
TPOT: Translucent Proxying of TCP

Pablo Rodriguez� Sandeep Sibal, Oliver Spatscheck
EURECOM, France AT&T Labs – Research

rodrigue@eurecom.fr fsibal,spatschg@research.att.com

Abstract
Transparent Layer-4 proxies are being widely deployed in
the current Internet to enable a vast variety of applications.
These include Web proxy caching, transcoding, service dif-
ferentiation, and load balancing. To ensure that all IP pack-
ets of an intercepted TCP connection are seen by the inter-
cepting transparent proxy, they must sit at focal points in
the network. Translucent Proxying of TCP (TPOT) over-
comes this limitation by using TCP options and IP tun-
neling to ensure that all IP packets belonging to a TCP
connection will traverse the proxy that intercepted the first
packet. This guarantee allows the ad-hoc deployment of
TPOT proxies anywhere within the network. No extra sig-
naling support is required for its correct functioning. In
addition to the advantages TPOT proxies offer at the ap-
plication level, they also usually improve the throughput
of intercepted TCP connections. In this paper we discuss
the TPOT protocol, explain how it enables various appli-
cations, describe a prototype implementation, analyze its
impact on the performance of TCP, and address scalability
issues.

1 Introduction and Related Work

Transparent proxies are commonly used in solutions
when an application is to be proxied in a manner that
is completely oblivious to a client, without requiring any
prior configuration. Recently, there has been a great deal
of activity in the area of transparent proxies for Web
caching. Several vendors in the area of Web proxy caching
have announced dedicated Web proxy switches and appli-
ances [1, 2, 8, 12].

In the simplest scenario, a transparent proxy intercepts
all TCP connections that are routed through it. This may
be refined by having the proxy intercept TCP connections
destined only for specific ports (e.g., 80 for HTTP), or for a
specific set of destination addresses. The proxy responds to
the client request, masquerading as the remote web server.

�He contributed to this work during an internship at AT&T.

Scalability is achieved by partitioning client requests into
separate hash buckets based on the destination address, ef-
fectively mapping web servers to multiple caches attached
to the proxy.

In the event of a cache miss, the cache re-issues the re-
quest to the web server, and pipes the response it receives
from the web server back to the client, keeping a copy for
itself (assuming the response is cacheable). Note that, in
general, this mechanism may be repeated, where a subse-
quent proxy along the path may intercept an earlier cache
miss, and so on.

The proxy described above is often termed as a Layer-
4 switch, or simply L-4 switch, since TCP is a Transport
Layer protocol, which maps to Layer 4 in the OSI network-
ing stack. In a variant of the above, the proxy/switch parses
the HTTP request and extracts the URL and possibly other
fields of the HTTP Request, before deciding what to do
with the request. Since such a switch inspects the HTTP
Request, which is an Application Layer or Layer 7 func-
tion, it is called an L-7 switch [2].

An acute problem that limits the use of transparent L-
4 and L-7 Web proxies, is the need to have the proxy at
a location that is guaranteed to see all the packets of the
request [8]. Since routing in an IP network can lead to
situations where multiple paths from client to server can
have the lowest cost, packets of a connection may some-
times follow multiple paths. In such a situation a transpar-
ent proxy may see only a fraction of packets of the con-
nection. Occasionally it is also possible that routes change
mid-way through a TCP connection, due to routing updates
in the underlying IP network. For these reasons transpar-
ent proxies are deployed exclusively at the edges or fo-
cal points within the network – such as gateways to/from
single-homed clients or servers. This is not always the best
place to deploy a cache. In general one would expect higher
hit rates for objects cached deeper inside the network [9].

TPOT solves this problem by making an innovative use
of TCP-OPTIONs and IP tunnels. A source initiating a
TCP connection signals to potential proxies that it is TPOT-
enabled by setting a TCP-OPTION within the SYN packet.



A TPOT proxy, on seeing such a SYN packet, intercepts
it. The ACK packet that it returns to the source carries the
proxy’s IP address stuffed within a TCP-OPTION. On re-
ceiving this ACK, the source sends the rest of the packets
via the intercepting proxy over an IP tunnel. The protocol
is discussed in detail in Section 2.

The above mechanism will work if the client is TPOT
enabled. In a situation where the client is not TPOT en-
abled, we may still be able to use TPOT. As long as the
client is single-homed, and has a proxy at a focal point, we
can TPOT enable the connection by having the proxy be-
have like a regular transparent proxy on the side facing the
client, but a TPOT (translucent) proxy on the side facing
the server. Implementation of such a proxy is covered in
Section 3.

The general idea of using TCP-OPTIONs as a signaling
scheme for proxies is not new [20]. However combining
this idea with IP tunneling to pin down the path of a TCP
connection has not been proposed before to the best of our
knowledge.

One alternative to TPOT is the use of Active Network
techniques [31]. We believe that TPOT is a relatively
lightweight solution that does not require an overhaul of
existing IP networks. In addition, TPOT can be deployed
incrementally in the current IP network, without disrupting
other Internet traffic.

1.1 Applications of TPOT

In addition to allowing the placement of transparent Web
proxy caches anywhere in the network, TPOT also enables
newer architectures that employ Web proxy networks. In
such architectures a proxy located along the path from the
client to the server simply picks up the request and satisfies
it from its own cache, or lets it pass through. This, in turn,
may be picked up by another proxy further down the path.
These incremental actions lead to the dynamic construction
of spontaneous hierarchies rooted at the server. Such archi-
tectures require the placement of multiple proxies within
the network, not just at their edges and gateways. Existing
proposals [15, 21, 33] either need extra signaling, or they
simply assume that all packets of the connection will pass
through an intercepting proxy. Since TPOT explicitly pro-
vides this guarantee, implementing such architectures with
TPOT is elegant and easy. With TPOT no extra signaling
support or prior knowledge of neighboring proxies is re-
quired.

While the original motivation for TPOT was to enable
Web proxy caching and Web proxy caching networks in an
oblivious and ad-hoc fashion, the general idea of TPOT can
also be applied to enable proxy-based services in a variety
of other applications layered on top of TCP in an elegant
and efficient fashion.

One such use is Transcoding. This refers to a broad class
of problems that involve some sort of adaptation of con-
tent (e.g., [13, 23]), where content is transformed so as to

increase transfer efficiency, or is distilled to suit the capa-
bilities of the client. Another similar use is the notion of
enabling a transformer tunnel [30] over a segment of the
path within which data transfer is accomplished through
some alternate technique that may be better suited to the
specific properties of the link(s) traversed. Proposals that
we know of in this space require one end-point to explic-
itly know of the existence of the other end-point – requir-
ing either manual configuration or some external signal-
ing/discovery protocol. TPOT can accomplish such func-
tionality in a superior fashion. In TPOT an end-point non-
invasively flags a connection, signifying that it can trans-
form content – without actually performing any transfor-
mation. Only if and when a second TPOT proxy (capable
of handling this transformation) sees this flag and notifies
the first proxy of its existence, does the first proxy begin
to transform the connection. Note that this does not require
any additional handshake for this to operate correctly, since
the TPOT mechanism plays out in concert with TCP’s ex-
isting 3-way handshake.

Another use of TPOT is to enable the selection of spe-
cific applications for preferential treatment. Such service
differentiation could be used to enable and enforce Q0S
policies. One might also want to prioritize traffic belong-
ing to an important set of clients, or a set of mission-critical
servers.

1.2 Paper Overview

Section 2 describes the TPOT protocol. In addition to
the basic version, a pipelined version of the protocol is also
discussed. Pathological cases, extensions, and limitations
are also studied.

Section 3 details a prototype implementation of TPOT in
Scout [24]. We use this prototype in all our experiments.

We address the TCP level performance of TPOT in Sec-
tion 4 using both theoretical analysis as well as exper-
iments. Contrary to what we initially expected, TPOT
typically improves the performance of TCP connections.
This apparent counter-intuitive result has been observed
before [3, 7, 16], though in somewhat different contexts.
In [3] a modified TCP stack called Indirect TCP is em-
ployed for mobile hosts to combat problems of mobility
and unreliability of wireless links. Results show that em-
ploying Indirect TCP outperforms regular TCP. In [16] sim-
ilar improvements are reported for the case when TCP con-
nections over a satellite link are split using a proxy. Fi-
nally, in [7], the authors discuss at length how TCP per-
formance may be enhanced by using proxies for HFC net-
works. The notion of inserting proxies with the sole rea-
son of enhancing performance has recently led to the coin-
ing of the term Performance Enhancing Proxies (PEP). An
overview is provided in [5]. As we will see in Section 4,
TPOT does indeed enhance performance, but unlike PEP,
this is not the motivation behind TPOT.

Scalability is an important criterion if TPOT is to be



practically deployed. Section 5 discusses our approach
to solving this problem using a technique that we call
TPARTY, which employs a farm of servers that sit behind a
front-end machine. The front-end machine only farms out
requests to the army of TPOT machines that sit behind it.
We show that our solution scales almost linearly with the
number of TCP connections in the region of interest.

Finally Section 6 highlights our major contributions, dis-
cusses future work, and possible extensions to TPOT.

2 The TPOT Protocol

This section describes the operation of the basic and
pipelined versions of the TPOT protocol. Pathological
cases, extensions, and limitations are also studied. Before
describing the operation of the TPOT protocol, we provide
a brief background of IP and TCP which will help in better
understanding TPOT. See [29] for a detailed discussion of
TCP.

2.1 IP and TCP

Each IP packet typically contains an IP header and a TCP
segment. The IP header contains the packet’s source and
destination IP address. The TCP segment itself contains a
TCP header. The TCP header contains the source port and
the destination port that the packet is intended for. This 4-
tuple of the IP addresses and port numbers of the source
and destination uniquely identify the TCP connection that
the packet belongs to. In addition, the TCP header contains
a flag that indicates whether it is a SYN packet, and also
an ACK flag and sequence number that acknowledges the
receipt of data from its peer. Finally, a TCP header might
also contain TCP-OPTIONs that can be used for custom
signaling.

In addition to the above basic format of an IP packet, an
IP packet can also be encapsulated in another IP packet. At
the source, this involves prefixing an IP header with the IP
address of an intermediate tunnel point on an IP packet. On
reaching the intermediate tunnel point, the IP header of the
intermediary is stripped off. The (remaining) IP packet is
then processed as usual. See RFC 2003 [27] for a longer
discussion.

2.2 TPOT: Basic Version

In the basic version of TPOT a source S that intends
to connect with destination D via TCP, as shown in Fig-
ure 1(a). Assume that the first (SYN) packet sent out
by S to D reaches the intermediary TPOT proxy T .
(S; Sp;D;Dp) is the notation that we use to describe a
packet that is headed from S to D, and has Sp and Dp

as the source and destination ports respectively.
To co-exist peacefully with other end-points that do

not wish to talk TPOT, we use a special TCP-OPTION

“TPOT,” that a source uses to explicitly indicate to TPOT
proxies within the network, such as T , that they are inter-
ested in using the TPOT mechanism. If T does not see
this option, it will take no action, and simply forwards the
packet on toD on its fast-path. If T sees a SYN packet that
has the TCP-OPTION “TPOT” set, it responds to S with a
SYN-ACK that encodes its own IP address T in the TCP-
OPTION field. On receiving this packet, S must then send
the remaining packets of that TCP connection, IP tunneled
to T . From an implementation standpoint this would imply
adding another 20 byte IP header with T ’s IP address as
destination address to all packets that S sends out for that
TCP connection. Since this additional header is removed
on the next TPOT proxy, the total overhead is limited to 20
bytes regardless of the number of TPOT proxies intercept-
ing the connection from the source to the final destination.
This overhead can be further reduced by IP header com-
pression [10, 18].

For applications such as Web Caching where T may be
able to satisfy a request from S, the response is simply
served from one or more caches attached to T . In the case
of a “cache miss” or for other applications where T might
connect to D after inspecting some data, T communicates
with the destination D as shown in Figure 1(a). Note that
the proxy T sets the TCP-OPTION “TPOT” in its SYN to
D to allow possibly another TPOT proxy along the way to
again proxy the connection. Note that Figure 1 only shows
the single proxy scenario.

2.3 TPOT: Pipelined Version

In certain situations one can do better that the basic ver-
sion of the TPOT protocol. It is possible for T to pipeline
the handshake by sending out the SYN to D immediately
after receiving the SYN from S. This pipelined version of
TPOT is depicted in figure 1(b).

The degree of pipelining depends on the objective of the
proxying mechanism. In the case of an L-4 proxy for Web
Caching, the initial SYN contains the destination IP ad-
dress and port number. Since L-4 proxies do not inspect the
content, no further information is needed from the connec-
tion before deciding a course of action. In such a situation
a SYN can be sent out by T to D almost immediately after
T received a SYN from S, as shown in Figure 1(b). In the
case of L-7 switching, however, the proxy T would need
to inspect the HTTP Request (or at a minimum the URL in
the Request). Since this is typically not sent with the SYN,
a SYN sent out to D can only happen after the first ACK is
received by T from S. This is consistent with Figure 1.

2.4 Pathological Cases

While the typical operation of TPOT appears correct, we
are aware of two pathological cases that also need to be
addressed.



Destination: (D, D_p)Intermediary: (T, T_p)Source: (S, S_p)

DATA: (T,T_p,D,D_p)

SYN-ACK: (D,D_p,T,T_p)

tcp-option: TPOT
SYN: (T,T_p,D,D_p)

SYN-ACK: (D,D_p,S,S_p)

ip-tunneled via T
DATA: (S,S_p,D,D_p)

tcp-option: TPOT
SYN: (S,S_p,D,D_p)

tcp-option: T

(a) Basic Version

Destination: (D, D_p)Intermediary: (T, T_p)Source: (S, S_p)

SYN-ACK: (D,D_p,S,S_p)

ip-tunneled via T
DATA: (S,S_p,D,D_p)

tcp-option: TPOT
SYN: (S,S_p,D,D_p)

tcp-option: T

tcp-option: TPOT
SYN: (T,T_p,D,D_p)

SYN-ACK: (D,D_p,T,T_p)

DATA: (T,T_p,D,D_p)

(b) Pipelined Version

Figure 1: The TPOT protocol

1. In a situation when a SYN is retransmitted by S, it is
possible that the retransmitted SYN is intercepted by
T , while the first SYN is not – or vice versa. In such
a situation, S may receive SYN-ACKs from both D
as well as T . In such a situation S simply ignores the
second SYN-ACK, by sending a RST to the source of
the second SYN-ACK.

2. Yet another scenario, is a simultaneous open from S

to D and vice-versa, that uses the same port number.
Further T intercepts only one of the SYNs. This is a
situation that does not arise in the client-server appli-
cations which we envision for TPOT. Since S can turn
on TPOT for only those TCP connections for which
TPOT is appropriate, this scenario is not a cause for
concern.

2.5 Extensions

As a further sophistication to the TPOT protocol it is pos-
sible for multiple proxied TCP connections at a client or
proxy that terminate at the same (next-hop) proxy, to inte-
grate their congestion control and loss recovery at the TCP
level. Mechanisms such as TCP-Int proposed in [4] can
be employed in TPOT as well. Since the primary focus of
TPOT, and this paper, is to enable proxy services on-the-
fly, rather than enhance performance we do not discuss this
further. The interested reader is directed to [4] and [32] for
such a discussion.

Note that an alternative approach is to multiplex sev-
eral TCP connections onto a single TCP connection. This
is generally more complex as it requires the demarcation

of the multiple data-streams, so that they may be sensi-
bly demultiplexed at the other end. Proposals such as P-
HTTP [22] and MUX [14], which use this approach, may
also be built into TPOT.

2.6 Limitations

As shown in Figure 1 the TCP connection that the inter-
mediate proxy T initiates to the destination D will carry
T ’s IP address. This defeats any IP-based access-control or
authentication that D may use. Note that this limitation is
not germane to TPOT, and in general, is true of any trans-
parent or explicit proxying mechanism.

In a situation where the entire payload of an IP packet is
encrypted, as is the case with IPsec, TPOT will simply not
be enabled. This does not break TPOT, it simply restricts
its use.

The purist may also object to TPOT breaking the seman-
tics of TCP, since in TPOT a proxy T in general interacts
with S, in a fashion that is asynchronous with its interac-
tion with D. While it is possible to construct a version of
TPOT that preserves the semantics of TCP, we do not pur-
sue it here. In defense, we point to several applications that
are prolific on the Internet today (such as firewalls) that are
just as promiscuous as TPOT.

3 Implementing TPOT in Scout

TPOT can be implemented in any operating system. This
section describes an implementation in an OS designed
specifically to support communication: Scout [24]. While



the primary purpose of this section is to flesh out some of
the details any implementation would have to address, it
has a secondary objective of illustrating how a technique
like TPOT can be naturally realized in an operating sys-
tem designed around communication-oriented abstractions.
Many overheads and latency penalties incurred by proxies
on general purpose operating systems like Linux, BSD or
WindowsNT can be avoided by such an operating system.

Scout is a configurable OS explicitly designed to sup-
port data flows, such as video streams through an MPEG
player, or a pair of TCP connections through a firewall.
Specifically, Scout defines a path abstraction that encap-
sulates data as they move through the system, for example,
from input device to output device. In effect, a Scout path
is an extension of a network connection through the OS.
Each path is an object that encapsulates two important ele-
ments: (1) it defines the sequence of code modules that are
applied to the data as they move through the system, and
(2) it represents the entity that is scheduled for execution.

PROXY

TCP

IPIP

TCP

NET2NET1

Figure 2: TCP proxy in two Scout paths.

The path abstraction lends itself to a natural implemen-
tation of TCP proxies. Figure 2 schematically depicts a
naive implementation of a proxy in Scout. It consists of
two paths: one connecting the first network interface to the
proxy, and another connecting the proxy to a second net-
work interface. In this figure, the path has a source and a
sink queue, and is labeled with the sequence of software
modules that define how the path transforms the data it car-
ries1. As a first approximation, the configuration of Scout
shown in Figure 2 represents the implementation one would
expect in a traditional OS.

The two-path configuration shown in Figure 2 has subop-
timal performance because it requires the hand-off of each

1We focus on data flowing in one direction. In reality, Scout paths, like
TCP, support bi-directional data flows.

PROXY

TCP TCP

NET2NET1

IPIP

Figure 3: TCP proxy implemented in a single Scout path.

incoming segment from the first path to the proxy, and then
again from the proxy to the second path. In Scout, the entire
device-to-device data flow can be encapsulated in a single
path as shown in Figure 3. This is the implementation of
choice for TCP proxying within Scout. The TPOT protocol
is then implemented within this base TCP implementation.

Figure 4 illustrates two configurations used in the exper-
iments. The configuration on the left implements TPOT
only in one half of the TCP path. This configuration is
used as a client-side proxy for TPOT-enabling those clients
that do not implement TPOT themselves. The side facing
the client behaves like a regular transparent proxy. As dis-
cussed earlier, this solution will work only if this proxy is
at a focal point of the network with respect to the client.
The side facing the destination behaves like a full-fledged
TPOT proxy, issuing TCP SYN requests with the TPOT
option set.

The configuration on the right is used to pick up TCP
SYN requests which have the TPOT option set. It may then
terminate such a TCP connection and establish an IP tun-
nel back to the initiator of the TCP connection using the
TPOT protocol. It then initiates a second TCP connection
towards the original destination. In both configurations the
connection establishment for both the TCP connections is
performed in parallel, as per the pipelined version of TPOT
(see Figure 1(b)).

The IP tunnel modules “IP in IP” shown in Figure 4 at-
tach and remove IP tunnel headers [27]. IP tunnel headers
are added to all IP packets sent after a SYN or a SYN ACK
with a TPOT option set, has been received. The inner IP
module spoofs for the original destination of the TCP con-
nection. The outer IP module uses the real IP addresses of
the originator of the TCP connection and the TPOT proxy
which terminated the connection.

Scout’s TCP implementation is derived from the TCP
implementation in the x-kernel [17], which in turn is de-
rived from a BSD TCP implementation. To match the TCP
implementation in the Linux client and server for the exper-
iments in the following section, (in addition to TPOT) we
enabled the MSS, and SACK options in Scout. The receive



TCP TCP (with TPOT) TCP (with TPOT) TCP (with TPOT)
FWD

IP

NET2NET1

FWD

NET1

IP in IP IP in IP

IP IPIP

NET2

IP in IP

Figure 4: TPOT implementation in Scout.

buffer is also set to 32KByte to match the values used by
the Linux client and server.

4 Performance Measurements

This section analyzes the TCP performance of TPOT
based on actual measurements in lab setups using proto-
type TPOT proxies. Wherever relevant, we compare the
observed performance with expected values suggested by
theoretical results on the performance of idealized TCP.
In our experiments we use the Reno flavor of TCP [29],
which is generally considered to be the most popular im-
plementation on the Internet today. We expect our obser-
vations to largely hold for other flavors of TCP, though it is
quite possible that flavors of TCP such as TCP-Vegas [6],
which have different congestion detection and avoidance
techniques, may yield somewhat different numbers.

The primary focus of the following experiments is to
evaluate the performance benefits and penalties in the
presence of realistic Round-trip-times (RTTs) and packet
losses, when one or more TPOT machines intercepts a TCP
connection. For these experiments the TPOT machines are
not overloaded. Section 5 discusses overload situations,
and techniques of scaling TPOT to combat this.

For our experiments we tested the pipelined version of
TPOT (See Section 2). In the worst case the basic version
would incur an additional delay of half a round-trip-time.
Aside from this, the two versions of TPOT yield similar
results.

4.1 Setup

All hosts used in our experiment are at least 200 MHz
Pentium II workstations with 256KB cache, 32MB RAM,
and 3COM 3x59 32-bit PCI 10/100 Mb/s adapters. The
first TPOT machine runs the transparent proxy version of
TPOT, while the second TPOT machine runs the interior
TPOT version which are described in the previous section.
The clients and servers are Linux 2.2.12 machines. The

physical configuration of our test setup is shown in Fig-
ure 5. The client is connected with a 10Mbit hub to the
first TPOT machine. The first TPOT machine is connected
by another 10Mbit Hub to the second TPOT machine. The
second TPOT machine is in turn connected by a 10Mbit
hub to the server.

TPOT 1 HubHub TPOT 2 Hub ServerClient

Figure 5: Test Setup

The TPOT machines either operate as TPOT proxies or
as simple routers. If they operate as TPOT proxies the
first TPOT machine enables the TPOT protocol and data is
subsequently tunneled between the TPOT machines. De-
lays and losses are added in the device driver code of each
TPOT device. The granularity of the delay queue is 1 ms.
For throughput measurements TTCP is used to measure
the throughput on the receiver. TTCP transfers a specified
amount of data from the client to the server. After all the
data has been transfered, the connection is closed. The re-
sults reported for each experiment, are averaged over ten
runs.

The Linux TCP code implements the Timestamp option
which is not supported by Scout. We believe that the impact
of this shortcoming is minor in our test environments which
by design have low RTT variances. Despite that fact that
both Linux and Scout advertise the SACK option during
initial handshake, tcpdump traces show that SACK was not
used during the data transfer phase of the TCP connections
in any of the experiments.

4.2 Impact of RTT

To measure the impact of the RTT, we introduced de-
lay into the output queue of the Ethernet devices on the
TPOT machines. In one set of experiments the TPOT ma-
chines work exclusively as routers, and in the second set
exclusively as TPOT proxies. In the second experiment the
distribution of the added delay, is either equally distributed



over all links, or is concentrated on a single link between
the two TPOT machines.

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300

T
hr

ou
gh

pu
t i

n 
K

B
/s

ec

Total RTT in ms

Router
TPOT delay on central hub

TPOT delay equaly distributed

0

100

200

300

400

500

600

700

800

0 50 100 150 200 250 300

T
hr

ou
gh

pu
t i

n 
K

B
/s

ec

Total RTT in ms

Router
TPOT delay on central hub

TPOT delay equaly distributed

Figure 6: Throughput for different RTTs for 10KB (top)
and 10MB (bottom) document sizes.

Figure 6 shows the throughput for RTTs from 1-300 ms
for 10KB and 10MB document sizes. Smaller documents
are not measured since the connection establishment time
dominates the experiment. The impact on small documents
is discussed in section 4.5. The results show that if the en-
tire RTT is concentrated at the single link between the two
TPOT machines, the throughput is on average 24% worse
for 10KB documents and 6% worse for 10MB documents.
This is not surprising since the TPOT machines need to per-
form additional processing during connection setup which
gets amortized over the lifetime of the connection, in addi-
tion to the processing for each packet.

On the other hand in the case when the RTT is equally
distributed over the links, we find that TPOT improves the
overall throughput. For example, the TPOT throughput for
a 300ms RTT and 10MB documents is 92% better than the
routed throughput for the same RTT.

Theoretical Analysis

To better understand this phenomenon we turn our atten-
tion to results in the literature that analyze the performance
of TCP using idealized models. Note that this section is
intended as a theoretical backing for our study, and is not

intended as a comprehensive or formal analysis of TCP.
In [11] the authors provide a rough sketch for the

throughput of an idealized TCP connection in the conges-
tion avoidance phase. A more rigorous derivation of this
and a few other results may be found in [25]. The authors
of [26] model TCP throughput in a more comprehensive
fashion taking into account TCP timeouts as well. We use
the terminology of [26] in what follows.

Let pi and RTTi be the packet loss and RTT on link
i, and Bi(pi) be the corresponding throughput in packets
per second. Also, let Wmax be the maximum advertised
window size. Let the constant b, be the number of pack-
ets acknowledged by each ACK. Then in steady-state, as
per [26]:

Bi(pi) � min

�
Wmax

RTTi
;

1

RTTi

r
3

2 � b � pi

�
(1)

Note that the above equation ignores timeouts. Including
timeouts does not change the nature of the analysis that
follows. A detailed discussion is beyond the scope of this
paper.

For connections with a high RTT the advertised window
size Wmax becomes the bottleneck, so that the above equa-
tion reduces to:

Bi(pi) �
Wmax

RTTi
(2)

If we assume (in the optimal case) that the buffers along
the intermediate proxies are rarely starved, the maximum
end-to-end throughputB� may be expressed as:

B� � mini (Bi(pi))

� mini

�
Wmax

RTTi

�

� Wmax

maxi(RTTi)

In other words, the overall throughput is primarily deter-
mined by the link i with the longest RTTi. Since the total
round trip time RTT =

P
i
RTTi is conserved, creating

N equal length links by inserting proxies, can potentially
(at most) multiply the end-to-end throughput by a factor of
N . In our experiments, as shown in Figure 6, the through-
put improvement however is more modest than this upper
bound.

While a detailed analysis of the exact multiplicative fac-
tor is beyond the scope of this paper, it is obvious that an
improvement in steady-state TCP throughput is to be ex-
pected. In addition, it is also conceivable that the TCP im-
plementations within each entity may create peculiar inter-
actions due to the way scheduling is done between sending
data on the outgoing TCP connection, and processing ac-
knowledgments on the incoming connection.

TCP’s scaled window option [19], which was not used
in these experiments, would improve the throughput of
the proxied and the un-proxied connections by an equal



amount. If the scaled window, Wmax, becomes so large
that it is no longer the bottleneck, the send window will be-
come the limiting factor. This case is discussed in the next
section.

4.3 Impact of Loss

While the advertised window size was the determining
factor of B� for high RTT connections in the previous
experiment, the goal of this experiment is to demonstrate
that TPOT also performs better if the sender’s congestion
window and not the receiver’s advertised window limits
throughput. To study this scenario we randomly drop pack-
ets in an uniform and independent fashion in the Ethernet
device driver of the TPOT machines. In this experiment no
artificial delay is introduced. This results in an RTT of 1ms
between the client and server due to the real delay on the
Ethernet and TPOT machines. The idea here is to simulate
packet losses either due to lossy links or packet loss due
to buffer overflows along the path. Again we measure the
performance of end to end TCP using the TPOT machines
configured exclusively as routers, or as TPOT proxies. In
the case where they are configured as proxies the loss is
either equally distributed between the links, or is concen-
trated on the link between the two TPOT machines.

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20

T
hr

ou
gh

pu
t i

n 
K

B
/s

ec

Loss in %

Router
TPOT loss on central hub

TPOT loss equaly distributed

Figure 7: Throughput for different drop rates.

Figure 7 depicts the results of this experiment for 10MB
document sizes for different loss rates. The experiment for
10KB is not reported since the results were highly vari-
ant. This is because of the timeout behavior of TCP SYN
packets, and the fact that the the total number of packets
transfered is low.

Figure 7 shows that the Router version is slightly better
than the TPOT proxy version with packet loss concentrated
on the central link. We believe this is due to the overhead
involved in introucing TPOT proxies. However when the
packet loss is equally distributed, The TPOT proxy version
outperforms the Router version by far. Note that this shows
up only for throughput values below 600KBps, since above
this, the 10Mbps Ethernet dominates the picture.

Theoretical Analysis

In this situation, the RTTi of each link i is the same. Let
us denote this by RTTx. When the throughput is not dom-
inated by Wmax, Equation 1 reduces to:

Bi(pi) �
1

RTTx

r
3

2 � b � pi
(3)

The upper bound on the end-to-end throughput B � may
then be expressed as:

B� � mini (Bi(pi))

� mini

�
1

RTTx

r
3

2 � b � pi

�

�
r

3

2 � b � RTTx
� 1p

maxi(pi)

B� is thus determined by the most lossy link. Note that
in this case the overall loss probability is conserved, so that,
p = 1��i(1�pi). The results of the experiments roughly
corroborate this. For the 10MB document size, we see that
after the throughput drops below the Ethernet saturation
point, the equally distributed packet loss case, outperforms
the router case significantly – in fact slightly more than the
theoretically expected value of

p
3. Again, a detailed theo-

retical analysis is beyond the scope of this paper.

4.4 A Simple Case Study

The previous two experiments give an idea of the behav-
ior of TCP proxies in the worst and best case scenarios in
terms of the distribution of RTTs or packet loss rate. The
following three experiments focus on studying the impact
of TPOT when deployed in a realistic setting in the Internet
with varying RTTs and packet loss rate. The topology of
the setup is similar to the one used earlier. See Figure 5.

The first experiment (I) has one TPOT machines config-
ured close to the server and one close to the client. All
losses and delays are in the middle of the network. This
simulates the case where the transparent proxies/switches
are on the local network of the server and the client. In
fact, this is the worst case, as can be deduced from the ex-
periments above. The second case (II) uses the same setup,
but redistributes the RTT and packet drop rate, so as to bet-
ter simulate a user dialing into an ISP. The third setup (III)
moves the transparent proxy on the server-side further into
the backbone, resulting in even better performance. The
total simulated latency is always 250ms and the total simu-
lated drop rate is 9.74%.

The above table shows the individual RTTs and drop
rates between the client and the first proxy (link 1), the first
proxy and the second proxy/switch (link 2), and the second
proxy/switch and the server for the three different setups.
As mentioned earlier, the general setup shown in Figure 5
was used. In all cases, the throughput of a TTCP transfer



Case Link 1 Link 2 Link 3
(RTT/drop) (RTT/drop) (RTT/drop)

I 1ms/0% 248ms/9.74% 1ms/0%
II 110ms/3% 139ms/6.96% 1ms/0%
III 110ms/3% 70ms/1% 70ms/6%

Table 1: RTT and packet drop rate distributions for the ex-
periments.

of size 100KB was measured from the client to the server.
The TPOT machines, as in the previous experiments, were
either used as routers or as TPOT proxies. The RTT and
packet drop rate distribution was the same in either case.

Case TPOT throughput Routed throughput

I 26 kBps 24 kBps
II 53 kBps 24 kBps
III 79 kBps 24 kBps

Table 2: 100KB transfer for case I-III with and without
TPOT.

Table 2 shows the results of the experiment. Not surpris-
ingly, the throughput remains the same for all cases, when
the TPOT machines are configured as routers. It does not
make any difference where the data is lost or where RTT
delays are introduced as long as the end to end RTT and
loss are equal. Also, not surprisingly, the throughput of the
proxied TCP increases by more than a factor of three due to
the reduction of the individual TCP connections drop rate
and RTT. This case study also shows that additional bene-
fits can be derived from the TPOT architecture. Case I and
II can be implemented without TPOT since all proxies can
be placed on focal points in the network. However, case III
is possible only if the connection is TPOT enabled, since in
Case III the proxy/switch is in the middle of the network.

4.5 Small Data Transfers

Another important question is how TPOT effects small
data transfers. The previous experiments have shown that
throughput increases when TPOT proxies are used. How-
ever, for small files, the connection establishment overhead
dominates the overall performance, and sustained through-
put rates become irrelevant. To measure the effect of TPOT
on small file transfers, the setup in the previous experiments
was used. However, instead of TTCP which transfers data
in one direction, we used a TCP ping test which returns
the data back to the sender simulating a HTTP Request fol-
lowed by a short HTTP Response. The total time from be-
fore the open system call to after the close system call on
the client side of the connection was measured using the
hardware cycle counter of the Pentium II processor.

Table 3 shows the results for three transfer sizes and two
different values for RTT. The delay was equally distributed

RTT Transfer size TPOT Delay Routed Delay

1 1B 4.2 ms 2.7 ms
1 1KB 8.5 ms 7.9 ms
1 10KB 33.9 ms 33.5 ms
100 1B 137.3 ms 206.2 ms
100 1KB 141.4 ms 210.7 ms
100 10KB 374.3 ms 636.1 ms

Table 3: Transfer time for a short Request-Response data
transfer.

between all links. As expected, the overall transfer time
increases for very small RTTs and file sizes. In the 1ms
1Byte case the transfer time increased by 1.5 ms or 55%.
However as the transfer size increases, the additional pro-
cessing overhead of establishing two TCP connections on
the proxy amortizes itself over the duration of the connec-
tion.

For high values of RTT, TPOT actually reduces the trans-
fer time. The 1Byte transfer is 69ms or 50% faster than the
same transfer when the TPOT machines are configured as
routers. This is because the connection establishment hand-
shake between the individual TPOT machines is performed
concurrently, and each individual TCP connection has only
1/3 of the total RTT between the client and server.

5 Scalability Issues

In the previous section we saw that the throughput and
latency of TCP connections can be improved, under the
tacit assumption that the TPOT machines are not in over-
load. This section discusses how we may tackle situa-
tions when a single TPOT proxy is unable to handle its
assigned load. Fortunately, functionality within a TPOT
proxy can be easily parallelized. This allows the scaling
of TPOT connections to support a potentially large num-
ber of TCP connections. This section addresses the issues
related with scaling TPOT, and provides measurements on
the processing overhead introduced on the TPOT machine
due to a connection. These measurements may be used to
estimate the cost and size of a TPARTY – which is essen-
tially a farm of TPOT proxies front-ended by a modified
high-bandwidth router.

5.1 Processing Overhead

One important factor for scalability is the number of
CPU cycles needed to TPOT a TCP connection. Unfor-
tunately this number depends on many factors. The CPU,
the operating system, the particular TCP implementation
and the loss rate of the link are only a few. Therefore, it
is infeasible to answer this question in general and the re-
sults of this sections should only be used to gather a general
understanding of the performance required.



The results presented here were measured on a 351MHz
PentiumII running Scout. Scout provides a unique fea-
ture [28] which allows us to measure the CPU consumption
of all computation performed for a single path in kernel or
user space, within the accuracy of the CPU hardware cycle
counter. Using this feature, the number of cycles to trans-
fer different data sizes using TTCP and the TCP ping test,
described in the previous section, are measured.

0

50

100

150

200

250

300

350

400

450

256 1024 4096 16384 65536 262144 1.04858e+064.1943e+061.67772e+07

C
yc

le
 p

er
 B

yt
e 

of
 F

ile
 S

iz
e

Transfered File Size

File transfered from client to server.
File transfered from client to server and back

Figure 8: Processing overhead on a 351MHz PentiumII –
per Byte of data transfered.

To proxy a single TCP connection, including the open
and close handshakes of both the incoming and outgoing
TCP connections, TPOT requires on average 431.568 Kilo-
Cycles. The cycles/byte for larger data transfers is shown
in Figure 8. The cycles per byte shown includes the cy-
cles needed for the handshake. Figure 8 shows that for data
transfers over 100KB, the processing needed is dominated
by the per byte cost (which are on the order of 30 cycles
per byte), and is not influenced in any significant way by
the handshake. This high number seems to indicate unnec-
essary copying.

5.2 TPARTY

ROUTER

TPOT

TPOT

TPOT

TPARTY

TPOT-SubnetINTERNET

Figure 9: TPARTY: parallelizing TPOT proxies.

TPARTY can be used to scale TPOT in cases when the
load cannot be supported by a single TPOT machine. The

basic idea is depicted in Figure 9. TPARTY uses a farm of
TPOT proxies front-ended by a modified router. In addi-
tion to routing, the router forwards TCP SYN packets for
certain TCP port numbers which have the TPOT option
enabled (and are not received on the line card connected
to the TPOT subnet) towards one of the TPOT machines.
The router might forward the TPOT-enabled SYNs – and
therefore the handling of TCP connections – in round-robin
fashion, or might use feedback information on the load at
each of the TPOT machines to make a more intelligent de-
cision.

When a TPOT-enabled SYN arrives at the TPOT ma-
chine, the TPOT machine decides if it can handle an ad-
ditional request. If it cannot handle the request, the SYN
is sent back to the router and the packet is routed as usual
to the final destination. In this case the connection will not
be proxied. If the TPOT machine has enough resources to
deal with the connection, the proxy terminates the connec-
tion as described in the TPOT protocol using the IP address
of the individual TPOT machine as proxy address. In ei-
ther case, all subsequent packets on the router are routed as
plain IP packets. Therefore, the additional processing on
the router is limited to detecting and forwarding of TPOT
enabled SYN packets.

Using the measurements from Section 5.1, a TPARTY
for an OC-3 link would require 155Mbit/8*30 Cycles per
byte (roughly 581 MegaCycles) to sustain the link band-
width. In addition an extra 1000*431568 = 431 Mega-
Cycles would be required for the open and close of 1000
connections per seconds. Therefore OC-3 speeds would
require on the order of two to three 500MHz Pentium III
machines.

5.3 Buffer Size

The buffering required on the TPOT machines is another
cost of performing proxying in the middle of the network.
Each proxy requires a send and receive buffer to terminate
the TCP connection. In theory all buffering will happen be-
fore the worst link (some combination of the highest RTT
and highest packet drop rate), and little or no buffering
would be required thereafter. In general, buffering on the
order of the advertised window by the remote receiver of
the TCP connection on the proxy is required. More stud-
ies need to be conducted for estimating the buffer require-
ments for the TPOT proxy. Buffer sharing across multiple
connections may help decrease the total buffer space con-
sumed by a TPOT proxy.

5.4 Port Numbers

Another scaling problem arises from the fact that demul-
tiplexing of TCP connections is based on source and des-
tination IP addresses and port numbers. The destination
address and port number are usually fixed. The source ad-
dress seen by the final destination will be the address of the



last TPOT proxy. This limits the last proxy to open at most
64K connections (range of the port number space) to a sin-
gle server. Since ports may time out substantially after a
connection is closed, the number of active connections the
last TPOT proxy can handle is far lower. The exact number
depends on the TCP implementation, but clearly this is a
potential bottleneck.

One solution to this problem is to multiplex several TCP
connections onto a single TCP connection. This would al-
low the reuse of an existing outgoing connection from the
last TPOT proxy to the final destination. This is possible
if the destination supports Persistent-HTTP [22]. Alternate
techniques such as MUX [14] may also be used.

Another solution is to multi-home the TPOT machine,
so that a single TPOT machine may be assigned multiple
IP addresses. Since the bound of 64K connections holds
for a single IP address, multi-homing multiplies this by the
number of IP addresses assigned to the TPOT machine.

6 Conclusions and Future Work

In this paper we evaluated the benefits of using TPOT
– a translucent mechanism for proxying TCP connections.
In general, transparent proxies do not always see all the
packets of a TCP connection, unless they are placed at fo-
cal points within the network. TPOT proxies do not suf-
fer from this limitation because of a novel way in which
TCP-OPTIONs and IP tunneling are used to pin down TCP
connections.

Web proxy caches built using TPOT thus have the free-
dom of being placed anywhere in the network, which in
turn enables new architectures such as spontaneous Web
proxy networks, where proxy caching hierarchies are dy-
namically constructed. In addition, transcoding and several
other applications can benefit from TPOT. To test our ideas
we implemented a prototype TPOT proxy in Scout. Much
of this paper was focused on addressing TCP performance
and scalability concerns associated with deploying TPOT
in real networks. Our preliminary assessment indicates that
TPOT scales exceptionally well when it is configured as a
TPARTY – which is a farm of TPOT proxies with a mod-
ified router as a front-end. We also discovered that proxy-
ing connections actually improves the overall performance
of the connection at the TCP level. Theoretical analysis
backed our measurements. Our measurements also indicate
that the overhead due to protocol processing at the proxy is
usually more than compensated by the improved through-
put seen at the TCP level.

We believe the results of our work indicate that TPOT
is viable, and can be practically deployed in a high-speed
network to enable a variety of applications. We are cur-
rently investigating its use in building zero-maintenance
proxy caching networks for the Web.

Acknowledgments

We thank Misha Rabinovich, Adam Buchsbaum, and
Fred Douglis of AT&T Labs – Research, for their com-
ments on an earlier draft of this paper.

References

[1] Alteon Networks. Webworking: Networking with the
Web in mind. Technical report, San Jose, CA, USA,
May 1999.

[2] ArrowPoint Communications. What is Web Switch-
ing? Technical report, Westford, MA, USA, 1999.

[3] A. Bakre and B. R. Badrinath. Indirect TCP for mo-
bile hosts. In International Conference on Distributed
Computing Systems (ICDCS), May 1995.

[4] H. Balakrishnan, V. Padmanabhan, S. Seshan, R. H.
Katz, and M. Stemm. TCP behavior of a busy internet
server: Analysis and improvements. In Proceedings
of IEEE INFOCOM, San Francisco, CA, March 1998.

[5] J. Border, M. Kojo, J. Griner, and G. Montenegro.
Performance enhancing proxies. Technical report,
IETF, June 1999. Internet Draft draft-ietf-pilc-pep-
00.txt.

[6] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson.
TCP Vegas: New techniques for congestion detec-
tion and avoidance. In Proceedings of the ACM SIG-
COMM Conference, London, England, 1994.

[7] R. Cohen and S. Ramanathan. TCP for high per-
formance in hybrid fiber coaxial broad-band access
networks. IEEE/ACM Transactions on Networking,
6(1):15–29, Feb. 1998.

[8] P. Danzig and K. L. Swartz. Transparent, scalable,
fail-safe Web caching. Technical report, Network Ap-
pliance, Santa Clara, CA, USA, 1999.

[9] P. B. Danzig, R. S. Hall, and M. F. Schwartz. A
case for caching file objects inside internetworks.
In Proceedings of the ACM SIGCOMM Conference,
September 1993.

[10] M. Degermark, B. Nordgren, and S. Pink. RFC 2507:
IP header compression, Feb. 1999. Status: PRO-
POSED STANDARD.

[11] S. Floyd and K. Fall. Promoting the use of end-to-
end congestion control on the Internet. IEEE/ACM
Transactions on Networking, 1999.

[12] Foundry Networks. Transparent cache switching
primer. Technical report, Sunnyvale, CA, USA, 1999.



[13] A. Fox and E. A. Brewer. Reducing WWW la-
tency and bandwidth requirements by real-time distil-
lation. Computer Networks and ISDN Systems, 28(7–
11):1445–1456, May 1996.

[14] J. Gettys. Mux protocol specification. Technical re-
port, W3C, October 1996. wd-mux-961023.

[15] A. Heddaya and S. Mirdad. Webwave: Globally bal-
anced fully distributed caching of hot published doc-
uments. In International Conference on Distributed
Computing Systems (ICDCS), Baltimore, USA, May
1997.

[16] T. R. Henderson and R. H. Katz. Transport Proto-
cols for Internet-compatible Satellite Networks. IEEE
Journal on Selected Areas in Communications, 1999.
To appear.

[17] N. C. Hutchinson and L. L. Peterson. The x-Kernel:
An Architecture for Implementing Network Proto-
cols. IEEE Transactions on Software Engineering,
17(1):64–76, Jan. 1991.

[18] V. Jacobson. RFC 1144: Compressing TCP/IP head-
ers for low-speed serial links, Feb. 1990. Status:
PROPOSED STANDARD.

[19] V. Jacobson, R. Braden, and D. Borman. RFC 1323:
TCP extensions for high performance, May 1992.

[20] B. Knutsson. Proxies and signalling. Extendable
Router Workshop, August 1999.

[21] P. Krishnan, D. Raz, and Y. Shavitt. Transparent en-
route cache location in regular networks. In DIMACS
Workshop on Robust Communication Networks: In-
terconnection and Survivability, DIMACS book se-
ries, New Brunswick, NJ, USA, November 1998.

[22] J. C. Mogul. The case for persistent-connection
HTTP. In Proceedings of the SIGCOMM’95 confer-
ence, Cambridge, MA, August 1995.

[23] J. C. Mogul, F. Douglis, A. Feldmann, and B. Krish-
namurthy. Potential benefits of delta encoding and
data compression for HTTP. In Proceedings of the
ACM SIGCOMM Conference, September 1997.

[24] D. Mosberger and L. Peterson. Making paths ex-
plicit in the Scout operating system. In Proceedings
of OSDI ’96, October 1996.

[25] T. J. Ott, J. H. B. Kemperman, and M. Mathis. The
stationary behavior of ideal TCP congestion avoid-
ance. ftp://ftp.bellcore.com/pub/tjo/TCPwindow.ps,
1996.

[26] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Mod-
eling TCP throughput: A simple model and its em-
pricial validation. In Proceedings of the ACM SIG-
COMM Conference, Vancouver, British Columbia,
Canada, September 1998.

[27] C. Perkins. RFC 2003: IP encapsulation within IP,
Oct. 1996. Status: PROPOSED STANDARD.

[28] O. Spatscheck and L. L. Peterson. Definding against
denial of service attacks in Scout. In Proceedings
of the Third Symposium on Operating Systems De-
sign and Implementation, pages 59–73, New Orleans,
Louisiana, Feb. 199. USENIX Association.

[29] W. R. Stevens. TCP/IP Illustrated, The Protocols,
volume 1. Addison-Wesley, 1994.

[30] P. Sudame and B. R. Badrinath. Transformer tunnels:
A framework for providing route-specific adaptations.
In USENIX Annual Technical Conference, New Or-
leans, Louisiana, USA, June 1998.

[31] D. L. Tennenhouse, J. M. Smith, D. Sincoskie, D. J.
Wetherhall, and G. J. Minden. A survey of Active
network research. IEEE Communications Magazine,
35(1):80–86, January 1997.

[32] J. Touch. TCP control block interdependence. Tech-
nical report, IETF, April 1997. Interent RFC 2140.

[33] L. Zhang, S. Floyd, and V. Jacobson. Adaptive Web
caching. In NLANR Web Caching Workshop, June
1997.


