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Abstract—This paper 1 presents a novel technique in spectrum
sensing based on a new characterization of primary users signals
in wideband communications. First, we have to remind that
in cognitive radio networks, the very first task to be operated
by a cognitive radio is sensing and identification of spectrum
holes in the wireless environment. This paper summarizes the
advances in the algebraic approach. Initial results have been
already disseminated in few other conferences. This paper aims
at finalizing and presenting the last results and the complete
framework of the proposed technique based on algebraic spec-
trum discontinuities detection. The signal spectrum over a wide

frequency band is decomposed into elementary building blocks
of subbands that are well characterized by local irregularities
in frequency. As a powerful mathematical tool for analyzing
singularities and edges, the algebraic framework is employed to
detect and estimate the local spectral irregular structure, which
carries important information on the frequency locations and
power spectral densities of the sensed subbands. In this context,
a wideband spectrum sensing techniques was developed based
on an analog decision function to multi-scale wavelet product.
The proposed sensing techniques provide an effective sensing
framework to identify and locate spectrum holes in the signal
spectrum.

Index Terms—spectrum sensing, cognitive radio, spectrum
discontinuities, algebraic detection, wideband signals, change
point detection, algebraic approach vs. wavelet approach.

I. INTRODUCTION

Trying to face the shortage of radio resources and its

misuse, telecommunication regulators and standardization or-

ganisms recommended sharing this valuable resource between

the different actors in the wireless environment. The Federal

Communications Commission (FCC), for instance, defined a

new policy of priorities in the wireless systems, giving some

privileges to some users, called Primary Users (PU) and less

to others, called Secondary Users (SU), who will use the

spectrum in an opportunistic way with minimum interference

to PU systems.

Cognitive Radio (CR) as introduced by Mitola [1], is one

of those possible devices that could be deployed as SU

1The research leading to these results has received funding from the
European Community’s Seventh Framework Programme (FP7/2007-2013)
under grant agreement SACRA n ˚ 249060 and CROWN project

equipments and systems in Wireless networks. As originally

defined, a CR is a self aware and ”intelligent” device that

can adapt itself to the Wireless environment changes. Such a

device is able to detect the changes in Wireless network to

which it is connected and adapt its radio parameters to the

new opportunities that are detected. This constant track of the

environment change is called the ”spectrum sensing” function

of a cognitive radio device.

Thus, spectrum sensing in CR aims in finding the holes

in the PU transmission which are the best opportunities to

be used by the SU. Many statistical approaches already exist.

The proposed technique was inspired from algebraic Spike

detection in EEGs (electroencephalograms) [5] and the recent

work developed by Giannakis based on wavelet sensing [2].

Originally, the algebraic detection technique was introduced

[5] [6] [7] to detect signals transients in EEGs, called spikes.

Given Giannakis work on wavelet approach, and its limita-

tions in complexity and implementation, we suggest in this

context of wideband channels sensing, a detector using an

algebraic approach to detect and estimate the local spectral

irregular structure, which carries important information on

the frequency locations and power spectral densities of the

subbands.

This document summarizes the work we’ve been conducting

in spectrum sensing for cognitive radio networks. A complete

description of the reported work can be found in [11]–[15]

The rest of the paper is organized as following: in II,

we introduce the state of the art and the motivations behind

our proposed approach. In III, we state the problem as a

detection problem with the formalism related to both sensing

and detection theories. In section V, we give the results and

the simulation framework in which the developed technique

was simulated. And finally, in VI, we summarize about the

presented work and conclude about its contributions.

II. RELATED WORKS

Many statistical approaches for spectrum sensing have been

developed. The most performing one is the cyclostationary

features detection technique [3] [4]. The main advantage



of the cyclostationarity detection is that it can distinguish

between noise signal and PU transmitted data. Indeed, noise

has no spectral correlation whereas the modulated signals are

usually cyclostationary with non null spectral correlation due

to the embedded redundancy in the transmitted signal. The

cyclostationary features detector is thus able to distinguish

between noise and primary users (PU).

The reference sensing method is the energy detector [3], as it

is the easiest to implement. Although the Energy Detector can

be implemented without any need of apriori knowledge of the

PU signal, some difficulties still remain for implementation.

First of all, the only PU signal that can be detected is the

one having an energy above the threshold. So, the threshold

selection in itself can be problematic as the threshold highly

depends on the changing noise level and the interference

level. Another challenging issue is that the energy detection

approach cannot distinguish the primary user from the other

secondary users sharing the same channel. Cyclostationary

detection is more robust to noise uncertainty than an energy

detector. Furthermore, it can work with lower SNR than energy

detectors.

Some other techniques, exploiting a wavelet approach to

efficient spectrum sensing of wideband channels were also de-

veloped [2]. The signal spectrum over a wide frequency band

is decomposed into elementary building blocks of subbands

that are well characterized by local irregularities in frequency.

As a powerful mathematical tool for analyzing singularities

and edges, the wavelet transform is employed to detect and

estimate the local spectral irregular structure, which carries

important information on the frequency locations and power

spectral densities of the subbands. Along this line, a couple

of wideband spectrum sensing techniques are developed based

on the local maxima of the wavelet transform modulus and the

multi-scale wavelet products.

III. SYSTEM MODEL

In this section we investigate the system model considered

through this report. In this system, the received signal at time

n, denoted by yn, can be modeled as:

yn = Ansn + en (1)

where An being the transmission channel gain, sn is the

transmit signal sent from primary user and en is an additive

corrupting noise.

The goal of spectrum sensing is to decide between two

conventional hypotheses modeling the spectrum occupancy:

yn =

{
en H0

Ansn + en H1
(2)

The sensed sub-band is assumed to be a white area if it

contains only a noise component, as defined in H0; while, once

there exist primary user signals drowned in noise in a specific

band, as defined in H1, we infer that the band is occupied.

The key parameters of all spectrum sensing algorithms are the

false alarm probability PF and the detection probability PD .

PF is the probability that the sensed sub-band is classified as

a PU data while actually it contains noise, thus PF should be

kept as small as possible.

PD is the probability of classifying the sensed sub-band as a

PU data when it is truly present, thus sensing algorithm tend

to maximize PD . To design the optimal detector on Neyman-

Pearson criterion, we aim on maximizing the overall PD under

a given overall PF .

According to those definitions, the probability of false alarm

is given by:

PF = P (H1 | H0) = P ( PU is detected | H0) (3)

that is the probability of the spectrum detector having detected

a signal given the hypothesis H0, and PD the probability of

detection is expressed as:

PD = 1 − PM = 1 − P (H0 | H1)

= 1 − P ( PU is not detected | H1) (4)

which represents the probability of the detector having de-

tected a signal under hypothesis H1, where PM indicates the

probability of missed detection.

In order to infer on the nature of the received signal, we use

a decision threshold which is determined using the required

probability of false alarm PF given by (3). The threshold Th

for a given false alarm probability is determined by solving

the equation:

PF = P (yn is present | H0) = 1 − FH0(Th) (5)

where FH0 denote the cumulative distribution function (CDF)

under H0.

IV. AN ALGEBRAIC APPROACH TO SPECTRUM SENSING

A. Problem formulation

First let’s suppose that the frequency range available in

the wireless network is B Hz; so B could be expressed as

B = [f0, fN ]. Saying that this wireless network is cognitive,

means that it supports heterogeneous wireless devices that may

adopt different wireless technologies for transmissions over

different bands in the frequency range. A CR at a particular

place and time needs to sense the wireless environment in

order to identify spectrum holes for opportunistic use. Suppose

that the radio signal received by the CR occupies N spectrum

bands, whose frequency locations and PSD levels are to

be detected and identified. These spectrum bands lie within

[f0, fN ] consecutively, with their frequency boundaries located

at f0 < f1 < ... < fN . The n-th band is thus defined

by:Bn : f ∈ Bn : fn−1f < fn, n = 1, 2, ..., N . The PSD

structure of a wideband signal is illustrated in Fig. IV-A. The

following basic assumptions are adopted:

1) The frequency boundaries f0 and fN = f0 + B are

known to the CR. Even though the actual received signal

may occupy a larger band, this CR regards [f0, fN ] as

the wide band of interest and seeks white spaces only

within this spectrum range.

2) The number of bands N and the locations f1, ..., fN−1

are unknown to the CR. They remain unchanged within



a time burst, but may vary from burst to burst in the

presence of slow fading.

3) The PSD within each band Bn is smooth and almost flat,

but exhibits discontinuities from its neighboring bands

Bn−1 and Bn+1. As such, irregularities in PSD appear

at and only at the edges of the N bands.

4) The corrupting noise is additive white and zero mean.

-

6

f

PSD

f0 · · · fN

Fig. 1. N frequency bands with piecewise smooth PSD.

B. Detector derivation

In this Section some noncommutative ring theory notions

are used [9].We start by giving an overview of the mathemat-

ical background leading to the algebraic detection technique.

The input signal is the amplitude spectrum of the received

noisy signal. We assume that its mathematical representation

is a piecewise regular signal:

Y (f) =

K∑

i=1

χi[fi−1, fi](f)pi(f − fi−1) + n(f) (6)

where: χi[fi−1, fi]: the characteristic function of the inter-

val [fi−1, fi], (pi)i∈[1,K]: an N th order polynomials series,

(fi)i∈[1,K] : the discontinuity points resulting from multiply-

ing each piby a χi and n(f) :the additive corrupting noise.

Now, let X(f) the clean version of the received signal given

by:

X(f) = ΣK
i=1χi[fi−1, fi](f)pi(f − fi−1) (7)

And let b, the frequency band, given such as in each interval

Ib = [fi−1, fi] = [ν, ν + b] , ν ≥ 0 maximally one change

point occurs in the interval Ib.

Now denoting Xν(f) = X(f +ν),f ∈ [0, b] for the restriction

of the signal in the interval Ib and redefine the change point

which characterizes the distribution discontinuity relatively to

Ib say fν given by:{
fν = 0 if Xν is continuous

0 < fν ≤ b otherwise
Now, in order to emphasis the spectrum discontinuity behavior,

we decide to use the N th derivative of Xν(f), which in the

sense of Distributions Theory is given by:

dN

dfN
Xν(f) = [Xν(f)](N) +

N∑

k=1

µN−kδ(f − fν)(k−1) (8)

where: µk is the jump of the kth order derivative at the unique

assumed change point:fν

µk = X
(k)
ν (f+

ν ) − X
(k)
ν (f−

ν )

with :

{
µk = 0⌋k=1..N if there is no change point.

µk 6= 0⌋k=1..N if the change point is in Ib.

[Xν(f)](N) is the regular derivative part of the N th derivative

of the signal.

The spectrum sensing problem is now casted as a change

point fν detection problem. Several estimators can be derived

from the equation 8. For example any derivative order N can

be taken and depending on this order the equation is solved

in the operational domain and back to frequency domain the

estimator is deduced.

In a matter of reducing the complexity of the frequency direct

resolution, the equation 8 is transposed to the operational

domain, using the Laplace transform:

L(Xν(f)(N)) = sNX̂ν(s) −

N−1∑

m=0

sN−m−1 dm

dfm
Xν(f)⌋f=0

= e−sfν (µN−1 + sµN−2 + .. + sN−1µ0)

(10)

Given the fact that the initial conditions, expressed in Eq.

8, and the jumps of the derivatives of Xν(f) are unknown

parameters to the problem, in a first time we are going to

annihilate the jump values µ0,µ1,...,µN−1 then the initial

conditions. After some calculations steps, we finally obtain:

N−1∑

k=0

(N
k ).fN−k

ν .(sN X̂ν(s))(N+k) = 0 (11)

In the actual context, the noisy observation of the amplitude

spectrum Y (f) is taken instead of Xν(f). As taking derivative

in the operational domain is equivalent to high-pass filtering in

frequency domain, which may help amplifying the noise effect.

It is suggested to divide the whole equation 11 by sl which

in the frequency domain will be equivalent to an integration

if l > 2N , we thus obtain:

N−1∑

k=0

(N
k ).fN−k

ν .
(sN X̂ν(s))(N+k)

sl
= 0 (12)

Since there is no unknown variables anymore, the equation 12

is now transformed back to the frequency domain, we obtain

the polynomial to be solved on each sensed sub-band:

N−1∑

k=0

(N
k ).fN−k

ν .L−1[
(sN X̂ν(s))(N+k)

sl
] = 0 (13)

And denoting:

ϕk+1 = L−1[
(sN X̂ν(s))(N+k)

sl
] =

∫ +∞

0

hk+1(f).X(ν−f).df

(14)

where: hk+1(f) =

{
(f l(b−f)N+k)(k)

(l−1)! , 0 < f < b

0, otherwise

To summarize, we have shown that on each interval [0, b],



for the noise-free observation the change points are located at

frequencies solving:

N∑

k=0

(N
k ).fN−k

ν .ϕk+1 = 0 (15)

In [10], it was shown that edge detection and estimation is

analyzed based on forming multiscale point-wise products of

smoothed gradient estimators. This approach is intended to en-

hance multiscale peaks due to edges, while suppressing noise.

Adopting this technique to our spectrum sensing problem

and restricting to dyadic scales, we construct the multiscale

product of N +1 filters (corresponding to Continuous Wavelet

Transform in [10]), given by:

Df = ‖

N∏

k=0

ϕk+1(fν)‖ (16)

C. Algorithm Discrete Implementation

The proposed algorithm in its discrete implementation is a

filter bank composed of N filters mounted in a parallel way.

The impulse response of each filter is:

hk+1,n =

{
(nl(b−n)N+k)(k)

(l−1)! , 0 < n < b

0, otherwise
(17)

where k ∈ [0..N − 1] and l is chosen such as l > 2 × N .

The proposed expression of hk+1,n⌋k∈[0..N−1] was determined

by modeling the spectrum by a piecewise regular signal in

frequency domain and casting the problem of spectrum sensing

as a change point detection in the primary user transmission.

Finally, in each detected interval [nνi
, nνi+1 ] , we compute the

following equation:

ϕk+1 =

nνi+1∑

m=nνi

Wmhk+1,mXm (18)

where Wm are the weights for numeric integration defined by:

W0 = WM = 0.5
Wm = 1 otherwise

Df = ‖

N∏

k=0

ϕk+1(nν)‖ (19)

For instance, we consider a frequency band in the range

of [50, 250]MHz, in order to compare the compressive

sensing using the algebraic method and the wavelet ap-

proach introduced in [10]. The signal is fully described

in [10]. During the observed burst of transmissions in

the network, there 6 bands, with frequency boundaries at

nν
6
n=0 = [50, 120, 170, 200, 220, 224, 250]MHz.

Comparing with the wavelet approach, in the algebraic detec-

tion technique change points are detected only in one shot,

while in the wavelets approach, many detections have to be

conducted and fused to make a final decision.

Figure 2 shows the algebraic detection performance on this

signal.
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Fig. 2. Edge detection using the algebraic technique. The signal in red is
the original signal, the one in blue is the noisy observation with SNR=-8dB.
The black signal is the computed decision function and the green stars are
the detected change points.

V. SIMULATIONS AND RESULTS

In this section, we use the ED as a reference technique, since

it is the most common method for spectrum sensing because

of its non-coherency and low complexity. The energy detector

measures the received energy during a finite time interval and

compares it to a predetermined threshold. That is, the test

statistic of the energy detector is:

M∑

n=1

‖ yn ‖2 (20)

where M is the number of samples of the received signal xn.

Traditional ED can be simply implemented as a spectrum

analyzer. A threshold used for primary user detection is highly

sensitive to unknown or changing noise levels. Even if the

threshold would be set adaptively, presence of any in-band

interference would confuse the energy detector.

For simulation results, the choice of the DVB-T primary

user system is justified by the fact that most of the pri-

mary user systems utilize the OFDM modulation format [8].

The considered model is an Additive White Gaussian Noise

(AWGN) channel. The simulation scenarios are generated by

using different combinations of parameters given in Table I.

Bandwidth 8MHz

Mode 2K

Guard interval 1/4

Frequency-flat Single path

Sensing time 1.25ms

Location variability 10dB

TABLE I
THE TRANSMITTED DVB-T PRIMARY USER SIGNAL PARAMETERS

Fig. 3 reports the comparison in terms of Probability of

Detection Vs. SNR between the Energy Detector (ED) and

the three first Algebraic Detectors:(AD1) (AD2) and (AD3),

for PF =0.05 and SNR ranging in -40 to 0 dBs.

The threshold level for each detector is computed with

function of the probability of false alarm PF with respect to

Equation 5.

This figure clearly shows that the proposed sensing algo-

rithm is quite robust to noise. These curves show also that



the detection rate goes higher as the polynomial order gets

higher.

This result is to be expected as the higher the polynomial

order is, the more accurate the approximation a polynomial is.

Nevertheless, it is to be noticed that this gain in precision is

implies a higher complexity in the algorithms implementation.

In Figure 4, we plot the ROC curve at an SNR=-15dB.

We clearly see that for the proposed technique, the higher the

order, the more performing the detector gets.
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Fig. 3. Probability of detection vs. SNR for the simulated detectors with
PF = 0.05.
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VI. SUMMARY

In this work, we presented a new standpoint for spectrum

sensing emerging in detection theory, deriving from differ-

ential algebra, noncommutative ring theory, and operational

calculus. The proposed algebraic based algorithm for spectrum

sensing by change point detections in order to emphasizes

”spike-like” parts of the given noisy amplitude spectrum.

Simulations results showed that the proposed approach is very

efficient to detect the occupied sub-bands in the the primary

user transmissions. We have shown how very simple sensing

algorithm with good robustness to noise can be devised within

the framework of such unusual mathematical chapters in signal

processing. A probabilistic interpretation, in the sense of ROC

curve, probability of detection, probability of false alarm ... is

shown to be attached to the presented approach. It has allowed

us to give a first step towards a more complete analysis of the

proposed sensing algorithm.
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