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Abstract
Using Iterated Function Systems for data compression, some convergence prob-
lems appear because of an iterative decoding process. Several works have tried to
slove them using sufficient (i.e. sub-optima) conditions based on a contractivity cri-
terion. Unfortunately, no efficient convergence condition has been found in practice.
This paper is an overview of the relevant existing hypotheses which ensure the con-
vergence, in particlular with regard to the contractivity of the fractal code...

1 Introduction

Since the late 80s, fractal coding based on the Iterated Function Systems (L.F.S.) theory [1]
has been used in the field of loosy data compression. Research work on existence conditions
has been done, but no answer allows us to conclude rigorously about the iterative process
convergence, in the general discrete case.

So, this paper aims at reviewing the main results in this field about a contractivity sufficient
condition.

2 Jacquin’s Coding using Local I.LF.S. - a brief re-
minder

Let us note A the space of digitized images with arbitrary same size, which can be modelled
by IR for some positive integer K. Jacquin’s coding scheme [7] is based on a local self-
similarities research. The image ¢ € A that we want to encode, is subdivided into N
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non-overlapping squares (partition), called the range cells of the image and denoted by
R; for 1 <i < N (= UY,pr,). In order to encode independently each range block yr;,
a dictionary of transformations is defined (y g, gives the restriction of the image p to the
cell R;). Each range block yp, will be associated with another block in the original image
relatively to some cell Dy;y € D = {Dy,...,Dg} called a domain cell, via a matching 7;
belonging to the catalog called the local fractal code of the corresponding range block
(D is the set of all allowed domain cells). This local code is built using a least squares
criterion in order to minimize the local collage error e.; = da(p|r,, (1D, )) Where d; is
the Euclidian metric (the global collage error ¢, is given by e. = 35 <i<n €ci)-

The fractal code 7 of the whole original image is defined by the collection of all the local
fractal codes 7;. More precisely, each local fractal code 7; : Dy;) — R; is the composition
of the following applications :

e A reduction ri, : Dyy = Ri by a factor 2" such that r; .(up,,, ) is a block which has
the same size of its associated range block yg,. In this study, we consider domain
blocks which are 2"-times bigger than the range blocks, where n is a positive integer.
If R x R (respectively D x D) is the range blocks (resp. domain blocks) size, we
suppose that D = 2" R. To decimate the domain block, a reduction by an averaging
is used.

Let us consider the reduction r; = r;; by a factor 2 (such that the reduction r;,
can be expressed by the n-flod composition of the transformation r; by itself). This
reduction r; : Dyy — R; can be expressed by:

Z [MDq(t’) ]2k+s,2t'+t
0<s,t<1

[ri( iy )y, = (1)

4
for k,1 € {0,..., R — 1}, where [v];; shows the value of the pixel located on the row
k and the column [ in the subimage v.

......

such as identity, first and second diagonal symetries, horizontal and vertical symetries,
rotations by 90°, 180° and —90°.

o An affine mapping A,, g, on the luminance values such as A,, 3 = ;- id + 3;, where
id is the identity.

So, the local fractal code 7; can be written as: 7; = Ag, 8, 0 (i) 0 1i,n and the global fractal
code as: 7 = UN, 7.

After the computation of 7 during the coding stage, the loosy restitution u, of the original
image p is obtained using an iterative process : for an arbitrary initial image po, the
7’s attractor p, is computed with the recursive sequence py; = 7(uo), p2 = 7(@1), «.. »
fta = limy_., 7"(to) = (o). The main problem is to master the coding process using a
good parameter choice, especially the upper bound a,, of the scales a;.
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3 State of the Art - Sufficient Convergence Condi-
tions/Contractivity Constraints

The authors emphasize that all the following results about convergence depend on the
metric used in each space. Moreover, in the following sections only results regarding strict
contractivity are described although that is not necessary. In fact, the less restrictive
concept of eventually contractive maps (3, 6] (i.e. mappings 7 such that 7% is a contrac-
tive mapping for some positive integer k) is sufficient, but it brings up much unchecked
difficulties.

3.1 In the continuous case

Let us note M the space of non-empty compact subsets of the metric space (R, m) (R = IR
for the binary images modeling). This space is a complete metric space [1] according to a
Hausdorff metric h,, defined by:

Vi,v € M, ho(t, v) = max{rin(p,v), (v, 1)} 2)

where m is some metric on R (m = d, for example), and:

m(u,v) = max{min{m(z,y),y € v},z € u}.

Let {r;}Y, be an Iterated Function System (i.e. a finite set of contractive mappings
7i), si the 7;’s contractivity factor and 7 : M — M an image transformation such that
Vp € M,7(n) = UX,7:(i). Then, one can proove that 7 is also contractive according to the
Hausdorff metric h,, (i.e. Yy,v € M, hp(T(p), 7(v)) < 8+ hp(p,v)) with the contractivity
factor s = maxlSiSN Si.

Therefore, the Fixed Point theorem implies that the sequence {7(uo), 7*(p0), 7°(o), .- .}
(for an arbitrary initial image po belonging to M) converges torwards an unique object u,
in M, called the attractor of 7, such that u, = 7(u,).

Hence, in the continuous case, one has:

Vi, 8 <1=>VYug e M, Tk(#-o) ‘,H_O)O Ha (3)

In practice, a particular case of L.LF.S. such as the Partitioned Iterated Function Sys-
tem (P.ILF.S.) is used. Moreover, the local fractal codes 7; are not applied to the entire
image, but only to a restriction such as the domain cell D,(;). A real grey-level image p could
be viewed as the graph of a Lebesgue measurable function f. Indeed, let G = [0,255] be
the range of all allowed grey-level values, and R = IR* be the space of the image supports,
and D,(7), R; be square cells in R. Then, an image p = {(z,y,2 = f(z,y)) : (z,y) € S}
belongs to the space R x G (S = Ui<i<nv R; is the compact support in R of the image ;)
and 7; : Dyiy x G — R; x G is defined by:

Gi G2 0 T ti1
ezl =] Gas Ga O y | ¥ 1| %z
0 0 ('K Z Bi
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where a; is the scale factor, 3; is the shift factor, (¢;1,%:2)" a translation vector in R which
maps D; onto R;, and (¢;;); the matrix associated to the transformation I.; or;, in the
continuous case (the T' superscript represents the transpose).

Let us notice that in this continuous model, the geometric (on the support) and massic
(on the luminance) transformations are independent and then the contractivity constraint
only affects (in case of P.L.F.S.) the z-axis (i.e. the luminance transform A,, g, ). But in
practice this is not the case because r;, alters the luminance values.

3.2 In the discrete case

In practice, using P.L.F.S. for digitized image coding, the convergence of the restitution
process is needed and the choice of the coding parameters plays an important role on this
aspect. Although it is sub-optimum, the idea is to adapt the result (3), which could easily
be applied during the coding stage, in the discrete case. So, several papers try to produce
some hypotheses about the coding parameters ranges which can ensure the convergence
during the decoding stage, mainly based on the upper bound of the scales.

3.2.1 Experimental approach

Several upper bounds on the scales have been used for fractal coders. These bounds are
often found by a statistical approach such as testing the convergence of the process or the
reconstruction quality [4] on a “large” enough set of digitized images using some sampled
values of the maximum allowed scale. In [5] for example, some upper bounds «,, are given
and it seems that a,, = 1.2 or a,, = 1.5 yields the best quality versus compression, but
values like a,, = 1.0 or a,, = 1.2 are sometimes prefered because of a smaller number
of iterations during the decoding stage (less than ten). Other authors [3] give out also
a,, = 1.3 or even «,, = 2.0...

These bounds are less restrictive than the following ones, but are not based on a theoretical
proof, and so induce polemics.

3.2.2 A post global sufficient condition in the general case - matrix notation

Using a linear algebra approach of the I.F.S. theory in the discrete case, a sufficient condi-
tion which ensures the convergence is proposed [4, 9]. But this condition cannot be applied
during the coding stage to choose the coding parameters ranges.

The global fractal code T = UY,7;, thanks to its affine form, can be written as:

rv)=L-v+b (4)

where v is some image belonging to A = IRY, L is a K rows by K columns matrix and
bis a vector of IR™. Let us note oy, the spectral radius of the matrix L (i.e. the largest
eigenvalue of L). Then:

= Yo € A, 7 (o) o Ha (
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Indeed, the 7’s attractor y, is given by the formula:

k
fg = lim (Lk-uo+ZL’-b) (6)

k—oco =0

where pio is an arbitrary initial image in A.
So, the condition o7, < 1 is only a post condition which only allows to theoretically verify
whether the iterative process is convergent.

Particular case: Let us consider the set D which uses only non-overlapping domain cells
D,. Let note I = {1,...,Q} the set of all allowed domain cells indices (D = UQ {D.})
and I, = {¢ : (1; : R; — D = {i qli) = g} € {1,..., N} the set of 1nd1ces 0 such that
the range cells R; use D, as a domain cell. Then, Lundheim [3] prooves that the global
contractivity s of the fractal code 7 is given by:

s:ﬁ- max Zaiz (7)

where s is defined in this context by s = ||L||; = /o177, when using the euclidian norm
|| - ||z on A and oy is the spectrum radius of the matrix LT - L. So, one has:

maXeer Y iel, o < 4" = Yo € A, T (o) s 4 s (8)

3.2.3 No constraint is needed in a particular case - orthogonalization of Col-
lage subspace bases

ODien & al. [3, 8] have developped a modified version of the Jacquin fractal coding algorithm.
Using their method, based on an orthogonalization of decimated domain blocks with respect
to the translation basis, no contractivity constraint is needed if we assume that each domain
block consists in an integer number of complete range blocks (i.e. ¥q, 3J, C{l,...,N} :
Dq — UiEJq Rz)

Let us note 1 = (1,...,1)T the unit vector of IRRQ, R; the vector yr, where p € A is the
digitized image to encode, and D;.,. = [, or; n(p,) @ decimated domain vector. Hence,
the local collage error is defined by ¢,; = 5""(’35 «(i) Where 7 q e = ||Aa,8 (Diyg,e) — Ri|2.
Then, the Jacquin’s coding algorithm can be expressed by : Vi€ {1,...,N}, i, = A,, 5 0
Ieiyorin and 7 1 Doy = R; where ay, 8;, e(t), g(7) verify:

Eei = e;nafﬁ it q N inj HO{ L Di;q!g + /3 -1 — Rng
{R AQ‘S‘ D?'Q( )J“{Diqf)e)’l}
= inf, . € ?;’z'
(projection theorem) (9)
R Ao, 2 Dz’;q(i).e(i)% ; 1> =0
s (Diatret) » Diatisty) = 0

23M1
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where (v,w) = B ve - w, for all v = (v)s, W = (ws)s € IRF \/(v —W,V—W) =

dy(v,w) and {v,w} is the 2-dimensional linear subspace spanned by the basis vectors
v, W.
Moreover, for reasons of computational complexity, @ien makes all decimated domain
blocks D;,, . orthogonal to the 1-dimensional linear subspace {1}. This corresponds to
left-multiplying each vector Dy, . with the orthogonalization matrix O = id—1- 1%. Then,
the basis {O - Dy, 1} replaces {D;,.., 1} for the collage approximation. The new fractal
code is given by:

{ T(u) = L'H+bzuﬁlﬁ' (MDq(i)) (10)

7:1' = Ad,,fi, o00o Ie(,;) OTin

In such a way, we only have to compute the best scales &; for each domain block because
the shifts 3; computation is independent, for each range block, of the domain blocks used :

3 = (Ry; 1) )
~ (Ri:Dysg(i) e(i) ) = Bi (Disg(i) e(s) 1) (11)
HD:;q(i),e(i) “2_{Dz;q(t),e(i) '1)

Q; =

Let us remark that a; = &;, 3 = B — (—12%—)—“—) and luckily 7 and 7 have the same
attractor y,.
Moreover, this study proposes the number M of decoder iterations which only depends on

domain and range blocks sizes. For example, when using an uniform range partition with
R=2and D=2%(d>rand n=d—r), M is given by:

M=1+ H (12)

n

where [2| denotes the smallest integer larger than z.
Hence, the 7’s attractor u, is simply given by:

M-1_
Hy= 3 L% < (13)
k=0

In particular, one hfms a nqn—itergmtive decoding process if M = 2 (i.e. whenr < n & R? <
D) and then p, = L-b+ b= 7(b).
3.2.4 A prelocal sufficient condition when using non-overlapped range blocks

This section gives a bound a,, [6] on the scales a; which ensures the euclidian contrac-
tivity aspect of all the local fractal codes 7; i.e.

Vi, leg| < @y = Vi, 7; is contractive
oV, s < 1 (14)
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where s; is the 7;’s contractivity factor. The metrics used in this section are the Euclidian
metric dy for the blocks and a sup-metric d., for the whole image. These metrics are
defined by:

dyi(pR,s VR, = Y ek — MRJe2)?
0<k,<R-1
doo(pyv) = max dzi(ur;, YR.) (15)

where p, v are arbitrary images of A.

Let us note Ag, the space of images obtained by restricting the space A to the cell R;. Then,
we consider here that 7; : A — Apg,, even if ; only alters the pixels belonging to the cell
D; (Tg' - Aa,,ﬁ, o Ie(i} OTin where Tin - A— ARi and Ie(i), Aal.,@. : AR,- = AR‘). In this case,
the global code 7 : A — A is equal to 7(y) = ¥1<cicn Ti(#) = Ur<icnTi(pt)|r,- Therefore,
we consider the following metric spaces: (A,ds) and (Ag,,dz;) for i € {1,...,N}.

In order to find «,,, we have to accurately upper bound the contractivity s; of the local
code 7; in function of «; and impose the local contractivity constraint Vi, s; < 1.

The contractivity factor s; is defined by:

Vu,v € Ay dai(mi(u), (V) < 8i - doo(pt, v) (16)
Moreover, s; is given [6] by the formula:
By = S”'t,n I S[e(;') 3 SA: = S”'t,n ) laf{ (]‘7)

where s, is the contractivity factor of the reduction r;,, s, of the isometry I.(; and
sa, of the affine transformation A;. Then, using equations (14) and (17), a sufficient local
contractivity constraint is given by:

1

(18)

Oy, =
S”'t,n

Therefore, we only have to upper bound the contractivity factor s, .. Moreover, s,  is
given (using a suitable n-fold composition of r; by itself) by:

Vi, 8, = 8" (19)

The r;’s contractivity factor s,, is then found by considering the following inequality:

da,i(rin(p),min(v)) < doolpsv) (20)

i.e. s,, = 1, and, using equation (19), we obtain s, = 1.
Hence, using equation (18), the contractivity of the local codes 7; is ensured if:

o = 1 ENE {1, i e < 1] (21)
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Conclusion

In this paper, we summerized the main results about coding hypotheses which ensure the
convergence of the iterative decoding process. Unfortunately, the results (5) and (8) cannot
be used in practice to constrain the coding parameters. Athough it gives a sub-optimum
constraint for convergence, only the strict contractivity aspect of all the local fractal codes
(ensured using the upper bound on the scales (21)) is theoretically proven and can be
applied efficiently during the coding stage. Of course, the best result would be the global
euclidian contractivity...
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