37], there exists ζ > 0 such that, for all
large M , λmin(ẐẐH) > ζ, where Ẑ = [ẑ1, . . . , ẑK ]H, with
probability one. Therefore, for all large M , λmin( 1

M ĤĤH) ≥
λmin(ẐẐH)λmin(Θ) > ζε > 0 almost surely.

Furthermore, we require the following assumption for the
channel model with per-user correlation.

Assumption 5: Assume that ei = limα→0 αei(α) exists for
all i and ei > ε ∀i for some ε > 0, for all M .

Remark 4: Under these conditions, the e1, . . . , eK are the
unique positive solutions of (36). In particular, Assumption 5
holds true if Θk = Θ ∀k, β > 1 and λmin(Θ) > ε > 0. This
is detailed in the proof of Corollary 3.

Theorem 3: Let Assumptions 1, 2, 3, 4 and 5 hold true and
let γk,zf be the SINR of user k under ZF precoding defined
in (33). Then

γk,zf − γ◦k,zf
M→∞−→ 0,

almost surely, where γ◦k,zf is given by

γ◦k,zf = pk
1− τ2

k

τ2
kΥ◦k + Ψ◦

ρ

, (34)
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where Ψ◦ and Υ◦k read

Ψ◦ =
1

M

K∑
j=1

pj
ej
,

Υ◦k =
1

M

K∑
j=1,j 6=k

pj
e′j,k
e2
j

. (35)

The functions e1, . . . , eK form the unique positive solution of

ei =
1

M
trΘiT (36)

T =

 1

M

K∑
j=1

Θj

ej
+ IM

−1

. (37)

Further, define e′k = [e′1,k, . . . , e
′
K,k]T, which is given as

e′k = (IK − J)
−1

vk, (38)

where J and vk take the form

[J]ij =
1
M trΘiTΘjT

M e2
j

,

vk =

[
1

M
trΘ1TΘkT, . . . ,

1

M
trΘKTΘkT

]T
.

Proof: The proof of Theorem 3 is given in Appendix III.

Corollary 3: Let Assumptions 1 and 2 hold true. Further,
let β > 1, Θk =Θ ∀k with λmin(Θ) > ε, ε > 0, for all M ,
then Theorem 3 holds true and γ◦k,zf takes the form

γ◦k,zf =
pk
P/K

1− τ2
k

τ2
kΥ◦

[
1− pk

P

]
+ Ψ◦

ρ

with

Ψ◦ =
1

βe
, (39)

Υ◦ =
e2/e

2

β − e2/e
2
, (40)

e2 =
1

M
trΘ2T2

where e is the unique positive solution of

e =
1

M
trΘT, (41)

T =

(
IM +

1

eβ
Θ

)−1

. (42)

Proof: For Θk=Θ ∀k, we obtain from (20)

ei = lim
α→0

αei(α) = e

= lim
α→0

{
1

M
trΘ

(
1

β

Θ

α+ αe(α)
+ IM

)−1
}

=
1

M
trΘ

(
Θ

βe
+ IM

)−1

. (43)

A lower bounded of (43) is given as e ≥ λmin(Θ)(1 − 1/β)
which is uniformly bounded away from zero if Θ is invertible

and β > 1. Thus, under these conditions, Assumption 5 is
satisfied. Moreover, the e′j,k in (38) rewrite

e′j,k = e′ =
βe2

β − e2
e2

and therefore,

Υ◦k =
e2/e

2

β − e2
e2

P

K

[
1− pk

P

]
.

Dividing Υ◦k by P
K

[
1− pk

P

]
and Ψ◦ = P

eM by P/K, we obtain
Υ◦ given in (40) and Ψ◦ given in (39), respectively, which
completes the proof.

Corollary 4: Let Assumption 2 hold true and let β > 1 and
Θk=IM ∀k, then γ◦k,zf takes the explicit form

γ◦k,zf =
pk
P/K

1− τ2
k

τ2
k [1− pk

P ] + 1
ρ

(β − 1). (44)

Proof: By substituting Θ = IM into (41), e is explicitly
given by e= (β − 1)/β. We further have e2

e2 = 1 and Ψ◦ =

Υ◦ = (β − 1)−1.

C. Rate Approximations

We are interested in the individual rates Rk of the users as
well as the average system sum rate Rsum. Since the logarithm
is a continuous function, by applying the continuous mapping
theorem [40], it follows from the almost sure convergence
γk − γ◦k

M→∞−→ 0, that

Rk −R◦k
M→∞−→ 0, (45)

almost surely, where R◦k = log(1 + γ◦k). An approximation
R̂sum of the ergodic sum rate Rsum is obtained by replacing
the instantaneous (i.e., without averaging over the channel
distribution) SINR γk with its large system approximation γ◦k ,
i.e.,

R̂sum =

K∑
k=1

log (1 + γ◦k) . (46)

It follows that
1

K

(
Rsum − R̂sum

)
M→∞−→ 0, (47)

holds true almost surely.
Another quantity of interest is the rate gap between the

achievable rate under perfect and imperfect CSIT. We define
the rate gap ∆Rk of user k as

∆Rk , R̄k −Rk, (48)

where R̄k is the rate of user k under perfect CSIT, i.e., for
τ2
k = 0 ∀k. Then, from (45) it follows that a deterministic

equivalent ∆R◦k of the rate gap of user k such that

∆Rk −∆R◦k
M→∞−→ 0,

almost surely, is given by

∆R◦k = R̄◦k −R◦k, (49)

where R̄◦k is a deterministic equivalent of the rate of user k
under perfect CSIT.
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Since we will require the per-user rate gaps for uncorrelated
channels (Θk = IM ∀k) in the limited feedback analysis in
Sections VI and VII, we introduce hereafter ∆R◦k for RZF-
CDU and ZF precoding.

Corollary 5 (RZF-CDU precoding): Let Θk = IM ∀k,
pk = P/K ∀k, τ2

k = τ2 ∀k and define ∆Rk,rzf−cdu as the rate
gap of user k under RZF-CDU precoding. Then a deterministic
equivalent ∆R◦k,rzf−cdu = ∆R◦rzf−cdu such that

∆Rk,rzf−cdu −∆R◦rzf−cdu
M→∞−→ 0

almost surely, is given by

∆R◦rzf−cdu = log

 1 +m◦

1 +
m◦(1−τ2)[1+ 1

ρ (1+m◦)2]
1−τ2+(1+m◦)2[τ2+ 1

ρ ]

 ,

where m◦ is given in (32).
Proof: With Corollary 2, compute ∆R◦rzf−cdu as defined

in (49), where R̄◦rzf−cdu = log(1 +m◦).
Corollary 6 (ZF precoding): Let Θk = IM ∀k, pk =

P/K ∀k and define ∆Rk,zf to be the rate gap of user k under
ZF precoding. Then

∆Rk,zf −∆R◦k,zf
M→∞−→ 0

almost surely, with ∆R◦k,zf given by

∆R◦k,zf = log

(
1 + ρ(β − 1)

1 + ρωk(β − 1)

)
where ωk is defined given by

ωk =
1− τ2

k

1 + τ2
kρ
. (50)

Proof: Substitute the SINR from Corollary 4 into (49).

Remark 5: In practice, one is often interested in the average
system performance, e.g., the ergodic SINR E[γk] or ergodic
rate E[Rk]. Since the SINR γk is uniformly bounded on
M for the considered precoding schemes, we can apply
the dominated convergence theorem [40, Theorem 16.4] and
obtain

E[γk]− γ◦k
M→∞−→ 0,

where the expectation is taken over the probability space
generating the sequence {H(ω), M ≥ 1} with H =
[h1, . . . ,hK ]H∈CK×M . The same holds true for the per-user
rate Rk, i.e., E[Rk]−R◦k

M→∞−→ 0.

D. Numerical Results

We validate Theorem 2 and Theorem 3 by comparing the
ergodic sum rate (4), obtained by Monte-Carlo (MC) simu-
lations of i.i.d. Rayleigh block-fading channels, to the large
system approximation R̂sum, for finite system dimensions and
equal power allocation P= 1

K IK .
The correlation Θk of the kth user channel is modeled as in

[41] by assuming a diffuse two-dimensional field of isotropic
scatterers around the receivers. The waves impinge the receiver
k uniformly at an azimuth angle θ ranging from θk,min to

3 5 10 15 20 25 30 35 40

10−2

10−1

100

M

(R
su

m
−
R̂

su
m

)/
R

su
m

Θk 6= IM , τ2
k = 0.1

Θk = IM , τ2
k = 0

Fig. 1. RZF, (Rsum− R̂sum)/Rsum vs. M for a fixed SNR of ρ = 10 dB
with M=K, α = 1/ρ.

θk,max. Denoting dij the distance between transmit antenna i
and j, the correlation is modeled as

[Θk]ij =
1

θk,max − θk,min

∫ θk,max

θk,min

e i 2πλ dij cos(θ)dθ, (51)

where λ denotes the signal wavelength. The users are assumed
to be distributed uniformly around the transmitter at an angle
ϕk=2πk/K and as a simple example, we choose θk,min =−π
and θk,max =ϕk − π. Note that for small θk,max − θk,min (in
our example for small values of k), the corresponding signal of
user k is highly correlated since the signal arrives from a very
narrow angle. Thus, the correlation model (51) yields rank-
deficient correlating matrices for some users. The transmitter
is equipped with a uniform linear array (ULA). To ensure
that ‖Θk‖ is bounded as M grows large, we assume that the
distance between adjacent antennas is independent of M , i.e.,
the length of the ULA increases with M .

The simulation results presented in Figure 1 depict the ab-
solute error of the sum rate approximation R̂sum compared to
the ergodic sum rate Rsum, averaged over 10 000 independent
channel realizations. The notation “Θk 6= IM” indicates that
Θk is modeled according to (51) with dij/λ = 0.5. From
Figure 1, we observe that the approximated sum rate R̂sum

becomes more accurate with increasing M .
Figures 2 and 3 compare the ergodic sum rate to the de-

terministic approximation (46) under RZF and ZF precoding,
respectively. The error bars indicate the standard deviation of
the MC results. It can be observed that the approximation lies
roughly within one standard deviation of the MC simulations.
From Figure 2, under imperfect CSIT (τ2

k = 0.1), the sum
rate is decreasing for high SNR, because the regularization
parameter α does not account for τ2

k and thus the matrix
ĤHĤ+MαIM in the RZF precoder becomes ill-conditioned.
Figure 3 shows that, for M > K, the sum rate is not
decreasing at high SNR, because the CSIT Ĥ is much better
conditioned. The optimal regularization is discussed in Sec-
tion V. Further observe that in Figure 2 the deterministic
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Fig. 2. RZF, sum rate vs. SNR with M=K=30 and α = 1/ρ, simulation
results are indicated by circle marks with error bars indicating the standard
deviation.

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

180

τ2
k =0

τ2
k =0.1

ρ [dB]

su
m

ra
te

[b
its

/s
/H

z]

Θk=IM
Θk 6=IM

Fig. 3. ZF, sum rate vs. SNR with M=30, K=15, simulation results are
indicated by circle marks with error bars indicating the standard deviation.

approximation becomes less accurate for high SNR. The
reason is that in the derivation of the approximated SINR,
we apply Theorem 1 in z = −α = −1/ρ and thus the bounds
in Proposition 12 (Appendix I-A) are proportional to the SNR.
Therefore, to increase the accuracy of the approximated SINR,
larger dimensions are required in the high SNR regime.

We conclude that the approximations in Theorems 2 and 3
are accurate even for small dimensions and can be applied to
various optimization problems discussed in the sequel.

IV. SUM RATE MAXIMIZING REGULARIZATION

The optimal regularization parameter α?◦ maximizing (46)
is defined as

α?◦ = arg max
α>0

K∑
k=1

log
(
1 + γ◦k,rzf

)
. (52)

In general, the optimization problem (52) is not convex in α
and the solution has to be computed via a one-dimensional
line search.

In the following, we confine ourselves to the case of com-
mon correlation Θk = Θ ∀k, since for per-user correlation a
common regularization parameter is not optimal anymore [12],
[42]. Under common transmit correlation, we subsequently
assume that the distortions τ2

k of the CSIT ĥk are identical for
all users, since the users’ channels are statistically equivalent.
Under these conditions P = 1

K IK maximizes (46) and the
optimization problem (52) has the following solution.

Proposition 2: Let Θk = Θ, 0 ≤ τk = τ < 1 ∀k and pk =
P/K ∀k. The approximated SINR γ◦k,rzf of user k under RZF
precoding (equivalently, the approximated per-user rate and
the sum rate) is maximized for a regularization parameter α ,
α?◦, given as a positive solution to the fixed-point equation

α?◦ =

[
1 + ν(α?◦) + τ2ρ e22(α?◦)

e12(α?◦)

]
1
βρ

(1− τ2)[1 + ν(α?◦)] + τ2ν(α?◦)[1 +m◦(α?◦)]2
(53)

where m◦(α) is defined in (27) and ν(α) is given by

ν(α) =
1

(1 +m◦)e22

e13

e12

[
e22

e12
− e23

e13

]
(54)

with eij defined in (29).
Proof: The proof is provided in Appendix IV.

Note that the solution in Proposition 2 assumes a fixed
distortion τ2. Later in Section VI the distortion becomes a
function of the quantization codebook size and in Section VII
it depends on the uplink SNR as well as on the amount of
channel training.

Under perfect CSIT (τ2 = 0), Proposition 2 simplifies to the
well-known solution α?◦ = 1

βρ , independent of Θ, which has
previously been derived in [9], [22], [26]. As mentioned in [9],
for large M the RZF-CDA precoder is identical to the MMSE
precoder in [19], [43]. The authors in [26] showed that, under
perfect CSIT, α?◦ is independent of the correlation Θ. How-
ever, for imperfect CSIT (τ2 6= 0), the optimal regularization
parameter (53) depends on the transmit correlation through
m◦(α) and eij(α). For uncorrelated channels (Θ = IM ),
we have e12 = e22 and ν(α) = 0 and therefore the explicit
solution

α?◦ =

(
1 + τ2ρ

1− τ2

)
1

βρ
. (55)

Note that in this case, it can be shown that α?◦ in (55) is the
unique positive solution to (52).

For imperfect CSIT (τ2 > 0), the RZF-CDA precoder and
the MMSE precoder with regularization parameter αMMSE =
τ2β−1 + 1/(βρ) [43] are not identical anymore, even in the
large M,K limit. Unlike the case of perfect CSIT, α?◦ now
depends on the correlation matrix Θ through m◦(α?◦) and
eij(α

?◦). The impact of m◦ and eij on the sum rate of RZF-
CDA precoding is evaluated through numerical simulations in
Figure 5. Further note that since m◦(α) and eij are bounded
from above under the conditions explained in Remark 6 below,
at asymptotically high SNR the regularization parameter α?◦

in (53) converges to α?◦∞ , limρ→∞ α?◦, where α?◦∞ is a
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positive solution of

α?◦∞ =

τ2

β
e22(α?◦∞ )
e12(α?◦∞ )

(1− τ2)[1 + ν(α?◦∞)] + τ2ν(α?◦∞)[1 +m◦(α?◦∞)]2
.

(56)
For uncorrelated channels, the limit in (56) takes the form

α?◦∞ =
τ2

(1− τ2)β
.

Thus, for asymptotically high SNR, RZF-CDA precoding
is not the same as ZF precoding, since the regularization
parameter α?◦ is non-zero due to the residual interference
caused by the imperfect CSIT. Similar observations have been
made in [43] for the MMSE precoder.

Remark 6: Note that in (56) we apply the limit ρ → ∞
on a result obtained from an SINR approximation which
is almost surely exact as M,K → ∞. This is correct if
Ψ = trPĤ(ĤHĤ + MαIM )−2ĤH in (16) is bounded for
asymptotically high SNR as M,K → ∞. For τ2 > 0 it is
clear that Ψ◦ is bounded since α?◦ > 0 for all SNR. In the
case where τ2 = 0, we have limρ→∞ α?◦ = 0 and thus for
β = 1 the support of the limiting eigenvalue distribution of
1
M ĤĤH includes zero resulting in an unbounded Ψ◦. From
Remark 3, for β > 1, Θk = Θ ∀k and λmin(Θ) > ε > 0 there
exists ξ > 0 such that λmin( 1

M ĤĤH) > ξ for all large M .
Thus, Ψ◦ is bounded. On the contrary, for Θk 6= Θj (k 6= j),
β > 1 and λmin(Θk) > ε > 0 ∀k, it has not been proved
that λmin( 1

M ĤĤH) > ξ and we have to evoke Assumption
4 to ensure that Ψ◦ is bounded. Thus, for τ2 = 0, the limit
(56) is only well defined for β > 1. Further note that if Ψ◦ is
bounded as M,K → ∞ the limits M,K → ∞ and ρ → ∞
can be inverted without affecting the result.

For various special cases, substituting (53) into the de-
terministic equivalent of the SINR γ◦k,rzf in (26) yields the
following simplified expressions.

Corollary 7: Let Assumptions 1 and 2 hold true and let
Θk=Θ, τ2

k =0, pk = P/K ∀k, α?◦ = 1
βρ and γk,rzf−cda be

the sum rate maximizing SINR of user k under RZF precoding.
Then

γk,rzf−cda − γ◦k,rzf−cda
M→∞−→ 0,

almost surely, where γ◦k,rzf−cda is given by

γ◦k,rzf−cda , γ◦rzf−cda = m◦(−α?◦), (57)

where m◦(−α?◦) is the unique positive solution to

m◦(−α?◦) =
1

M
trΘ

(
Θ/β

1 +m◦(−α?◦)
+ α?◦IM

)−1

.

Proof: Substituting α?◦ = 1
βρ into (26) together with

τ2 = 0, we obtain (57) which completes the proof.
For uncorrelated channels Θk = IM ∀k, the solution to

(57) is explicit and summarized in the following corollary.
Corollary 8: Let Θk = IM , τ2

k = τ2, pk = P/K ∀k and
γk,rzf−cda be the sum rate maximizing SINR of user k under
RZF precoding. Then γk,rzf−cda − γ◦k,rzf−cda

M→∞−→ 0, almost
surely, where γ◦k,rzf−cda is given by

γ◦k,rzf−cda , γ◦rzf−cda =
ω

2
ρ(β − 1) +

χ

2
− 1

2
, (58)
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Fig. 4. RZF, ergodic sum rate vs. SNR with M =K = 5, Θk = IM ∀k,
P = 1

K
IK and τ2=0.1.

where ω∈ [0, 1] and χ are given by

ω =
1− τ2

1 + τ2ρ
, (59)

χ(ω) =
√

(β − 1)2ω2ρ2 + 2(1 + β)ωρ+ 1. (60)

Proof: Substituting Θ = IM into Corollary 7 leads to a
quadratic equation in m◦(−α?◦) for which the unique positive
solution is given by (58), which completes the proof.

A deterministic equivalent ∆R◦rzf−cda of the rate gap
∆Rk,rzf−cda under RZF-CDA precoding is provided in the
following corollary.

Corollary 9 (RZF-CDA precoding): Let Θk=IM ∀k, pk =
P/K ∀k, τ2

k = τ2 ∀k and define ∆Rk,rzf−cda as the rate gap
of user k under RZF-CDA precoding. Then,

∆Rk,rzf−cda −∆R◦rzf−cda
M→∞−→ 0

almost surely, with

∆R◦rzf−cda = log

(
1 + ρ(β − 1) + χ(1)

1 + ωρ(β − 1) + χ(ω)

)
,

where ω and χ are defined in (59) and (60), respectively.
Proof: With Corollary 8, compute ∆R◦rzf−cda as defined

in (49).
The impact of the regularization parameter on the ergodic

sum rate is depicted in Figures 4 and 5.
In Figure 4, we compare the ergodic sum rate performance

for different regularization parameters α with CSIT distortion
τ2
k = τ2 = 0.1 ∀k. The upper bound α = α? is obtained

by optimizing α for every channel realization, whereas ᾱ?

maximizes the ergodic sum rate. It can be observed that both
ᾱ? and α?◦ perform close to the optimal α?. Furthermore, if
the channel quality τ2 is unknown at the transmitter (and hence
assumed to be equal to zero), the performance is decreasing
as soon as τ2 dominates (i.e. the inter-user interference limits
the performance) the noise power σ2 and approaches the
sum rate of ZF precoding for high SNR. We conclude that
(i) adapting the regularization parameter yields a significant
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Fig. 5. RZF, ergodic sum rate vs. SNR with M =K=5, P = 1
K

IK and
τ2=0.05.

performance increase and (ii) that the proposed RZF-CDA
precoder with α?◦ performs close to optimal even for small
system dimensions.

In Figure 5, we simulate the impact of transmit correlation
in the computation of α?◦ on the sum rate. For this purpose,
we use the standard exponential correlation model, i.e.,

[Θ]ij = v|i−j|.

We compare two different RZF precoders: A first precoder
coined RZF common correlation aware (RZF-CCA) that takes
the channel correlation into account and computes α according
to (53), and a second precoder, called RZF common correlation
unaware (RZF-CCU) that does not take Θ into account and
computes α as in (55). We observe that for high correlation,
i.e., v = 0.9, the RZF-CCA precoder significantly outperforms
the RZF-CCU precoder at medium to high SNR, whereas
both precoders perform equally well at low SNR. Therefore,
we conclude that it is beneficial to account for transmit
correlation, especially in highly correlated channels. Further
simulations (not provided here) suggest that the sum rate gain
of RZF-CCA over RZF-CCU precoding is less pronounced for
lower CSIT qualities (i.e., increasing τ2), because in this case
the impact of the CSIT quality τ2 is more significant than the
impact of Θ on the sum rate.

V. OPTIMAL NUMBER OF USERS AND POWER
ALLOCATION

In this section, we address two problems: (i) the determina-
tion of the sum rate maximizing number of users per transmit
antenna for a fixed M and (ii) the optimization of the power
distribution among a given set of users with unequal CSIT
qualities.

Consider problem (i). Intuitively, an optimal number of
users K? exists because serving more users creates more
interference which in turn reduces the rates of the users. At
some point the accumulated rate loss, due to the additional
interference caused by scheduling another user, will outweigh

the sum rate gain and hence the system sum rate will decrease.
In particular, we consider a fair scenario where the SINR
approximation of all users are equal. Here, the (approximated)
optimal solution can be expressed under a closed form for ZF
precoding.

In problem (ii), we optimize the power allocation matrix
P for a given K. More precisely, we focus on common
correlation Θk = Θ ∀k with different CSIT qualities τ2

k , since
in this case the (approximated) optimal power distribution P?◦

is the solution of a classical water-filling algorithm.

A. Sum Rate Maximizing Number of Users

Consider the problem of finding the system loading β?◦

maximizing the approximated sum rate per transmit antenna
for a fixed M , i.e.,

β?◦ = arg max
β

1

β

1

K

K∑
k=1

log (1 + γ◦k) , (61)

where γ◦k denotes either γ◦k,zf with β > 1 or γ◦k,rzf with β ≥ 1.
In general (61) has to be solved by a one-dimensional line
search. However, in case of ZF precoding and uncorrelated
antennas, the optimization problem (61) has a closed-form
solution given in the following proposition.

Proposition 3: Let Θk = IM , τk = τ ∀k and P = P
K IK ,

the sum rate maximizing system loading per transmit antenna
β?◦ is given by

β?◦ =

(
1− 1

a

)(
1 +

1

W(x)

)
, (62)

where a = 1−τ2

τ2+ 1
ρ

, x = a−1
e and W(x) is the Lambert W-

function defined as z=W(z)eW(z), z∈C.
Proof: Substituting the SINR in Corollary 4 into (61) and

differentiating along β leads to

aβ

1 + a(β − 1)
= log (1 + a(β − 1)) (63)

Denoting w(β) = a−1
a(β−1)+1 , we can rewrite (63) as

w(β)ew(β) = x.

Noticing that w(β) = W(x) and solving for β yields (62),
which completes the proof.

For τ ∈ [0, 1], β > 1 we have w≥−1 and x ≥ −e−1. In this
caseW(x) is a well-defined function. If τ2 = 0, we obtain the
results in [18], although in [18] they are not given in closed
form. Note that for τ2 = 0, we have limρ→∞ β?◦ = 1, i.e.,
the optimal system loading tends to one. Further note that only
integer values of M/β?◦ are meaningful in practice.

B. Power Optimization under Common Correlation

From Corollaries 1 and 3, the approximated sum rate (46)
for both RZF and ZF precoding takes the form

R̂sum =

K∑
k=1

log [1 + pkν
◦
k(τk)] , (64)

with ν◦k(τk) = γ◦k/pk, where the only dependence on user
k stems from τk. The user powers p?◦k that maximize (64),
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Fig. 6. ZF, sum rate maximizing number of users vs. SNR with Θk =
IM ∀k, τ2 = 0.1 and P = 1

K
IK .

subject to
∑K
k=1 pk ≤ P , pk ≥ 0, are thus given by the

classical water-filling solution [44]

p?◦k =

[
µ− 1

ν◦k(τk)

]+

, (65)

where [x]+ , max(0, x) and µ is the water level chosen to
satisfy

∑K
k=1 pk = P . For τ2

k = τ2 ∀k, the optimal user
powers (65) are all equal, i.e., p?◦k = p?◦ = P/K and P?◦ ,
diag(p?◦1 , . . . , p

?◦
K ) = P

K IK . In this case though, it could still
be beneficial to adapt the number of users as discussed in
Section V-A.

C. Numerical Results

Figure 6 compares the optimal number of users K?◦ =
M/β?◦ in (62) to K? obtained by choosing the K ∈
{1, 2, . . . ,M} such that the ergodic sum rate is maximized,
whereas Figure 7 depicts the impact of a suboptimal number
of users on the ergodic sum rate of the system.

From Figure 6, it can be observed that (i) the approximated
results K?◦ do fit well with the simulation results even for
small dimensions, (ii) (K?,K?◦) increase with the SNR and
(iii), for τ2 6= 0, (K?,K?◦) saturate for high SNR at a
value lower than M . Therefore, under imperfect CSIT, it is
not optimal anymore to serve the maximum number of users
K = M for asymptotically high SNR. Instead, depending on
τ2, a lower number of users K < M should be served even
at high SNR which implies a reduced multiplexing gain of the
system. The impact of different numbers of users on the sum
rate is depicted in Figure 7.

From Figure 7 we observe that (i) the approximate solution
K?◦ achieves most of the sum rate and (ii) adapting the
number of users with the SNR is beneficial compared to a
fixed K. Moreover, from Figure 6, we identify K = 8 as
an optimal choice (for M = 16) for medium SNR and, as
expected, the performance is optimal in the medium SNR
regime and suboptimal at low and high SNR. From Figure

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

ρ [dB]

er
go

di
c

su
m

ra
te

[b
its

/s
/H

z]

K=K?

K=K?◦

K=8
K=4

Fig. 7. ZF, Rsum vs. SNR with M =16, Θk = IM ∀k, P = 1
K

IK and
τ2=0.1.

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

M=K=5

M=K=3

ρ [dB]

er
go

di
c

su
m

ra
te

[b
its

/s
/H

z]

P = P?◦

P = 1
K IK

Fig. 8. RZF-CDU, Rsum vs. ρ with α= 1/ρ, Θk = IM ∀k, P = 1 and
τ2k ∈T1,∪

3
k=1τ

2
k = T1 (M=5) and τ2k ∈T2,∪

3
k=1τ

2
k = T2 (M=3).

6 it is clear that K = 4 is highly suboptimal in the medium
and high SNR range and we observe a significant loss in sum
rate. Consequently, the number of users must be adapted to
the channel conditions and the approximate result K?◦ is a
good choice to determine the optimal number of users.

In Figure 8, under RZF-CDU precoding, we compare the
ergodic sum rate performance with power allocation P =
P?◦ from (65) to equal power allocation P = 1

K IK . We
consider a system with M = K = 5, where the CSIT
qualities vary significantly among the users, i.e., τ2

k ∈T1 with
T1 = {0.8, 0.3, 0.2, 0.1, 0.05}, ∪5

k=1τ
2
k = T1. We observe

a significant gain over the whole SNR range when optimal
power allocation is applied. In contrast, if the CSIT distortion
of the users’ channels with M =K = 3 does not differ con-
siderably (τ2

k ∈T2, ∪3
k=1τ

2
k = T2 with T2 = {0.2, 0.15, 0.1}),

we only observe a small gain at high SNR. For increasing
SNR, the SINRs become increasingly distinct depending on
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the τ2
k . Therefore, it might be optimal to turn off the users

with lowest CSIT accuracy as the SNR increases, which
explains why the sum rate gain is larger at high SNR than
at low SNR. However, recall that the water-filling solution is
optimal under Assumption 2 (‖P‖ = O(1/K)) and large M .
We thus conclude that the optimal power allocation proposed
in (65) achieves significant performance gains, especially at
high SNR, when the quality of the available CSIT varies
considerably among the users’ channels.

VI. OPTIMAL FEEDBACK IN LARGE FDD MULTI-USER
SYSTEMS

Consider a frequency-division duplex (FDD) system, where
the users quantize their perfectly estimated channel vectors and
send the codebook quantization index back to the transmitter
over an independent feedback channel of limited rate. The
feedback channels are assumed to be error-free and of zero
delay. The quantization codebooks are generated prior to
transmission and are known to both transmitter and respective
receiver. Due to the finite rate feedback link, imposing a
finite codebook size, the transmitter has only access to an
imperfect estimate of the true downlink channel. To obtain
tractable expressions, we restrict the subsequent analysis to
i.i.d. Gaussian channels hk ∼ CN (0, IM ) ∀k.

In the sequel, we follow the limited feedback analysis in
[45], where each user’s channel direction h̃k , hk

‖hk‖2 is
quantized using B bits which are subsequently fed back to
the transmitter. Under Rayleigh fading, the channel hk can be
decomposed as hk = ‖hk‖2 · h̃k, where we suppose that the
channel magnitude ‖hk‖2 is perfectly known to the transmitter
since it can be efficiently quantized with only a few bits
[45]. Without loss of generality,1 we assume random vector
quantization (RVQ), where each user independently generates
a random codebook Ck , {wki, . . . ,wk2B} containing 2B

vectors wki∈CM that are isotropically distributed on the M -
dimensional unit sphere. Subsequently, user k quantizes its
channel direction h̃k to the closest wki according to

ˆ̃
hk = arg max

wki∈Ck
‖h̃H

kwki‖.

Under RVQ, the quantized channel direction ˆ̃
hk ∈ Ck is

isotropically distributed on the M -dimensional unit sphere due
to the statistical properties of both, the random codebook Ck
and the channels hk. Thus, for fine quantization with small
errors, the entries of both h̃k and ĥk = ‖hk‖2 · ˆ̃

hk can be
modeled with good approximation as i.i.d. Gaussian of zero
mean and unit variance. The quantization error vector ek can
be approximated as ek ∼ CN (0, IM ) [46] and we can write

ĥk =
√

1− τ2
khk + τkek, (66)

where τ2
k is the quantization error variance. The scaling in

(66) is required to ensure that the elements of ĥk have unit
variance. Therefore, the effect of imperfect CSIT under RVQ
in (66) is captured by the channel model (6). For RVQ, the

1The derived scaling results hold for any quantization codebook [45].

quantization error τ2
k , ‖h̃H

k
ˆ̃
hk‖ can be upper bounded as [45,

Lemma 1]
τ2
k < 2−

B
M−1 . (67)

The bound in (67) is tight for large B [45]. Moreover, since
the quantization codebooks of the users are supposed to be
of equal size, the resulting CSIT distortions can be assumed
identical, i.e., τ2

k = τ2 ∀k. Under this assumption and equal
power allocation, for large M , the SINR γ◦ is identical for
all users and, hence, optimizing γ◦ is equivalent to optimizing
the per-user rate R◦ = log2(1+γ◦) bits/s/Hz and the sum rate
R̂sum = KR◦.

In the following, in particular under RVQ, we will derive
the necessary scaling of the distortion τ2 to ensure that

∆Rk − log2 b
M→∞−→ 0,

almost surely, where ∆Rk is defined in (48) and b ≥ 1. That is,
a constant rate gap of log2 b is maintained exactly as M,K →
∞. A constant rate gap ensures that the full multiplexing gain
of K is achieved. Thus, the proposed scaling also guarantees a
larger but constant rate gap to the optimal DPC solution with
perfect CSIT. The choice of a rate offset log2 b is motivated
by mere mathematical convenience to avoid terms of the form
2b and to be compliant with [45].

With this strategy we closely follow [45]. In [45, Theorem
1], the author derived an upper bound of the ergodic per-user
gap ∆R̃zf for ZF precoding with M = K and unit norm
precoding vectors under RVQ, which is given by

∆R̃zf < log2

(
1 + ρ · 2−

B
M−1

)
. (68)

We cannot directly compare the deterministic equivalents
to the upper bound in (68) for two reasons, (i) under ZF
precoding and M = K, a deterministic equivalent for the per-
user rate gap does not exist and (ii) [45] considers unit norm
precoding vectors, whereas in this paper we only impose a
total power constraint (1). Concerning (i), at high SNR, we
can use the deterministic equivalent for RZF-CDU precoding
given in Corollary 5 as a good approximation for ZF pre-
coding, since for high SNR the rates of RZF-CDU and ZF
precoding converge. Regarding (ii), deriving a deterministic
equivalent of the SINR under linear precoding with a unit
norm power constraint on the precoding vectors is difficult,
since it introduces an additional non-trivial dependence on
the channel. However, it is useful to compare the accuracy
of the upper bound in (68) and the deterministic equivalent
∆R◦k,rzf−cdu in Corollary 5 at high SNR.

Figure 9, depicts the per-user rate gap as a function of
the feedback bits B per user under ZF precoding at a SNR
of 25 dB. We simulated the ergodic per-user rate gap ∆R̃zf

and E[∆Rk,zf ] of ZF precoding with unit norm precoding
vectors and total power constraint, respectively. We compare
the numerical results to the upper bound (68) and to the
deterministic equivalent ∆R◦k,rzf−cdu for M = K = 5 and
M = K = 10. For both system dimensions ∆R̃zf and
E[∆Rk,zf ] are close, suggesting that our results derived under
the total power constraint may be good approximations for the
case of unit norm precoding vectors as well. As mentioned in
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[45], the accuracy of the upper bound increases with increasing
B but the deterministic equivalent ∆R◦k,rzf−cdu appears to be
more accurate for both M = K = 5 and M = K = 10.
In fact, for M = K = 10, ∆R◦k,rzf−cdu approximates the
per-user rate gap significantly more accurately than the upper
bound (68) for the given SNR. We conclude that the proposed
deterministic equivalent ∆R◦k,rzf−cdu is sufficiently accurate
and can be used to derive scaling laws for the optimal feedback
rate.
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Fig. 9. ZF, per-user rate gap vs. number of bits per user with ρ = 25 dB,
Θk=IM ∀k.

In the following, we compare the scaling of τ2 under RZF-
CDA, RZF-CDU and ZF (M > K) precoding to the upper
bound given for ZF (M = K) precoding in [45, Theorem 3].
For the sake of comparison, we restate [45, Theorem 3].

Theorem 4: [45, Theorem 3]. In order to maintain a rate
offset no larger than log2 b (per user) between zero-forcing
with perfect CSIT and with finite-rate feedback (i.e., ∆R(ρ) ≤
log2 b ∀ρ), it is sufficient to scale the number of feedback bits
per mobile according to

Bzf = (M − 1) log2 ρ− (M − 1) log2(b− 1)

≈ M − 1

3
ρdB − (M − 1) log2(b− 1).

where ρdB = 10 log10 ρ. It is also mentioned that the result
in [45, Theorem 3] holds true for RZF-CDU precoding for
high SNR, since ZF and RZF-CDU precoding converge for
asymptotically high SNR. Furthermore, it is claimed, corrob-
orated by simulation results, that [45, Theorem 3] is true under
RZF-CDU precoding for all SNR.

In order to correctly interpret the subsequent results, it is
important to understand the differences between our approach
and the approach in [45]. The scaling given in [45, Theorem
3] is a strict upper bound on the ergodic per-user rate gap
EH[∆Rk] for all SNR and all M = K under a unit norm
constraint on the precoding vectors. In contrast, our approach

yields a necessary scaling of τ2 that maintains a given in-
stantaneous target rate gap log2 b exactly as M,K → ∞
under a total power constraint. Therefore, our results are
not upper bounds for small M , i.e., we cannot guarantee
that ∆Rk < log2 b for small dimensions. But since for
asymptotically large M , the rate gap is maintained exactly and
we apply an upper bound on the CSIT distortion under RVQ
(67), it follows that our results become indeed upper bounds
for large M . Simulations reveal that under the derived scaling
of τ2, the per-user rate gap is very close to log2 b even for
small dimension, e.g., M = 10. Concerning the ergodic and
instantaneous per-user rate gap, the reader is reminded that our
results hold also for ergodic per-user rates as a consequence
of the dominated convergence theorem, see Remark 5.

Consequently, a comparison of the results in [45] to our
solutions is meaningful, especially for larger values of M
where our results become upper bounds.

In the following section, we apply the deterministic equiva-
lents of the per-user rate gap under RZF-CDA, RZF-CDU and
ZF precoding provided in Corollaries 9, 5 and 6, respectively,
to derive scaling laws for the amount of feedback necessary
to achieve full multiplexing gain.

A. Channel Distortion Aware Regularized Zero-forcing Pre-
coding

Proposition 4: Let Θk=IM ∀k. Then the CSIT distortion
τ2, such that the rate gap ∆Rk,rzf−cda of user k between
RZF-CDA precoding with perfect CSIT and imperfect CSIT
satisfies

∆Rk,rzf−cda − log2 b
M→∞−→ 0

almost surely, has to scale as

τ2 =
φ◦rzf−cda(ρ, b)

ρ
, (69)

φ◦rzf−cda(ρ, b) =
ρ [(1 + β)b+ δ(β − 1)]− 1

2b (δ
2 − b2)

(1 + β)b+ δ(β − 1) + 1
2b (δ

2 − b2)
,

(70)
δ = 1− b+ χ(1) + ρ(β − 1),

where χ is defined in (60). With β = 1, the distortion τ2 has
to scale as

τ2 =
1 + 4ρ− δ2

b2

3 + δ2

b2

1

ρ
.

Proof: Set ∆R̄rzf−cda given in Corollary 9 equal to log2 b
and solve for τ2.
Although the proposed scaling of τ2 in (69) converges to zero
for asymptotically high SNR, we can approximate the term
φ◦rzf−cda(ρ, b) in the high SNR regime.

Proposition 5: For asymptotically high SNR, the term
φ◦rzf−cda(ρ, b) defined in (70) converges to the following
limits,

lim
ρ→∞

φ◦rzf−cda(ρ, b) =

{
b2 − 1 if β = 1

b− 1 if β > 1.
(71)
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Proof: For β=1 observe that δ scales as 2
√
ρ. Thus, for

ρ→∞, (70) converges to b2 − 1. If β > 1, the term δ takes
the form

δ = 1−b+(β−1)ρ+|1−β|ρ (1 + o(1))
ρ→∞−→ 2ρ(β−1)+1−b.

Therefore, for ρ → ∞, (70) converges to b − 1, which
completes the proof.

Remark 7: Note that limρ→∞
φ◦rzf−cda(ρ,b)

ρ = 0 and thus,
we require β > 1 to ensure that the limit ρ→∞ of the deter-
ministic equivalent is well defined, see Remark 6. However,
for finite SNR with the approximation in Proposition 5, we
have τ2 > 0 and the scaling result holds true.

To compare Proposition 4 to [45, Theorem 3], we use the
upper bound on the quantization distortion (67), i.e., τ2 =

2−
B◦rzf−cda
M−1 , where B◦rzf−cda is the number of feedback bits per

user under RZF-CDA precoding. Thus, (69) can be rewritten
as

B◦rzf−cda = (M−1) log2 ρ−(M−1) log2 φ
◦
rzf−cda(ρ, b). (72)

B. Channel Distortion Unaware Regularized Zero-forcing
Precoding

Although the RZF-CDU precoder is suboptimal under im-
perfect CSIT, the results are useful to compare to the work in
[45].

Proposition 6: Let Θk=IM ∀k. Then the CSIT distortion
τ2, such that the rate gap ∆Rk,rzf−cdu with α = 1/(βρ) of
user k between RZF-CDU precoding with perfect CSIT and
imperfect CSIT satisfies

∆Rk,rzf−cdu − log2 b
M→∞−→ 0

almost surely, has to scale as

τ2 =
φ◦rzf−cdu(ρ, b)

ρ
,

φ◦rzf−cdu(ρ, b) =
(b− 1)(1 +m◦)(ρ+ m̄◦)

(b− 1−m◦)[1− m̄◦] + bm◦[1 + 1
ρm̄
◦]
,

where m◦ is defined in (32) and m̄◦ , (1 +m◦)2.
Proof: Set ∆Rk,rzf−cdu from Corollary 5 equal to log2 b

and solve for τ2.
An approximation of the term φ◦rzf−cdu(ρ, b) at high SNR

is given in the following proposition.
Proposition 7: For asymptotically high SNR, φ◦rzf−cdu(ρ, b)

converges to the following limits,

lim
ρ→∞

φ◦rzf−cdu(ρ, b) =

{
2(b− 1) if β = 1

b− 1 if β > 1.
(73)

Proof of Proposition 7: For β = 1 and ρ large, m◦

scales as
√
ρ. Therefore, limρ→∞ φ◦rzf−cdu(ρ, b) = 2(b − 1).

If β > 1, for large ρ, the term m◦ scales as ρ(β − 1). With
this approximation we obtain limρ→∞ φ◦rzf−cdu(ρ, b) = b− 1,
which completes the proof.

Applying the upper bound on the CSIT distortion under
RVQ (67) with B◦rzf−cdu bits per user, we obtain

B◦rzf−cdu = (M − 1) log2 ρ− (M − 1) log2 φ
◦
rzf−cdu(ρ, b).

(74)

C. Zero-forcing Precoding

The following results are only valid for β > 1 and thus,
they cannot be compared to [45, Theorem 3] which are derived
under the assumption M = K. However, for high SNR the
results for the RZF-CDU precoder are a good approximation
for the ZF precoder as well, even for β = 1.

Corollary 10: Let β > 1 and Θk = IM ∀k. To maintain a
rate offset ∆Rk,zf such that

∆Rk,zf − log2 b
M→∞−→ 0

almost surely, the distortion τ2 has to scale according to

τ2 =
φ◦zf(ρ, b)

ρ
,

φ◦zf(ρ, b) =
(b− 1)[1 + ρ(β − 1)]

1− b+ (β − 1)[ρ+ b]
. (75)

Proof: From Corollary 6, set ∆R◦zf = log2 b and solve
for τ2.

Proposition 8: For asymptotically high SNR, φ◦zf(ρ, b) in
(75) converges to

lim
ρ→∞

φ◦zf(ρ, b) = b− 1. (76)

Proof: From (75), the result is immediate.
Under RVQ with B◦zf feedback bits per user, we have

B◦zf = (M − 1) log2 ρ− (M − 1) log2 φ
◦
zf(ρ, b). (77)

D. Discussion and Numerical Results

At this point, we can draw the following conclusions. The
optimal scaling of the CSIT distortion τ2 is lower for β =
1 compared to β > 1. For β = 1, the optimal scaling of
the feedback bits B◦rzf−cda, B◦rzf−cdu and B for ZF in [45,
Theorem 3] are different, even at high SNR. In fact, for large
M , under RZF-CDU precoding and ZF precoding, the upper
bound in [45, Theorem 3] appears to be too pessimistic in
the scaling of the feedback bits. From (74) and (73), a more
accurate choice may be

B◦rzf−cdu = (M − 1) log2 ρ− (M − 1) log2(2(b− 1)), (78)

i.e., M − 1 bits less than proposed in [45, Theorem 3].
However, recall that (78) becomes an upper bound for large M
and a rate gap of at least log2 b bits/s/Hz cannot be guaranteed
for small values of M . Moreover, for high SNR, β = 1 and
large M , to maintain a rate offset of log2 b, the RZF-CDA
precoder requires (M − 1) log2( b+1

2 ) bits less than the RZF-
CDU and ZF precoder and (M − 1) log2(b+ 1) bits less than
the scaling proposed in [45, Theorem 3].

In contrast, for β > 1 and high SNR, we have B◦rzf−cda =
B◦rzf−cdu = B◦zf . Intuitively, the reason is that, for β > 1,
the channel matrix is well conditioned and the RZF and
ZF precoders perform similarly. Therefore, both schemes are
equally sensitive to imperfect CSIT and thus the scaling of τ2

is the same for high SNR.
Note that our model comprises a generic distortion of the

CSIT. That is, the distortion can be a combination of different
additional factors, e.g., channel estimation at the receivers,
channel mismatch due to feedback delay or feedback errors
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(see [47]) as long as they can be modeled as additive noise
(6). Moreover, we consider i.i.d. block-fading channels, which
can be seen as a worst case scenario in terms of feedback
overhead. It is possible to exploit channel correlation in time,
frequency and space to refine the CSIT or to reduce the amount
of feedback.

Figures 10 and 11 depict the ergodic sum rate of RZF
precoding under RVQ and the corresponding number of feed-
back bits per user B, respectively. To avoid an infinitely
high regularization parameter α?◦, the minimum number of
feedback bits is set to one.

In Figure 10, we plot the ergodic sum rate for RZF precod-
ing under perfect CSIT with total power constraint (red solid

lines) and unit norm constraint on the precoding vectors (red
dashed line). We observe, that the sum rate under unit norm
constraint is slightly larger at high SNR, suggesting that our
scaling results for RZF precoding derived under a total power
constraint become inaccurate under the unit norm constraint at
high SNR. Hence, one has to be cautious when comparing the
scaling in [45, Theorem 3] directly to the scaling derived with
the large system approximations at high SNR. From Figure
10, we further observe that (i) the desired sum rate offset
of 10 bits/s/Hz is approximately maintained over the given
SNR range when B is chosen according to (72) and the high
SNR approximation in (78) under RZF-CDA and RZF-CDU
precoding, respectively, (ii) given an equal number of feedback
bits (72), the RZF-CDA precoder achieves a significantly
higher sum rate compared to RZF-CDU for medium and high
SNR, e.g., about 2.5 bits/s/Hz at 20 dB and (iii) to maintain a
sum rate offset of K bits/s/Hz, the proposed feedback scaling
of B= M−1

3 ρdB for unit norm precoding vectors [45] is very
pessimistic, since the sum rate offset to RZF with total power
constraint and unit norm constraint is about 6 bits/s/Hz and 7
bits/s/Hz at 20 dB, respectively.

We conclude that the proposed RZF-CDA precoder sig-
nificantly increases the sum rate for a given feedback rate
or equivalently significantly reduces the amount of feedback
given a target rate. Moreover, the scaling of the number of
feedback bits under RZF-CDU precoding proposed in [45,
Theorem 3] appears to be less accurate under a total power
constraint than our large system approximation in (72).

VII. OPTIMAL TRAINING IN LARGE TDD MULTI-USER
SYSTEMS

Consider a time-division duplex (TDD) system where uplink
(UL) and downlink (DL) share the same channel at different
times. Therefore, the transmitter estimates the channel from
known pilot signaling of the receivers. The channel coherence
interval T , i.e., the amount of channel uses for which the
channel is approximately constant, is divided into Tt channel
uses for UL training and T − Tt channel uses for coherent
transmission in the DL. Note that in order to coherently
decode the information symbols, the users need to know their
effective (precoded) channels. This is usually accomplished by
a dedicated training phase (using precoded pilots) in the DL
prior to the data transmission. As shown in [48], a minimal
amount of training (at most one pilot symbol) is sufficient
when data and pilots are processed jointly. Therefore, we
assume that the users have perfect knowledge of their effective
channels and we neglect the overhead associated with the DL
training.

In the considered TDD system, the imperfections in the
CSIT are caused by (i) channel estimation errors in the UL,
(ii) imperfect channel reciprocity due to different hardware in
the transmitter and receiver and (iii) the channel coherence
interval T . In what follows, we assume that the channel is
perfectly reciprocal and we study the joint impact of (i) and
(iii) for uncorrelated channels (Θk = IM ∀k).
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A. Uplink Training Phase

In our setup, the distortion τ2 of the CSIT is solely caused
by an imperfect channel estimation at the transmitter and is
identical for all entries of H. To acquire CSIT, each user
transmits the same amount Tt ≥ K of orthogonal pilot
symbols over the UL channel to the transmitter. Subsequently,
the transmitter estimates all K channels simultaneously. At
the transmitter, the signal rk received from user k is given by

rk =
√
TtPulhk + nk,

where we assumed perfect reciprocity of UL and DL channels
and Pul is the average available transmit power at the re-
ceivers. That is, the UL and DL channel coefficients are equal
and the UL noise nk=[n1, n2, . . . , nM ]T is assumed identical
for all users and statistically equivalent to its DL analog.
Subsequently, the transmitter performs an MMSE estimation
of each channel coefficient hij ∼ CN (0, 1) (i = 1, . . . ,K,
j=1, . . . ,M ). Due to the orthogonality property of the MMSE
estimation [49], the estimates ĥij of hij and the corresponding
estimation errors h̃ij = hij − ĥij are uncorrelated and i.i.d.
complex Gaussian distributed. Hence, we can write

ĥij = hij + h̃ij ,

where hij and h̃ij are independent with zero mean and
variance 1 − τ2 and τ2, respectively. The variance τ2 of the
estimation error h̃ij is given by [47]

τ2 =
1

1 + Ttρul
, (79)

where we defined the uplink SNR ρul as ρul , Pul/σ
2.

B. Optimization of Channel Training

We focus on equal power allocation among the users, i.e.,
pk = P/K ∀k, because it is optimal for large M and
τ2
k = τ2 ∀k, see Section V-B. Since Tt channel uses have

already been consumed to train the transmitter about the user
channels, there remains an interval of length T − Tt for DL
data transmission and thus we have the pre-log factor 1−Tt/T .
The net sum rate approximation reads

R̂sum = K

(
1− Tt

T

)
log (1 + γ◦k) . (80)

To compute the training length Tt that maximizes the
net sum rate approximation (80), we substitute γ◦k,zf from
Corollary 4 into (80) and the approximated net sum rate R̂zf

sum

under ZF precoding takes the form

R̂zf
sum = K

(
1− Tt,zf

T

)
log

(
1 +

1− τ2

τ2 + 1
ρdl

(β − 1)

)
, (81)

where ρdl , P/σ2. Similarly, for RZF-CDA precoding the
approximated net sum rate R̂rzf

sum reads

R̂rzf
sum = K

(
1− Tt,rzf

T

)
log (1 + γ◦rzf) , (82)

where γ◦rzf is given in Corollary 8.

Substituting (79) into (81) and (82), we obtain

R̂zf
sum = K

(
1− Tt,zf

T

)
log

(
1 +

Tt,zfρul(β − 1)

1 + Tt,zf
ρul
ρdl

+ 1
ρdl

)
,

(83)

R̂rzf
sum = K

(
1− Tt,rzf

T

)
log

(
1

2
+

1

2
ωρdl(β − 1) +

χ(ω)

2

)
,

(84)

χ(ω) =
√

(β − 1)2ω2ρ2
dl + 2ωρdl(1 + β) + 1, (85)

ω =
Tt,rzfρul

1 + Tt,rzfρul + ρdl
.

For β > 1 under ZF precoding and β ≥ 1 for RZF-CDA
precoding, it is easy to verify that the functions R̂zf

sum and
R̂rzf

sum are strictly concave in Tt,zf and Tt,rzf in the interval
[K,T ], respectively, where K is the minimum amount of
training required, due to the orthogonality constraint of the
pilot sequences. Therefore, we can apply standard convex
optimization algorithms [50] to evaluate

T ?◦t,zf = arg max
K≤Tt,zf≤T

R̂zf
sum, (86)

T ?◦t,rzf = arg max
K≤Tt,rzf≤T

R̂rzf
sum. (87)

In the following, we derive approximate explicit solutions to
(86) and (87) for high SNR. We distinguish two cases, (i) the
UL and DL SNR vary with finite ratio c , ρdl/ρul and (ii)
ρdl varies, while ρul remains finite. In contrast to case (i),
the system in case (ii) is interference-limited due to the finite
transmit power of the users.

1) Case 1: finite ratio ρdl/ρul: We derive approximate, but
explicit, solutions for the optimal training intervals T ?◦t,zf , T

?◦
t,rzf

in the high SNR regime and derive their limiting values for
asymptotically low SNR.

a) High SNR Regime: An approximate closed form
solution to (86) and (87) is summarized in the following
proposition.

Proposition 9: Let ρdl, ρul be large with c= ρdl/ρul con-
stant. Then, an approximation of the sum rate maximizing
amount of channel training T ?◦t,zf and T ?◦t,rzf under ZF and RZF-
CDA precoding is given by

T ?◦t,zf = max

[
c

2

√
1 + 2

2T + c

cR̄◦zf

− c

2
,K

]
, (88)

T ?◦t,rzf =

max
[
c
2

√
1 + 2T+c

cR̄◦rzf
− c

2 ,K
]

if β = 1,

max
[
c
2

√
1 + 2 2T+c

cR̄◦rzf
− c

2 ,K
]

if β > 1,
(89)

where R̄◦zf =log(1 + ρdl(β− 1)) and R̄◦rzf =log( 1
2 + 1

2ρdl(β−
1) + χ(1)

2 ).
Proof: The proof is presented in Appendix V.

Thus, for a fixed DL SNR ρdl, the optimal training intervals
scale as T ?◦t,zf , T

?◦
t,rzf ∼

√
T . Likewise, for a constant T , the

optimal training intervals scale as T ?◦t,zf , T
?◦
t,rzf∼1/

√
log(ρdl).

Under ZF precoding the same scaling has been reported in
[51]–[53]. From this scaling it is clear that, as ρdl →∞, T ?◦t
tends to K, the minimum amount of training.
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Moreover, for β > 1, R̄◦rzf ≥ R̄◦zf with equality if ρdl→∞.
Therefore, RZF-CDA requires less training than ZF, but the
training interval of both schemes is equal for asymptotically
high SNR. In case of full system loading (β= 1), RZF-CDA
requires less training compared to the scenario where β>1.

b) Low SNR Regime: For asymptotically low SNR
ρdl, ρul→0 with constant ratio c=ρdl/ρul the optimal amount
of training is given in the subsequent proposition.

Proposition 10: Let ρdl, ρul → 0 with constant ratio c =
ρdl/ρul and T ≥ 2K. Then, the sum rate maximizing amount
of channel training T ?◦t,zf and T ?◦t,rzf under ZF and RZF-CDA
precoding converges to

lim
ρdl→0

T ?◦t,zf = lim
ρdl→0

T ?◦t,rzf =
T

2
. (90)

Proof: Applying log(1+x) = x+O(x2) and ρul = ρdl/c,
equations (83) and (84) take the form

R̂zf
sum = K

(
1− Tt,zf

T

)
Tt,zf(β − 1)

c
ρ2
dl +O(ρ4

dl), (91)

R̂rzf
sum = K

(
1− Tt,rzf

T

)
Tt,rzfβ

c
ρ2
dl +O(ρ4

dl). (92)

Maximizing equations (91) and (92) with respect to Tt,zf and
Tt,rzf , respectively, yields (90). Since, by definition, we assume
orthogonal pilot sequences, hence Tt ≥ K, the result (90)
implies that T ≥ 2K, which completes the proof.

For ZF precoding, the limit has also been reported in [54].
2) Case 2: ρdl � ρul with finite ρul: This scenario models

a high capacity DL channel where the primary sum rate loss
stems from the inaccurate CSIT estimate due to limited-rate
UL signaling caused, e.g., by a finite transmit power of the
users. Thus, the system becomes interference-limited and the
optimal amount of channel training under ZF precoding is
given in the following proposition.

Proposition 11: Let ρdl →∞ and ρul finite. Then the (ap-
proximated) sum rate maximizing amount of channel training
T ?◦t,zf is given by

T ?◦t,zf =
1

ρul(β − 1)

(
a

W(ae)
− 1

)
, (93)

where W(z) is the Lambert W-function.
Proof: For ZF precoding and ρdl→∞, the sum rate (83)

can be approximated as

R̂zf
sum ≈ K

(
1− Tt,zf

T

)
log (1 + Tt,zfρul(β − 1)) . (94)

Setting the derivative of (94) with respect to Tt,zf to zero,
yields

log(a/ω(Tt,zf)) = ω(Tt,zf)− 1, (95)

where a,ρulT (β−1)+1 and ω(Tt,zf),(Ta)/[T +Tt,zf(a−
1)]. Equation (95) can be written as

ω(Tt,zf)e
ω(Tt,zf ) = ae.

Notice that ω(Tt,zf)=W(ae). Thus, solving ω(Tt,zf)=W(ae)
for Tt,zf yields (93).

For asymptotically low ρul we obtain limρul→0 T
?◦
t,zf =T/2,

implying that T ≥ 2K.
For RZF-CDA precoding, no accurate closed-form solution

to (87) has yet been found.
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C. Numerical Results

In Figure 12, we compare the approximated optimal training
intervals T ?◦t,zf , T

?◦
t,rzf to T ?t,zf , T

?
t,rzf computed via exhaustive

search and averaged over 1 000 independent channel realiza-
tions. The regularization parameter α is computed using the
large system approximation α?◦ in (55). Figure 12 shows that
the approximate solutions T ?◦t,zf , T

?◦
t,rzf become very accurate

for K = 16. Moreover, it can be observed that the approxi-
mations in (88) and (89) match very well. Further note that
for M

K = 2, ZF and RZF-CDA need approximately the same
amount of training, as predicted by equations (88) and (89).

Figure 13 depicts the optimal relative amount of training
T ?◦t /T for ZF and RZF-CDA precoding. We observe that
T ?◦t /T decreases with increasing SNR as 1/

√
log(ρdl). That

is, for increasing SNR, the estimation becomes more accurate
and resources for channel training are reallocated to data
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transmission. Furthermore, T ?◦t /T saturates at K/T due to the
orthogonality constraint on the pilot sequences. As expected
from (88) and (89), we observe that the optimal amount of
training is less for RZF-CDA than for ZF precoding. Moreover,
the relative amount of training T ?◦t /T for both ZF and RZF-
CDA converges at low SNR to 1/2 and at high SNR to the
minimum amount of training K, as predicted by the theoretical
analysis.

Figure 14 shows the ergodic sum rate under ZF precoding
with fixed UL SNR ρul=5 dB for various training intervals.
We observe (i) no significant difference in the performance
of the schemes employing either optimal training T ?t,zf , com-
puted via exhaustive search, or T ?◦t,zf obtained from a convex
optimization of the large system approximation (83), (ii) a
small performance loss at low and medium SNR of the (high-
SNR) approximation of T ?◦t,zf in (93) and (iii) a significant
performance loss if the minimum training interval Tt,zf = K
is used for all SNR. We conclude that our approximation in
(93) achieves very good performance and can therefore be
utilized to compute Tt,zf very efficiently.

VIII. CONCLUSION

In this paper, we presented a consistent framework for the
study of ZF and RZF precoding schemes based on the theory
of large dimensional random matrices. The tools from RMT
allowed us to consider a very realistic channel model ac-
counting for per-user channel correlation as well as individual
channel gains for each link. The system performance under
this general type of channel is extremely difficult to study
for finite dimensions but becomes feasible by assuming large
system dimensions. Simulation results indicated that these
approximations are very accurate even for small system dimen-
sions and reveal the deterministic dependence of the system
performance on several important system parameters, such as
the transmit correlation, signal powers, SNR, and CSIT quality.
Applied to practical optimization problems, the deterministic
approximations lead to important insights into the system

behavior, which are consistent with previous results, but go
further and extend them to more realistic channel models and
other linear precoding techniques. Furthermore, the proposed
channel-independent performance approximations can be used
to simulate the system behavior without having to carry out
extensive Monte Carlo simulations.

APPENDIX I
PROOF OF THEOREM 1

The proof is structured as follows: In Appendix I-A, we
prove that mBN ,QN

(z) − 1
N trD−1 N→∞−→ 0 almost surely,

where D is an auxiliary random variable involving the terms
mBN ,Θi(z). Appendix I-B shows that the sequence {e(k)

N,i(z)}
defined by (12) converges to eN,i (11) as k →∞, if properly
initialized. Finally, in Appendix I-C we demonstrate that eN,i
satisfies |mBN ,Θi − eN,i|

N→∞−→ 0, almost surely.

A. Convergence to an Auxiliary Variable

The objective is to approximate the random variable
mBN ,QN

(z) by an appropriate functional 1
N trD−1 such that

1

N
trQN (BN − zIN )

−1 − 1

N
trD−1 N→∞−→ 0, (96)

almost surely. Take z∈C+. From (96) we proceed by applying
Lemma 2 and obtain

QN (BN − zIN )
−1 −D−1 =

D−1
[
D− (XH

NXN + SN − zIN )Q−1
N

]
QN (BN − zIN )

−1
.

(97)

We choose D as

D=(R + SN − zIN ) Q−1
N , (98)

where R is to be determined later, and obtain

QN (BN − zIN )
−1 −D−1

= D−1R (BN − zIN )
−1 −D−1XH

NXN (BN − zIN )
−1
.

Consider the term D−1XH
NXN (BN − zIN )

−1. Taking the
trace, together with XH

NXN =
∑n
i=1 Ψiyiy

H
i ΨH

i , we have

1

N
trD−1XH

NXN (BN − zIN )
−1

=
1

N
trD−1

n∑
i=1

Ψiyiy
H
i ΨH

i (BN − zIN )
−1

=
1

N

n∑
i=1

yH
i ΨH

i (BN − zIN )
−1

D−1Ψiyi.

Denoting B[i] = BN − Ψiyiy
H
i ΨH

i and applying Lemma 1,
we obtain

1

N
trD−1XH

NXN (BN − zIN )
−1

=
1

N

n∑
i=1

yH
i ΨH

i

(
B[i] − zIN

)−1
D−1Ψiyi

1 + yH
i ΨH

i

(
B[i] − zIN

)−1
Ψiyi

.
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Therefore, the left-hand side of (96) takes the form

1

N
trQN (BN − zIN )

−1 − 1

N
trD−1

=
1

N
trD−1R (BN − zIN )

−1

− 1

N

n∑
i=1

yH
i ΨH

i

(
B[i] − zIN

)−1
D−1Ψiyi

1 + yH
i ΨH

i

(
B[i] − zIN

)−1
Ψiyi

. (99)

The choice of an appropriate value for R, such that (96) is
satisfied, requires some intuition. From Lemma 4 we know that
yH
i ΨH

i

(
B[i] − zIN

)−1
Ψiyi − 1

N trΘi

(
B[i] − zIN

)−1 N→∞−→
0, almost surely. Then, from Lemma 8, we surely have

1

N
trΘi

(
B[i] − zIN

)−1 − 1

N
trΘi (BN − zIN )

−1 N→∞−→ 0.

From the previous arguments, R will be chosen as

R =
1

N

n∑
i=1

Θi

1 + 1
N trΘi (BN − zIN )

−1 . (100)

Note that R is random since it depends on BN . The remainder
of this subsection proves (96) for the specific choice of R in
(100). Substituting (100) into (99) we obtain

wN , wQN
,

1

N
trQN (BN − zIN )

−1 − 1

N
trD−1 (101)

=
1

N

n∑
i=1

1
N trΘi (BN − zIN )

−1
D−1

1 + 1
N trΘi (BN − zIN )

−1

− 1

N

n∑
i=1

yH
i ΨH

i

(
B[i] − zIN

)−1
D−1Ψiyi

1 + yH
i ΨH

i

(
B[i] − zIN

)−1
Ψiyi

. (102)

In order to prove that wN
N→∞−→ 0, almost surely, we divide

the left-hand side of (102) into 4n terms, i.e.,

wN =
1

N

n∑
i=1

[
d

(1)
i + d

(2)
i + d

(3)
i + d

(4)
i

]
. (103)

It is then easier to show that each d(l)
i , (l=1, 2, 3, 4), converges

to zero, sufficiently fast, as N → ∞, which will imply
wN

N→∞−→ 0, almost surely. The d(l)
i are chosen as

d
(1)
i =

yH
i ΨH

i

(
B[i] − zIN

)−1
D−1

[i] Ψiyi

1 + yH
i ΨH

i

(
B[i] − zIN

)−1
Ψiyi

−
yH
i ΨH

i

(
B[i] − zIN

)−1
D−1Ψiyi

1 + yH
i ΨH

i

(
B[i] − zIN

)−1
Ψiyi

d
(2)
i =

1
N trΘi

(
B[i] − zIN

)−1
D−1

[i]

1 + yH
i ΨH

i

(
B[i] − zIN

)−1
Ψiyi

−
yH
i ΨH

i

(
B[i] − zIN

)−1
D−1

[i] Ψiyi

1 + yH
i ΨH

i

(
B[i] − zIN

)−1
Ψiyi

d
(3)
i =

1
N trΘi (BN − zIN )

−1
D−1

1 + yH
i ΨH

i

(
B[i] − zIN

)−1
Ψiyi

−
1
N trΘi

(
B[i] − zIN

)−1
D−1

[i]

1 + yH
i ΨH

i

(
B[i] − zIN

)−1
Ψiyi

d
(4)
i =

1
N trΘi (BN − zIN )

−1
D−1

1 + 1
N trΘi (BN − zIN )

−1

−
1
N trΘi (BN − zIN )

−1
D−1

1 + yH
i ΨH

i

(
B[i] − zIN

)−1
Ψiyi

,

where we defined

D−1
[i] = QN

(
1

N

n∑
i=1

Θi

1 +mB[i],Θi
(z)
− zIN + SN

)−1

,

where mB[i],Θi
(z)= 1

N trΘi

(
B[i] − zIN

)−1
.

In the course of the development of the proof, we require
the existence of moments of order p of wN in (103), i.e.,
E [|wN |p] 6= 0, for some integer p. First we bound (103)
as E[|wN |p] ≤ E[(

∑4n
i=1 d̃i)

p]. The application of Hölder’s
inequality yields

E [|wN |p] ≤
(

4

β

)p−1
1

N

n∑
i=1

4∑
l=1

E
[
|d(l)
i |

p
]
.

Furthermore, for some T,Q<∞, we can uniformly bound Θi

and QN as

lim sup
N→∞

sup
1≤i≤n

‖Θi‖ ≤ T (104)

lim sup
N→∞

‖QN‖ ≤ Q. (105)

Proposition 12: Let the following upper bounds be well
defined and let the entries of yi have eighth order moment
of order O

(
1
N4

)
. Then the pth order moments E

[
|d(l)
i |p

]
,

(l=1, 2, 3, 4) can be bounded as

E
[
|d(1)
i |

p
]
≤ 2p−1

(
βT 3Q|z|3

(=z)7

)p
1

Np

(
C

(1)
p

Np/2
+ 1

)
(106)

E
[
|d(2)
i |

p
]
≤ |z|4

(=z)4

C
(2)
p

Np/2
,

E
[
|d(3)
i |

p
]
≤
(
|z|TQ
N(=z)3

)p [
1 +

βT 2|z|2

(=z)4

]p
,

E
[
|d(4)
i |

p
]
≤ 2p−1

(
TQ|z|2

(=z)4

)p [
C

(4)
p

Np/2
+

T p

Np(=z)p

]
,

where the C(i)
p , i∈{1, 2, 4} are constants depending only on

p.
Proof: The proof is based on various common inequali-

ties. Applying Lemma 9, |d(1)
i | can be upper-bounded as

|d(1)
i | ≤

|z|
=z

∣∣∣yH
i ΨH

i

(
B[i] − zIN

)−1
[
D−1

[i] −D−1
]

Ψiyi

∣∣∣ .
We further bound |d(1)

i | by applying Lemmas 10 and 12 with
the fact that ‖(B[i] − zIN )−1‖≤ 1

=z . Together with (104) we
have

|d(1)
i | ≤

|z|T
(=z)2

‖yi‖22‖D−1
[i] −D−1‖.

Similarly, with Lemma 2, it can be shown that ‖D−1
[i] −D−1‖≤

βT 2Q|z|2
N(=z)5 and thus

|d(1)
i | ≤

βT 3Q|z|3

N(=z)7
‖yi‖22.
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The pth order moment of |d(1)
i | thus satisfies

E
[
|d(1)
i |

p
]
≤
[
βT 3Q|z|3

(=z)7

]p
1

Np
E
[∣∣yH

i yi
∣∣p] .

Applying the inequality |x+ y|p ≤ 2p−1(|x|p + |y|p) yields

E
[
|d(1)
i |

p
]
≤ 2p−1

(
βT 3Q|z|3

N(=z)7

)p (
E
[∣∣yH

i yi − 1
∣∣p]+ 1

)
.

If the moments E[|d(1)
i |4] and E[|d(1)

i |2p] exist and are
bounded, we can apply Lemma 3 and obtain (106). For the
sake of brevity, we omit the derivations of the remaining
moments E[|d(l)

i |p], l = {2, 3, 4}, since the techniques are
similar to the previous procedure.
From Proposition 12, we conclude that all E[|d(l)

i |p] are
summable if p = 2 + ε, ε > 0. Therefore, E [|wN |p] is
summable for p=2 + ε and hence the Borel-Cantelli Lemma
[40] implies that wN

N→∞−→ 0, almost surely. Note that with
the same approach, the convergence region can be extended
to z∈C \ R+.

We now prove the existence and uniqueness of a solution
to (11).

B. Proof of Convergence of the Fixed Point Equation

In this section we consider the fixed point equation (11). We
first prove that, properly initialized, the sequence {e(k)

N,i}, (k=
1, 2, . . . ), converges to a limit eN,i as k→∞. Subsequently,
we show that this limit eN,i satisfies |mBN ,Θi−eN,i|

N→∞−→ 0,
almost surely.

Proposition 13: Let z ∈ C+ and {e(k)
N,i(z)} (k ≥ 0) be the

sequence defined by (12). If {e(0)
N,i(z)} is a Stieltjes transform,

then all {e(k)
N,i(z)} (k>0) are Stieltjes transforms as well.

Proof: Suppose (12) is initialized by e
(0)
N,i(z) = −1/z,

which is the Stieltjes transform of a function with a single
mass in zero. We demonstrate that at all subsequent iterations
k > 0 the corresponding e

(k)
N,i(z) are Stieltjes transforms for

all N . For ease of notation we omit the dependence on z, the
e

(k+1)
N,i are given by

e
(k+1)
N,i =

1

N
trΘi

 1

N

n∑
j=1

c
(k)
N,jΘj + SN − zIN

−1

,
1

N
trΘiAk, (107)

where c(k)
N,j=1/(1 + e

(k)
N,j). In (107), multiplying Ak from the

right by (AH
k )−1AH

k , we obtain

e
(k+1)
N,i =

1

N
trAH

kΘiAk

 1

N

n∑
j=1

c
∗,(k)
N,j Θj

+ v
(k)
i , (108)

where v
(k)
i = 1

N trAH
kΘiAk [SN − z∗IN ]. Denoting r

(k)
i ,

1
N [ 1

N trAH
kΘiAkΘ1, . . . ,

1
N trAH

kΘiAkΘn]T and c
(k)
N ,

[c
(k)
N,1, . . . , c

(k)
N,n]T, (108) takes the form

e
(k+1)
N,i = r

T,(k)
i c

H,(k)
N + v

(k)
i . (109)

Since the Θi are uniformly bounded w.r.t. N , we have
r

(k)
i , v

(k)
i > 0. To show that e(k+1)

N,i are Stieltjes transforms
of a nonnegative finite measure, the following three con-
ditions must be verified [28, Proposition 2.2]: For z ∈
C+ (i) e

(k+1)
N,i (z) ∈ C+, (ii) ze

(k+1)
N,i (z) ∈ C+ and (iii)

limy→+∞−iye
(k+1)
N,i (iy)<∞. From (109) it is easy to verify

that all three conditions are met, which completes the proof.

We are now in a position to show that any sequence {e(k)
N,i(z)},

(k>0) converges to a limit eN,i(z) as k→∞.
Proposition 14: Any sequence {e(k)

N,i(z)}, (k > 0) defined
by (12) converges to a Stieltjes transform, denoted eN,i(z) as
k→∞ if e(0)

N,i(z) is a Stieltjes transform.
Proof: Let e(k)

N,i(z) = 1
N trΘiA

(k−1) and e
(k+1)
N,i (z) =

1
N trΘiA

(k), where

A(k−1) =

 1

N

n∑
j=1

Θj

1 + e
(k−1)
N,j (z)

+ SN − zIN

−1

,

A(k) =

 1

N

n∑
j=1

Θj

1 + e
(k)
N,j(z)

+ SN − zIN

−1

.

Applying Lemma 2, the difference |e(k)
N,i(z)− e

(k+1)
N,i (z)| is

|e(k)
N,i − e

(k+1)
N,i | =∣∣∣∣∣∣ 1

N
trA(k+1)ΘiA

(k)

 1

N

n∑
j=1

Θj

e
(k)
N,j − e

(k−1)
N,j[

1 + e
(k)
N,j

] [
1 + e

(k−1)
N,j

]
∣∣∣∣∣∣

(110)

With Lemmas 9, 11 and 12, (110) can be bounded as

|e(k)
N,i − e

(k+1)
N,i | ≤ C sup

1≤i≤n
|e(k)
N,i − e

(k−1)
N,i |, (111)

where C = βT 2|z|2
(=z)4 . Clearly, the sequence {e(k)

N,i} converges
to a limit eN,i for z restricted to the set {z ∈ C+ : C < 1}.
Proposition 13 shows that all {e(k)

N,i} are uniformly bounded
Stieltjes transforms and therefore their limit is analytic. Since
{e(k)
N,i(z)} for {z∈C+ : C < 1} is at least countable and has

a cluster point, Vitali’s convergence theorem [15, Theorem
3.11] ensures that the sequence {e(k)

N,i} must converge for all
z∈C\R+ and their limit is eN,i(z).

It is straightforward to verify, that the previous holds also
true for z∈C−.

Remark 8: For z < 0, the existence of a unique solution
to (11) as well as the convergence of (12) from any real
initial point can be proved within the framework of standard
interference functions [55]. The strategy is as follows. Let
ēN , ēN (z) = [ēN,1(z), ēN,2(z), . . . , ēN,n(z)]T ∈ Rn and
f(ēN )=[f1(ēN ), f2(ēN ), . . . , fn(ēN )]T∈Rn, where

fi(ēN ) =
1

N
trΘi

 1

N

n∑
j=1

Θj

1 + ēN,j(z)
+ SN − zIN

−1

.

Theorems 1 and 2 in [55] prove that, if f(ēN ) is a feasible
standard interference function, then (12) converges to a unique
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solution eN with all nonnegative entries for any initial point
e

(0)
N,i, . . . , e

(0)
N,n. The proof that f(ēN ) is feasible as well as

a standard interference function is straightforward and details
are omitted in this correspondence.

The uniqueness of eN , whose entries are Stieltjes transforms
of nonnegative finite measures, ensures the functional unique-
ness of eN,i(z), . . . , eN,n(z) as a Stieltjes transform solution
to (11) for z∈C\R+. This completes the proof of uniqueness.

Denote mBN ,Θi
(z) , 1

N trΘi (BN − zIN )
−1. In the fol-

lowing section, we prove that eN,i(z) = limk→∞ e
(k)
N,i(z)

satisfies |mBN ,Θi
(z)− eN,i(z)|

N→∞−→ 0, almost surely.

C. Proof of Convergence of the Deterministic Equivalent

In Section I-A we showed that wN =
1
N trQN (BN − zIN )

−1− 1
N trQN (R + SN − zIN )

N→∞−→ 0,
almost surely. Furthermore, in Section I-B we proved that the
sequence defined by (11) converges to a limit eN,i. It remains
to prove that

mBN ,Θi
− eN,i =

1

N
trΘi (BN − zIN )

−1

− 1

N
trΘi

 1

N

n∑
j=1

Θj

1 + eN,j(z)
+ SN − zIN

−1

N→∞−→ 0,

(112)

almost surely. Denote wN,i,wΘi
with wΘi

defined in (101).
Applying Lemma 2, (112) can be written as

mBN ,Θi − eN,i

= wN,i +
1

N
trΘi (A + SN − zIN )

−1 − eN,i(z)

= wN,i −
1

N
trΘiĀ

−1 [A−B] B̄−1,

where Ā , A+SN−zIN , A, 1
N

∑n
l=1

Θl

1+ 1
N trΘl(BN−zIN )−1

and B̄ , B + SN − zIN , B , 1
N

∑n
j=1

Θj

1+eN,j
. Applying

Lemmas 9 and 11, |mBN ,Θi
− eN,i| can be bounded as

|mBN ,Θi − eN,i| ≤ |wN,i|+ ‖Θi‖‖Ā−1‖‖B̄−1‖

×

∥∥∥∥∥∥ 1

N

n∑
j=1

Θj

|mBN ,Θj
− eN,j |

(1 +mBN ,Θj
)(1 + eN,j)

∥∥∥∥∥∥ .
(113)

Similar to (111), with Lemma 12, (113) can be further bounded
as

|mBN ,Θi − eN,i| ≤ |wN,i|+ C sup
1≤i≤n

|mBN ,Θi − eN,i|,

where C= βT 2|z|2
(=z)4 . Taking the supremum over all i=1, . . . , n,

we obtain

sup
1≤i≤n

|mBN ,Θi − eN,i| [1− C] ≤ sup
1≤i≤n

|wN,i|. (114)

From (114), on the set {z∈C+ : 0<C<1} 6= ∅, it suffices to
show that sup1≤i≤n |wN,i| goes to zero sufficiently fast. For

any ε>0 we have

P

(
sup

1≤i≤n
|wN,i| > ε

)
≤

n∑
i=1

P (|wN,i| > ε)

=

n∑
i=1

P (|wN,i|p > εp) . (115)

Applying Markov’s inequality, (115) can be further bounded
as

P

(
sup

1≤i≤n
|wN,i| ≥ ε

)
≤ 1

εp

n∑
i=1

E [|wN,i|p] .

For all n and p=4+ε with ε>0, the term
∑n
i=1E [|wN,i|p] is

summable and we can apply the Borel-Cantelli Lemma which
implies sup1≤i≤n wN,i

N→∞−→ 0, almost surely.
On {z ∈ C+ : 0 < C < 1}, the eN,i(z) are summable

and have a cluster point. Furthermore, Proposition 13 assures
that the eN,i(z) are Stieltjes transforms and hence uniformly
bounded on every closed set in C \ R+. Therefore, Vitali’s
convergence theorem [15, Theorem 3.11] applies, and extends
the convergence region of (112) to z∈C \ R+.

Since (112) holds true, the following convergence holds
almost surely

1

N
trD−1−

1

N
trQN

(
1

N

n∑
i=1

Θi

1 + eN,i
+ SN − zIN

)−1

N→∞−→ 0.

(116)

The convergence in (116) implies the convergence in (9),
which completes the proof.

APPENDIX II
PROOF OF THEOREM 2

The strategy is as follows: The SINR γk,rzf in (16) consists
of three terms, (i) the scaled signal power |hH

kŴĥk|2: (ii)
the scaled interference power hH

kŴĤH
[k]P[k]Ĥ[k]Ŵhk (both

scaled by ξ−2) and (iii) the term Ψ of the power normalization.
For each of these three terms we will subsequently derive
a deterministic equivalent which together constitute the final
expression for γ◦k,rzf .

A. Deterministic equivalent for Ψ

The term Ψ=trPĤ(ĤHĤ +MαIM )−2ĤH can be written
as

Ψ =

K∑
k=1

pkĥ
H
k

(
ĤHĤ +MαIM

)−2

ĥk (117)

(a)
=

1

M

K∑
k=1

pk
ẑHkΘ

1/2
k C−2

[k] Θ
1/2
k ẑk(

1 + ẑHkΘ
1/2
k C−1

[k] Θ
1/2
k ẑk

)2 , (118)

where C[k] ,Γ[k] + αIM with Γ[k] ,
1
M ĤH

[k]Ĥ[k] and in (a)
we applied Lemma 1 twice together with (6). For M large and
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under Assumptions 1, we apply Lemma 4 and obtain

Ψ− 1

M

K∑
k=1

pk

1
M trΘkC

−2
[k](

1 + 1
M trΘkC

−1
[k]

)2

M→∞−→ 0

(b)⇔ Ψ− 1

M

K∑
k=1

pk
m′Γ,Θk

(−α)

(1 +mΓ,Θk
(−α))

2

M→∞−→ 0,

almost surely, where in (b) we applied Lemma 6, the definition
(8) and denoted m′Γ,Θk

(−α) the derivative of mΓ,Θk
(z) along

z at z=−α. Applying Theorem 1 to mΓ,Θk
(z), we obtain

mΓ,Θk
(−α)− 1

M
trΘkT

M→∞−→ 0,

m′Γ,Θk
(−α)− 1

M
trΘkT

′ M→∞−→ 0,

almost surely, where T is defined in (21) and T′ is given by

T′ = T

 1

M

K∑
j=1

Θje
′
j

(1 + ej)2
+ IM

T. (119)

Define e′ = [e′1, . . . , e
′
K ]T with e′i = 1

M trΘiT
′. The system

of K equations formed by the e′i takes the form e′ = Je′ +
v and the explicit solution e′ is given in (24). Substituting
mΓ,Θk

(−α) and m′Γ,Θk
(−α) by their respective deterministic

equivalents ek and e′k, we obtain Ψ◦ in (22) such that Ψ −
Ψ◦

M→∞−→ 0, almost surely.

B. Deterministic equivalent for hH
kŴĥk

Similar to the derivations in (117) and (118), we have

hH
kŴĥk =

zHkΘ
1/2
k C−1

[k] Θ
1/2
k ẑk

1 + ẑHkΘ
1/2
k C−1

[k] Θ
1/2
k ẑk

=

√
1− τ2

kzHkΘ
1/2
k C−1

[k] Θ
1/2
k zk

1 + ẑHkΘ
1/2
k C−1

[k] Θ
1/2
k ẑk

+
τkz

H
kΘ

1/2
k C−1

[k] Θ
1/2
k qk

1 + ẑHkΘ
1/2
k C−1

[k] Θ
1/2
k ẑk

.

Since qk and zk are independent, we apply Lemma 5 together
with Lemma 4 and 6 and obtain

hH
kŴĥk −

√
1− τ2

k

m◦k
1 +m◦k

M→∞−→ 0,

almost surely.

C. Deterministic equivalent of hH
kŴĤH

[k]P[k]Ĥ[k]Ŵhk

With (5) and C,Γ + αIM , Γ, 1
M ĤHĤ, we have

hH
kŴĤH

[k]P[k]Ĥ[k]Ŵhk

=
1

M
zHkΘ

1/2
k C−1ĤH

[k]P[k]Ĥ[k]C
−1Θ

1/2
k zk (120)

=
1

M
zHkΘ

1/2
k C−1

[k] Ĥ
H
[k]P[k]Ĥ[k]C

−1Θ
1/2
k zk+

1

M
zHkΘ

1/2
k

[
C−1 −C−1

[k]

]
ĤH

[k]P[k]Ĥ[k]C
−1Θ

1/2
k zk. (121)

Substituting C−1 − C−1
[k] =−C−1(C − C[k])C

−1
[k] with C −

C[k] = Θ
1/2
k (c0zkz

H
k + c1qkq

H
k + c2zkq

H
k + c2qkz

H
k )Θ

1/2
k ,

where c0 , 1 − τ2
k , c1 , τ2

k and c2 , τk
√

1− τ2
k into (121),

we obtain a sum of five terms

hH
kŴĤH

[k]P[k]Ĥ[k]Ŵhk =
1

M
zHkBkzk

− c0
M

zHkAkzkz
H
kBkzk −

c1
M

zHkAkqkq
H
kBkzk

− c2
M

zHkAkzkq
H
kBkzk −

c2
M

zHkAkqkz
H
kBkzk, (122)

where we denoted Ak , Θ
1/2
k C−1Θ

1/2
k and Bk ,

Θ
1/2
k C−1

[k] Ĥ
H
[k]P[k]Ĥ[k]C

−1Θ
1/2
k . Noting that c0 + c1 =1 and

c0c1−c22 =0, we apply Lemma 7 to each of the four quadratic
forms in (122). Under Assumption 1, we obtain

zHkAkzk −
u(1 + c1u)

1 + u

M→∞−→ 0,

zHkAkqk −
−c2u2

1 + u

M→∞−→ 0,

almost surely, where u = 1
M trΘkC

−1
[k] . Moreover, under

Assumptions 1, 3 and ‖P‖ <∞ uniformly on M , we have

zHkBkzk −
u′(1 + c1u)

1 + u

M→∞−→ 0,

qH
kBkzk −

−c2uu′

1 + u

M→∞−→ 0,

almost surely, where u′ = 1
M trP[k]Ĥ[k]C

−1
[k] ΘkC

−1
[k] Ĥ

H
[k].

Substituting the random terms in (122) by their respective
deterministic equivalents yields

hH
kŴĤH

[k]P[k]Ĥ[k]Ŵhk −

[
1

M

u′(1 + c1u)

1 + u

− 1

M

c0(1 + c1u)2 − c1c22u2 − 2c22u

(1 + u)2
uu′

]
M→∞−→ 0, (123)

almost surely. The second term in brackets of (123) reduces
to 1

M
1−τ2

k

(1+u)2uu
′ and we obtain

hH
kŴĤH

[k]P[k]Ĥ[k]Ŵhk−
1

M

1− τ2
k

[
1− (1 + u)2

]
(1 + u)2

u′
M→∞−→ 0, (124)

almost surely. From Lemma 6 we have

u−mΓ,Θk
(−α)

M→∞−→ 0,

1

M
u′ −Υk

M→∞−→ 0,

almost surely, where mΓ,Θk
(−α) = 1

M trΘkC
−1 and Υk =

1
M2 trP[k]Ĥ[k]C

−1ΘkC
−1ĤH

[k]. Therefore, (124) becomes

hH
kŴĤH

[k]P[k]Ĥ[k]Ŵhk−
Υk

[
1− τ2

k

(
1− (1 +mΓ,Θk

(−α))2
)]

(1 +mΓ,Θk
(−α))2

M→∞−→ 0,

almost surely. We rewrite Υk as

Υk =
1

M

K∑
j=1,j 6=k

pj ẑ
H
j Θ

1/2
j C−1ΘkC

−1Θ
1/2
j ẑj .
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Applying Lemmas 1, 4 and 6, we obtain almost surely

Υk −
1

M

K∑
j=1,j 6=k

pj

1
M trΘjC

−1ΘkC
−1[

1 + 1
M trΘj (Γ + αIM )

−1
]2 M→∞−→ 0.

A deterministic equivalent ei of mΓ,Θi
(−α) =

1
M trΘi (Γ + αIM )

−1 such that mΓ,Θi
(−α) − ei

M→∞−→ 0,
almost surely is given in (20). To derive a deterministic
equivalent for 1

M trΘjC
−1ΘkC

−1, we can assume the Θk

invertible because the result is also a deterministic equivalent
for non-invertible matrices Θk, which is proved in [39,
Theorem 4]. Define C̄,Θ

−1/2
k ΓΘ

−1/2
k + αΘ−1

k , we have

1

M
trΘjC

−1ΘkC
−1 =

1

M
trΘ

−1/2
k ΘjΘ

−1/2
k C̄−2

=
d

dz

1

M
trΘj(Γ + αIM − zΘk)−1.

Denote mΓ−zΘk,Θj
(−α) = 1

M trΘj(Γ + αIM − zΘk)−1.
Applying Theorem 1, we obtain mΓ−zΘk,Θj

(−α) −
1
M trΘjTk(z)

M→∞−→ 0, almost surely, where Tk(z) is given
by

Tk(z) =

 1

M

K∑
j=1

Θj

1 + ej,k(z)
+ αIM − zΘk

−1

, (125)

where ei,k(z) = 1
M trΘiTk(z). By differentiating along z, we

have

m′Γ−zΘk,Θj
(−α)− 1

M
trΘjT

′
k(z)

M→∞−→ 0, (126)

almost surely, where T′k(z) = d
dzTk(z) is given by

T′k(z) = Tk(z)

 1

M

K∑
j=1

Θje
′
j,k(z)

(1 + ej,k(z))2
+ Θk

Tk(z).

Setting z = 0, we have ei = ei,k(0) = 1
M trΘiT with

T = Tk(0) defined in (21) and the e′1,k, . . . , e
′
K,k are

the unique positive solutions of e′i,k = 1
MΘiT

′
k(0). Define

e′k = [e′1,k, . . . , e
′
K,k]T and J and vk as

[J]ij =
1
M trΘiTΘjT

M(1 + ej)2
, (127)

vk =

[
1

M
trΘ1TΘkT, . . . ,

1

M
trΘKTΘkT

]T
. (128)

Therefore, e′k is given explicitly as

e′k = (IK − J)
−1

vk. (129)

Note that IK − J is always invertible since e′k is a
unique positive solution. Finally, substituting mΓ,Θj (−α)
and 1

M trΘjC
−1ΘkC

−1 by their respective deterministic
equivalents ej and e′j,k, we obtain Υ◦k in (23) such that

Υk −Υ◦k
M→∞−→ 0, almost surely.

If all available transmit power is allocated to a single user
(i.e., pk = P ), both Ψ◦ and Υ◦k are of order O(1/M) and
hence γ◦k,rzf grows unbounded with M . Therefore, we require
Assumption 2 to ensure that the convergence in (18) holds
true, which completes the proof.

APPENDIX III
PROOF OF THEOREM 3

We bound |γk,zf−γ◦k,zf | by adding and subtracting γk,rzf(α)
and γ◦k,rzf(α) and applying the triangle inequality. We obtain

|γk,zf − γ◦k,zf | ≤|γk,zf − γk,rzf(α)|+ |γk,rzf(α)− γ◦k,rzf(α)|
+ |γ◦k,rzf(α)− γ◦k,zf |. (130)

To show that |γk,zf−γ◦k,zf | → 0 almost surely as M,K →∞,
take ε > 0 arbitrarily small. For α > 0 small enough,
we will demonstrate that |γk,zf − γk,rzf(α)| < ε

3 almost
surely and |γ◦k,rzf(α) − γ◦k,zf | < ε

3 independently of M
and K. Furthermore, we show that for M,K large enough,
|γk,rzf(α) − γ◦k,rzf(α)| < ε

3 almost surely, from which we
conclude that (130) can be made as small as desired.

In order to prove that |γk,zf − γk,rzf(α)| < ε
3 for α small

enough, it suffices to study the matrices Ŵ = (ĤHĤ +
MαIM )−1 and Ŵ = ĤH(ĤĤH)−2Ĥ in the SINR of RZF
precoding (16) and ZF precoding (33). Applying the matrix
inversion lemma, Ŵ takes the form

Ŵ = ĤH(ĤĤH +MαIK)−2Ĥ +Mα(ĤHĤ +MαIM )−2.

Under Assumption 4, λmin(ĤĤH) > ε > 0 and, since
λmax(ĤĤH) is almost surely bounded for all large M,K,
for any continuous functional f(Ŵ) we have |f(Ŵ) −
f(Ŵ)| α→0−→ 0 with probability one. Therefore, |γk,zf −
γk,rzf(α)| α→0−→ 0 uniformly on M,K almost surely.

From Theorem 2, we have immediately that for any α > 0,
|γk,rzf(α)− γ◦k,rzf(α)| M→∞−→ 0 almost surely.

In order to prove |γ◦k,rzf(α)−γ◦k,zf | < ε
3 for α small enough,

uniformly on M , rewrite γ◦k,rzf(α) as

γ◦k,rzf(α)=
pk(1− τ2

k ) (αek)
2

Υ◦k(α2 − τ2
k [α2 − (α+ αek)2]) + Ψ◦

ρ (α+ αek)2
.

(131)
To show that γ◦k,zf = limα→0 γ

◦
k,rzf(α), we need to verify that

the limit α→ 0 of both numerator and denominator in (131)
exists and that the denominator is uniformly bounded away
from zero. Define ei = limα→0 αei(α). Under Assumption
5, all ei exist and are strictly positive. Since αei(α) is
holomorphic for α > 0, and is bounded away from zero in
a neighborhood of zero, by continuity extension in α = 0, we
obtain the limit α→ 0 as

ei = lim
α→0

 1

M
trΘi

 1

M

K∑
j=1

Θj

α+ αej(α)
+ IM

−1


=
1

M
trΘiT, (132)

where T is given in (37). It is easy to verify that e , supi ei
is uniformly bounded on M . We have

|e| ≤ sup
i
‖Θi‖. (133)

Define e , [e1, . . . , eK ]T, fi : e 7→ 1
M trΘiT(e) and f(e) =

[f1(e), . . . , fK(e)]T. Under Assumption 5, there exists a fixed
point f(e∗) = e∗, where e∗ , [e∗1, . . . , e

∗
K ]T with e∗i > 0 ∀i.
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In this case, we can extend the results in [55]2 and show that
the iterative fixed point algorithm defined by e(n+1) = f(e(n)),
(n ≥ 0), converges to the unique positive solution e∗ for any
initial point e(0), e(0)

i > 0 ∀i.
Furthermore, we need to show that both Υ◦k = limα→0 Υ◦k

and Ψ◦ = limα→0 Ψ◦ exist and are uniformly bounded on M .
Observe that

lim
α→0

α2e′i = ei (134)

and we obtain

Ψ◦ = lim
α→0

1

M

K∑
j=1

pj
α2e′j

(α+ αej)2
=

1

M

K∑
j=1

pj
ej
. (135)

Therefore, 0 < Ψ◦ < ∞ for all ei > 0. Similarly, define
e′j,k = limα→0 α

2e′j,k given in (38) and thus

Υ◦k = lim
α→0

1

M

K∑
j=1,j 6=k

pj
α2e′j,k

(α+ αej)2
=

1

M

K∑
j=1,j 6=k

pj
e′j,k
e2
j

,

satisfying 0 < Υ◦k <∞ for all ei > 0. To fulfill the constraints
ei > 0, we have to evoke Assumption 4. The limit γ◦k,zf =
limα→0 γ

◦
k,rzf(α) is given by (34), which completes the proof.

APPENDIX IV
PROOF OF PROPOSITION 2

The proof is inspired by [26] with adaptations to account
for imperfect CSIT. From Corollary 1 with pk = P/K ∀k and
τk = τ ∀k, for large M,K, the SINR γ◦rzf takes the form

γ◦rzf = ρβm◦(1− τ2)Γ,

where

Γ =

1
β e22 + α(1 +m◦)2e12

ρe22(1− τ2) + τ2ρ(1 +m◦)2e22 + (1 +m◦)2e12

with m◦ and eij defined in (27) and (29), respectively. Taking
the derivative along α, we obtain

∂γ◦rzf

∂α
= ρβm◦(1− τ2)Γ

[
m′◦

m◦
+

Γ′

Γ

]
, (136)

where

m′◦ = − (1 +m◦)2e12

1− e22
β

. (137)

and thus, together with (30), we have

m′◦

m◦
= − (1 +m◦)2e12

1
β e22 + α(1 +m◦)2e12

.

2Since f(e) can be extended by continuity in zero, where it satisfies f(0) =
0, the positivity property of f(e), defined in [55], does not hold. We precisely
need to show that e(n+1) = f(e(n)) can not converge to the fixed point 0,
which unfolds from Assumption 5 with similar arguments as in [55].

Therefore, (136) becomes

∂γ◦rzf

∂α
= ρβm◦(1− τ2)Γ

×

[
2α(1 +m◦)m′◦e12 + α(1 +m◦)2e′12 + 1

β e
′
22

1
β e22 + α(1 +m◦)2e12

− [1− τ2 + τ2(1 +m◦)2]ρe′22 + 2τ2ρ(1 +m◦)m′◦e22

[1− τ2 + τ2(1 +m◦)2]ρe22 + (1 +m◦)2e12

− 2(1 +m◦)m′◦e12 + (1 +m◦)2e′12

[1− τ2 + τ2(1 +m◦)2]ρe22 + (1 +m◦)2e12

]
.

(138)

Denoting χ , (1 + m◦)2e12, ψ , 2(1 + m◦)m′◦e12 + (1 +
m◦)2e′12 and φ , 1− τ2 + τ2(1 +m◦)2, (138) takes the form

∂γ◦rzf

∂α
= ρβm◦(1− τ2)Γ

×

[
1
β e
′
22 + αψ

1
β e22 + αχ

− ρφe′22 + ψ + 2τ2ρ(1 +m◦)m′◦e22

ρφe22 + χ

]

=
φρ2βm◦(1− τ2)Γ

Z

[(
α− 1

βρφ

)
(e22ψ − e′22χ)

−
2τ2(1 +m◦)m′◦e22[ e22β + αχ]

φ

]
,

where Z = ( 1
β e22 + αχ)(ρφe22 + χ). Denoting

Ω ,
2φρ2βm◦(1− τ2)(1 +m◦)m′◦e12e22Γ

Z

ν ,
(1 +m◦)2[e′12e22 − e12e

′
22]

2(1 +m◦)m′◦e12e22
, (139)

we obtain

∂γ◦rzf

∂α
= Ω

[(
α− 1

βρφ

)
(1 + ν)−

τ2[ e22β + αχ]

φe12

]
. (140)

Rewriting the term in brackets in (140), we have

∂γ◦rzf

∂α
= Ω

[
α−

[1 + ν + τ2ρ e22e12 ] 1
βρ

(1− τ2)(1 + ν) + τ2ν(1 +m◦)2

]
= 0.

Since Ω 6= 0 for ρ > 0 and τ2 < 1, the optimal regularization
parameter α?◦ is given by (53). Substituting (137) into (139),
the term ν takes the form

ν =
1− e22

β

2(1 +m◦)e12

e′12

e22

[
e′22

e′12

− e22

e12

]
. (141)

With (30) and (137), we obtain e′12 = −2e13
1−e22/β and e′22 =

−2e23
1−e22/β . Substituting these terms into (141) yields (54), which
completes the proof.

APPENDIX V
PROOF OF PROPOSITION 9

The sum rate R̂sum can be written as a function of the per-
user rate under perfect CSIT R̄◦ and the per-user rate gap
∆R◦ as

R̂sum = K

(
1− Tt

T

)[
R̄◦ −∆R◦

]
,
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where for ZF and RZF-CDA we have R̄◦zf =log(1+ρdl(β−1))

and R̄◦rzf =log( 1
2 + 1

2ρdl(β − 1) + χ(1)
2 ), respectively, and

∆R◦zf = log

(
(β − 1)(ρdl + 1)

1 + 1
ρdl

+ Tt,zf [
1
c + ρul(β − 1)]

)
,

∆R◦rzf = log

(
1 + ρdl(β − 1) + χ(1)

1 + ωρdl(β − 1) + χ(ω)

)
,

where χ(ω) is defined in (85). Denoting ψ,1+ 1
ρdl

+Tt,zf [
1
c+

ρul(β − 1)], the derivatives take the form

∂R̂zf
sum

∂Tt,zf
=− K

T
(R̄◦zf −∆R◦zf) +K

(
1− Tt,zf

T

)
×

(β − 1)(ρdl + 1)[ 1
c + ρul(β − 1)]

ψ2 + (β − 1)(ρdl + 1)ψ
, (142)

∂R̂rzf
sum

∂Tt,rzf
=− K

T
(R̄◦rzf −∆R◦rzf)

+K

(
1− Tt,rzf

T

)
ω′ρdl(β − 1) + χ′

1 + ωρdl(β − 1) + χ
, (143)

where ω′=∂ω/∂Tt,rzf =(1/ρul+ c)/(Tt,rzf + 1/ρul+ c)2 and
χ′=∂χ/∂Tt,rzf =[(β − 1)2ωω′ρ2

dl + ω′ρdl(1 + β) + 1]/χ. In
(142) and (143) the per-user rate-gap ∆R◦zf and ∆R◦rzf can be
neglected, since at high SNR ∆R◦zf�R̄◦zf and ∆R◦rzf�R̄◦rzf ,
respectively. Treating R̄◦zf , R̄

◦
rzf as constant, for ρdl, ρul →∞

and c= ρdl/ρul finite, solving (142) and (143) for Tt,zf and
Tt,rzf , respectively, yields (88) and (89), respectively, which
completes the proof.

APPENDIX VI
IMPORTANT LEMMAS

Lemma 1 (Matrix Inversion Lemma): [35, Lemma 2.2]
Let U be an N × N invertible matrix and x ∈ CN , c ∈ C
for which U + cxxH is invertible. Then

xH
(
U + cxxH

)−1
=

xHU−1

1 + cxHU−1x
.

Lemma 2 (Resolvent Identity): Let U and V be two invert-
ible complex matrices of size N×N . Then

U−1 −V−1 = −U−1(U−V)V−1.

Lemma 3: [56, Lemma B.26] Let A ∈ CN×N be a
deterministic matrix and x ∈ CN have i.i.d. complex entries
of zero mean, variance 1/N and bounded lth order moment
E |xi|l ≤ νl. Then for any p ≥ 1

E

∣∣∣∣xHAx− 1

N
trA

∣∣∣∣p ≤ Cp
Np/2

(
1

N
trAAH

)p/2 [
ν
p/2
4 + ν2p

]
,

(144)
where Cp is a constant solely depending on p.

Lemma 4: [15, Lemma 14.2] Let A1,A2, . . . , with AN ∈
CN×N , be a series of random matrices generated by the
probability space (Ω,F , P ) such that, for ω ∈ A ⊂ Ω, with
P (A) = 1, ‖AN (ω)‖ < K(ω) < ∞, uniformly on N . Let
x1,x2, . . . , with xN ∈CN , be random vectors of i.i.d. entries
with zero mean, variance 1/N and eighth order moment of
order O(1/N4), independent of AN . Then

xH
NANxN −

1

N
trAN

N→∞−→ 0,

almost surely.
Proof: The proof unfolds from a direct application of the

Tonelli theorem, [40, Theorem 18.3]. Denoting (X,X , PX)
the probability space that generates the series x1,x2, . . . ,
we have that for every ω ∈ A (i.e., for every realization
A1(ω),A2(ω), . . .), the trace lemma, [15, Theorem 3.4], holds
true. From [40, Theorem 18.3], the space B of couples
(x, ω) ∈ Y , X×Ω for which the trace lemma holds, satisfies∫

Y

1B(x, ω)dPY (x, ω)=

∫
Ω

∫
X

1B(x, ω)dPX(x)dPΩ(ω).

If ω ∈ A, then 1B(x, ω) = 1 on a subset of X of probability
one. Therefore, the inner integral equals one whenever ω ∈ A.
As for the outer integral, since P (A) = 1, it also equals one,
and the result is proved.

Lemma 5: Let AN be as in Lemma 4 and xN ,yN ∈ CN
be random, mutually independent with standard i.i.d. entries
of zero mean, variance 1/N and eighth order moment of order
O(1/N4), independent of AN .

yH
NANxN

N→∞−→ 0,

almost surely.
Proof: Remark that E

[
|yH
NANxN |4

]
< c/N2 for some

constant c>0 independent of N . The result then unfolds from
the Markov inequality the Borel-Cantelli Lemma [40] and the
Tonelli Theorem [40, Theorem 18.3].

Lemma 6: [15, Lemma 14.3] Let A1,A2, . . ., with AN ∈
CN×N , be deterministic with uniformly bounded spectral
norm and B1,B2, . . ., with BN ∈ CN×N , be random Her-
mitian, with eigenvalues λBN

1 ≤ . . . ≤ λBN
N such that, with

probability one, there exist ε > 0 for which λBN
1 > ε for all

large N . Then for v∈CN

1

N
trANB−1

N −
1

N
trAN (BN + vvH)−1 N→∞−→ 0

almost surely, where B−1
N and (BN + vvH)−1 exist with

probability one.
Proof: The proof unfolds similarly as above, with some

particular care to be taken. For ω ∈ B, the smallest eigenvalue
of BN (ω) is uniformly greater than ε(ω). Therefore, with
BN (ω) and BN (ω)+vvH invertible and, taking z = −ε(ω)/2,
we can write

1

N
trANB−1

N (ω)

=
1

N
trAN

([
BN (ω)− ε(ω)

2
IN

]
+
ε(ω)

2
IN

)−1

and
1

N
trAN

(
BN (ω) + vvH

)−1

=
1

N
trAN

([
BN (ω) + vvH − ε(ω)

2
IN

]
+
ε(ω)

2
IN

)−1

.

Under these notations, BN (ω)− ε(ω)
2 IN and BN (ω)+vvH−

ε(ω)
2 IN are still nonnegative definite for all N . Therefore, the

rank-1 perturbation lemma, [57, Lemma 2.1], can be applied
for this ω. But then, from the Tonelli theorem again, in the
space that generates the couples ((x1,x2, . . .), (B1,B2, . . . )),
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the subspace where the rank-1 perturbation lemma applies has
probability one, which completes the proof.

Lemma 7: Let U,V,Θ ∈ CN×N be of uniformly bounded
spectral norm with respect to N and let V be invertible.
Further, define x , Θ1/2z and y , Θ1/2q where z,q∈CN
have i.i.d. complex entries of zero mean, variance 1/N and
finite 8th order moment and be mutually independent as well
as independent of U,V. Define c0, c1, c2 ∈ R+ such that
c0c1−c22 ≥ 0 and let u , 1

N trΘV−1 and u′ , 1
N trΘUV−1.

Then we have

xHU
(
V + c0xxH + c1yyH + c2xyH + c2yxH

)−1
x

− u′(1 + c1u)

(c0c1 − c22)u2 + (c0 + c1)u+ 1

N→∞−→ 0,

almost surely. Furthermore,

xHU
(
V + c0xxH + c1yyH + c2xyH + c2yxH

)−1
y

− −c2uu′

(c0c1 − c22)u2 + (c0 + c1)u+ 1

N→∞−→ 0,

almost surely.
Proof: Denote V = (A + c0xxH + c1yyH + c2xyH +

c2yxH)−1. Now xHUVx can be resolved using Lemma 2

xHUVx− xHUA−1x = xHUV
(
V−1 −A

)
A−1x

= −xHUV(c0xxH + c1yyH + c2xyH + c2yxH)A−1x.
(145)

Rewrite (145) as

xHUVx=
xHUA−1x−xHUVy(c1y

HA−1x + c2x
HA−1x)

1 + c0xHA−1x + c2yHA−1x
.

Similarly to (145), we apply Lemma 2 to xHUVy. Thus,
we obtain an expression involving the terms xHUA−1x,
yHA−1y, xHUA−1y and yHA−1x. To complete the proof,
we apply Lemma 4 and Lemma 5, with u= 1

N trΘA−1 and
u′= 1

N trΘUA−1 and obtain

xHUVx− u′(1 + c1u)

(c0c1 − c22)u2 + (c0 + c1)u+ 1

N→∞−→ 0, (146)

almost surely. Similarly we have

xHUVy − −c2uu′

(c0c1 − c22)u2 + (c0 + c1)u+ 1

N→∞−→ 0, (147)

almost surely. Note that as c0, c1, c2 ∈ R+ and c0c1 ≥ c22,
the convergence in (146) and (147) still holds since (c0c1 −
c22)u2 + (c0 + c1)u + 1 is bounded away from zero, which
completes the proof.

Lemma 8: [57, Lemma 2.1] Let ζ > 0, B,A∈CN×N with
B Hermitian nonnegative definite, τ ∈R and q∈CN . Then∣∣trA [(B + ζIN )−1 − (B + τqqH + ζIN )−1

]∣∣ ≤ ‖A‖
ζ

.

Lemma 9: [15, Corollary 2.2] Let z ∈C+, t > 0, q∈CN
and B∈CN×N Hermitian nonnegative definite. Then∣∣∣∣∣ 1

1 + tqH (B + zIN )
−1

q

∣∣∣∣∣ ≤ |z|=z .

Lemma 10: Let q ∈ CN and A ∈ CN×N Hermitian
nonnegative definite, then

qHAq ≤ ‖A‖‖q‖22.

Lemma 11: Let A ∈ CN×N be Hermitian nonnegative-
definite, then

1

N
trA ≤ ‖A‖.

Lemma 12: Let A,B ∈ CN×N Hermitian nonnegative-
definite, then

‖AB‖ ≤ ‖A‖‖B‖.
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France, which he graduated in November 2010. He
is currently an assistant professor at Supélec, France.
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