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On the Rate Gap Between Multi- and Single-Cell

Processing Under Opportunistic Scheduling
Hans Jørgen Bang∗, David Gesbert and Pål Orten.

Abstract—Base station (BS) coordination is a key technique
to handle inter-cell interference (ICI) in cellular networks.
Nevertheless, recent work on scheduling indicates that the value
of coordination is less prominent when the number of users
grows large. More specifically, the loss in sum rate due to
ICI in uncoordinated networks can be made arbitrarily small
as the number of users goes to infinity. However, the gap in
performance for a finite number of users has remained unknown
so far. From this perspective we study the gains of multicell
zero-forcing beamforming (ZFBF) on the downlink of a Wyner-
type network. We first identify the beamforming weights and the
optimal scheduling policy under a per-base power constraint. To
compare ZFBF with single-cell processing (SCP) we focus on the
extra number of users that is needed per cell to compensate for
ICI. Specifically, we find the number of users n1 with ZFBF and
n2 with SCP that gives the same mean post-scheduling SINR
as an interference free network with n users. The results show
that the ratio n2/n1 grows logarithmically with n. Finally, we
demonstrate that the difference in sum-rate between SCP and
multicell ZFBF goes to zero as O

(

ln ln n

ln n

)

. As a consequence of
the slow convergence there is a significant gain with multicell
ZFBF for all practical numbers of users.

Index Terms—Base station coordination, zero-forcing beam-
forming, multiuser scheduling.

I. INTRODUCTION

In conventional cellular systems signal transmission and

reception are done independently on a per-cell basis. This

may result in considerable inter-cell interference (ICI) which

will ultimately limit the capacity. However, by interconnecting

the BSs and coordinating their actions the ICI can be greatly

reduced [1], [2]. A key driver for practical deployment of

BS coordination is that the main complexity burden is on the

network side and not the mobile users.

Recently there has been much work on the information

theoretic nature of coordinated networks [3], [4]. In the ideal

case the downlink can be viewed as vector broadcast channel

in which dirty paper coding (DPC) is the capacity achieving

strategy. Unfortunately, for many practical applications DPC

is prohibitively complex. Sub-optimal techniques with lower

complexities such as linear precoding are therefore of great

interest.

In this paper we consider multicell zero-forcing beam-

forming (ZFBF) together with multiuser scheduling. We are
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particularly keen to compare the resulting sum-rate per cell,

with that of single-cell processing (SCP) and optimal schedul-

ing. The reason for this is twofold. First of all, there is an

inevitable increase in complexity with any BS coordination

scheme relative to conventional SCP. To justify the use of BS

coordination there must therefore be an accompanied gain in

performance. Second, recent work on scheduling shows that

there can be substantial gains in SCP networks with multiple

fading users. Specifically, in [5] and [6] it was shown that the

loss in sum-rate incurred by ICI can be made arbitrarily small

as the number of users go infinity. In [7] the focus was on

inter-beam interference in single-cell beamforming. However,

a reinterpretation of some quantities gives a similar conclusion.

A corollary to these results is that the value of BS coordination

will eventually diminish as the number of users increases.

Nevertheless, the implications of this asymptotic behavior for

a moderate to large number of users depend crucially on the

rate of convergence.

The analytical study of BS coordination is notoriously diffi-

cult and previous authors have mainly resorted to network and

interference model simplifications in order to obtain insights

arising from closed-form expressions [3], [4], [8]–[10]. This

will also be our approach here. Specifically, we assume a linear

cell-array, where each user only receives a signal from the two

closest BSs. This is a slight variation of Wyner’s classical

model introduced in [8]. Similar network and interference

models were recently used in [3] and [4], with the exception

that the cells were arranged on a circular array. However,

this difference is insignificant as the number of cells goes to

infinity.

In [3] the focus was on upper and lower bounds for the per-

cell sum-rate under multicell DPC. In particular, the per-cell

sum-rate was shown to scale as log log n with the number of

users n per cell. In [4] the performances of several suboptimal

network coordination strategies were characterized. However,

no explicit expressions for ZFBF together with Rayleigh

fading were given. In [9] ZFBF and multiuser scheduling were

studied using a model where each user could see the three

closest BSs. A suboptimal scheduling strategy was proposed

and shown to scale as log log n which is the same as for

optimal multicell DPC. However, the same optimal scaling

can also be achieved with SCP and is therefore not sufficient

to justify ZFBF in itself [11].

The goal of this work is to to evaluate the benefit of multicell

ZFBF over SCP as the number of users grows large. To this

end we derive explicit expressions for a set of beamforming

weights satisfying the zero-forcing criterion and a per-base

power constraint. Based on this preliminary result we identify
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Fig. 1. Part of infinite linear cell-array. Each user receives a signal from the two closest BSs.

the optimal scheduling policy. To make a first comparison with

SCP we note that the post-scheduling signal-to-interference-

plus-noise ratio (SINR) can be viewed as the maximum of a

random sample of size n. This observation allows us to draw

on Extreme Value Theory (EVT) [12], [13] to characterize the

asymptotic behavior of the mean SINR with the number of

users. We scrutinize our findings further by giving some exact

result as well as several upper and lower bounds.

Notably, we derive asymptotic expressions for the number

of users n1 and n2 required to attain the same mean SINR

with ZFBF and SCP respectively. Put differently, we find the

extra number users needed per cell to compensate for the lack

of coordination with SCP. Interestingly, the ratio n2/n1 is

not bounded, but grows logarithmically with the number of

users n. Finally, we demonstrate that the difference in sum-

rate between ZFBF and SCP is significant for all practical

values of number of users.

II. SYSTEM MODEL

We consider a linear cell-array with n single-antenna users

and one single antenna BS in each cell. For symmetry

reasons we assume the cell-array to extend indefinitely in

both directions. However, the choice is technical and a finite

network would have no qualitative impact on the results. We

further assume intra-cell time division multiplexing (TDM)

with synchronous time slots (scheduling intervals) across the

network. The time slots are assumed to be sufficiently short

for the channel to be constant within a slot, yet contain enough

symbols to employ capacity achieving codes. In the following

we will focus on an arbitrary symbol transmission interval

within an arbitrary time slot and omit explicit reference to

time. The received signal for user k in cell i is given by

yi(k) = ai(k)xi + βbi(k)xi+1 + zi(k), (1)

where xi,xi+1∈ C are the antennae outputs from BS i and

BS i+1, ai(k),bi(k)∈ CN(0, 1) are the corresponding fading

coefficients and zi(k)∈ CN(0, 1) is normalized Gaussian

noise. The constant β∈ [0, 1] reflects a difference in the path

loss on the two signal paths.

In each time slot there is one user, denoted k∗
i , that is

scheduled in each cell i. If we focus on the scheduled users

we have the following input-output relationship

y = Hx + z

where y = {yi(k
∗
i )}i∈Z, x = {xi}i∈Z, z = {zi(k

∗
i )}i∈Z are

infinite column vectors and H is a bidiagonal infinite matrix

with

[H]i,j =











ai(k
∗
i ), i = j

βbi(k
∗
i ), i = j − 1

0 otherwise.

In the case of multicell linear beamforming (preprocessing)

one applies a matrix B such that x = Bs where s = {si}i∈Z

is an infinite column vector. Here si is the information

symbol intended for user k∗
i . In order to fulfill a per BS

power constraint we require E|xi|2 ≤ ρ. With the assumption

E|si|2 = 1 this is equivalent to the ℓ2-norm of each row of B

being no more than
√

ρ.

Finally, we assume that complete channel state information

(CSI) is available to the BSs, while the users employ conven-

tional single user receivers. The former assumption is clearly

hard to fulfill in practical systems. Nevertheless, we will not

focus on this aspect of BS coordination here.

III. SINGLE-CELL NETWORK BOUND

As a reference we first consider the case with no inter-cell

interference (β = 0). The channel model now reduces to

yi(k) = ai(k)xi + zi(k). (2)

Conceptually this is equivalent to a network with one single

isolated cell. The channel model in (2) is the prototype model

for illustrating the potential gains of multiuser scheduling. The

rate optimal scheduling policy is to select the user k with the

largest gain |ai(k)| in cell i which yields the instantaneous

SINR [14]

Γi
SCN(n) = max

1≤k≤n
ρ|ai(k)|2.

In the sequel we will drop the index i when denoting Γi
SCN(n)

since its distribution is independent of the particular cell. To

find the distribution of ΓSCN(n) we first note that ΓSCN :=
ΓSCN(1) is exponentially distributed with cdf

FSCN(x) = 1 − e−x/ρ, x ≥ 0.

Since ΓSCN(n) can be phrased as the largest order statistics of

ΓSCN the cdf Fn
SCN of ΓSCN(n) is [15]

Fn
SCN(x) =

(

1 − e−x/ρ
)n

, x ≥ 0.

It is well know that the corresponding mean is

E ΓSCN(n) =

∫ ∞

0

xdFn
SCN = ρHn,
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where Hn :=
∑n

k=1 1/k is the nth harmonic number [15]. For

large n the asymptotic expression

Hn = lnn + γ + O (1/n)

is particularly useful. Here γ = 0.577.. is the Euler con-

stant [16].

IV. SINGLE-CELL PROCESSING

In conventional SCP networks all signal transmissions are

done independently on a per-cell basis. Specifically, the ith BS

transmits xi =
√

ρ si directly without compensating for inter-

cell interference. The instantaneous SINR with rate optimal

scheduling is therefore

ΓSCP(n) = max
1≤k≤n

|ai(k)|2
1/ρ + β2|bi(k)|2 .

In [7] it is shown that the cdf FSCP of ΓSCP := ΓSCP(1) is

FSCP(x) = 1 − e−x/ρ

1 + β2x
, x ≥ 0.

Hence, from the theory of order statistics we have that the cdf

Fn
SCP of ΓSCP(n) is

Fn
SCP(x) =

(

1 − e−x/ρ

1 + β2x

)n

, x ≥ 0.

Unfortunately, exact analytical expressions based on the above

distribution are hard to obtain and give little insight into the

key quantities. Instead we will take an approach based on EVT

in Section VI.

V. MULTICELL ZERO-FORCING BEAMFORMING

We now turn to BS coordination in the form of ZFBF.

Interestingly, the considered interference model will allow us

to shed some new light on the otherwise well known zero-

forcing problem.

By definition of zero-forcing there should be no interference

for scheduled users. Thus, we seek a beamforming matrix

B such that HB = D for some diagonal matrix D =
diag(.., d−1, d0, d1, ..). To ensure that an obtained solution

is unique we require that the diagonal elements di are non-

negative real numbers and that each BS transmits at full power,

i.e. E|xi|2 = ρ.

By combining HB = D and x = Bs we have

disi = ai(k
∗
i )xi + βbi(k

∗
i )xi+1, ∀ i ∈ Z (3)

which is a difference equation in xi. Without a constraint on

the transmit power one can easily infer that

xi =
∞
∑

j=i

(

j−1
∏

l=i

−β
b(k∗

l )

a(k∗
l )

)

dj

a(k∗
j )

sj (4)

is a valid solution. However, since (4) implies E{sixi+1} = 0
it follows from (3) that the power constraint is satisfied for

|di|2 = ρ(|ai(k
∗
i )|2 − β2|bi(k

∗
i )|2) (5)

given that

|ai(k
∗
i )| ≥ β|bi(k

∗
i )|. (6)

The effective channel after zero-forcing and scheduling is then

y(k∗
i ) = ρ1/2(|ai(k

∗
i )|2 − |bi(k

∗
i )|2)1/2si + z(k∗

i ). (7)

Thus, the interference is eliminated at the expense of a power

penalty. It also follows that the beamforming matrix is given

as

[B]i,j =











0, i > j

(1 − |rj |2)1/2, i = j

(1 − |rj |2)1/2
∏j−1

l=i rl, i < j,

where ri = −β
bi(k

∗

i )
ai(k∗

i ) .

The above solution builds on the assumption that |ai(k
∗
i )| ≥

β|bi(k
∗
i )|. This says that channel gain to the host BS is stronger

than the neighboring BS. This is a reasonable scheduling

criteria in a multiuser setting. Nevertheless, to tackle the

general case we redefine ri to

ri = −β
bi(k

∗
i )

ai(k∗
i )

/max

{

1,

∣

∣

∣

∣

β
bi(k

∗
i )

ai(k∗
i )

∣

∣

∣

∣

}

.

The implications of this is that user k∗
i does not receive a

useful signal whenever |ai(k
∗
i )| < β|bi(k

∗
i )|.

A. Scheduling

In order to characterize the performance of ZFBF we need

to specify a particular scheduling policy. From (7) we can

immediately conclude that rate optimal scheduling amounts to

k∗
i = arg max

1≤k≤n
|ai(ki)|2 − β2|bi(ki)|2.

The instantaneous post-scheduling SINR is now

ΓZF(n) = max
1≤k≤n

ρ
[

|ai(k)|2 − β2|bi(k)|2
]

+
,

where [ · ]+ := max{ · , 0}. Note that it is the received signal

power after interference cancellation that determines the final

performance. In the Appendix we find that the cdf of ΓZF :=
ΓZF(1) is

FZF(x) = 1 − e−x/ρ

1 + β2
, x ≥ 0. (8)

Hence, the cdf Fn
ZF of ΓZF(n) is

Fn
ZF(x) =

(

1 − e−x/ρ

1 + β2

)n

, x ≥ 0.

For comparison, we also consider two suboptimal schedul-

ing policies that have previously been proposed in the litera-

ture [4], [9], [11]. The first policy is to schedule the user with

the largest gain to the host BS,

k∗
i = arg max

1≤k≤n
|ai(k

∗
i )|2.

To denote the resulting instantaneous SINR we use ΓZF,2(n).
The second policy is to schedule the user with largest ratio

between the gains to the host BS to the neighboring BS,

k∗
i = arg max

1≤k≤n

|ai(k
∗
i )|2

|bi(k∗
i )|2 .

In line with the previous notation we use ΓZF,3(n) to denote

the resulting instantaneous SINR.
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VI. ASYMPTOTIC RESULTS FOR THE MEAN SINR

In this section we obtain some asymptotic results on the

performance of ZFBF and SCP. We first note that ΓSCN(n),
ΓSCP(n) and ΓZF(n) can all be viewed as the largest order

statistics from a sample of size n. Based on this observation we

make use of Extreme Value Theory (EVT) [12], [13], which is

concerned with the asymptotic distribution of order statistics.

In the sequel, it will be convenient to extend the definitions

of ΓSCN(y),ΓSCP(y) and ΓZF(y) to all y ∈ R+. To this end

we take the distributions F y
SCN, F y

SCP and F y
SCN as definitions of

ΓSCN(y),ΓSCP(y) and ΓZF(y) for non-integers y.

A. Some Extreme Value Theory

It is readily shown that Γχ, χ ∈ {SCN, SCP, ZF}, are all in

the domain of attraction of the Gumbel distribution (see the

Appendix for technical conditions). Thus, according to EVT

there exist normalizing functions µχ(y) and νχ(y) such that

lim
y→∞

F y
χ

(

µχ(y) + νχ(y)x
)

= G(x) for all x, (9)

where G(x) := e−e−x

is the Gumbel distribution. Further-

more, the normalizing functions can be selected to be

µχ(y) = gχ(y) and νχ(y) = gχ(ye) − gχ(y), (10)

where gχ(y) := F−1
χ (1 − 1/y).

The relationship in (9) corresponds to convergence in

distribution. Additionally, one can also show that there is

convergence in moments [17]. This means that once we obtain

the normalizing functions we also have a characterization

of the asymptotic behavior of the mean. In particular, by

computing the first moment of the Gumbel distribution we

get

Γχ(n) := E Γχ(n) ≈ µχ(n) + γνχ(n),

for large number of users n [12].

B. Explicit relationships for the normalizing functions

For ΓSCN and ΓZF it is straightforward to find the normalizing

functions from (10). In particular, we have

µSCN(y) = ρ ln y (11)

µZF(y) = ρ ln y − ρ ln(1 + β2) (12)

νSCN(y) = νZF(y) = ρ.

Unfortunately, for ΓSCP the normalizing functions can not be

expressed in terms of elementary functions. To proceed we

make use of the Lambert W function which is defined through

the relation W (x)eW (x) = x [18]. We then obtain

µSCP(y) = ρW

(

y

β2ρ
e

1

β2ρ

)

− 1

β2
,

νSCP(y) = ρW

(

ye

β2ρ
e

1

β2ρ

)

− ρW

(

y

β2ρ
e

1

β2ρ

)

−→
y→∞

ρ,

where the limit can be inferred from W (x) = lnx− ln lnx+
O( ln ln x

ln x ) [18]. To gain more insight into the limiting behavior

one can use more refined asymptotic expansions of W (x).
However, we will focus next on an alternative indirect char-

acterization of µSCP(y).

C. Implicit relationships for the normalizing functions

Interestingly, we can express µSCP(y) and µZF(y) implicitly

in terms of µSCN(y). From (11) and (12) we see that

µZF

(

y(1 + β2)
)

= µSCN(y).

Similarly, from the observation

1 − FSCP(µSCN(y)) =
1

y(1 + β2ρ ln y)

we obtain the following relationship

µSCP

(

y(1 + β2ρ ln y)
)

= µSCN(y).

All in all we can infer from above that

ΓSCP

(

n(1 + β2ρ ln n)
)

≈ ΓSCN(n) ≈ ΓZF

(

n(1 + β2)
)

, (13)

for large number of users n. Thus, to attain the same mean

SINR as in a single-cell network with n users one needs

asymptotically n(1 + β2ρ ln n) users per cell with SCP and

n(1 + β2) users per cell with ZFBF. It is interesting to

note that ratio of required users with SCP to ZFBF is not

bounded, but grows logarithmically with the number of users

n. We also point out that the ratio is linear in ρ. Thus,

ZFBF is increasingly beneficial with increasing SNRs which

is consistent with previous results.

VII. EQUALITIES AND BOUNDS FOR THE MEAN SINR

Even though the above analysis reveals the asymptotic

behavior of the mean SINRs it fails to say anything about

the rates of convergence. Furthermore, EVT is not directly

applicable to the study of ΓZF,2(n) and ΓZF,3(n) since they

are not formulated as order statistics. Below we give some

exact result together with several upper and lower bounds.

The proofs can be found in the Appendix.

We first consider some results pertaining to ZFBF and

suboptimal scheduling.

Proposition 1: Let the user k with the largest ratio

|ai(k)|2/|bi(k)|2 be scheduled in each cell i. The mean SINR

with ZFBF has the following upper bound

ΓZF,3(n) < 2ρ.

Proposition 1 is interesting because the upper bound is

independent of the number of users per-cell. Clearly, the

benefit of adding more users is severely limited. This is in

contrast with the other suboptimal scheduling strategy which

we consider below.

Proposition 2: Let the user k with the largest gain |ai(k)|2
be scheduled in each cell i. The mean SINR with ZFBF is

ΓZF,2(n) = ρHn −ρβ2
(

1 − nB
(

1+β2

β2 , n
))

≤ ρHn −ρβ2 n

n + 1
,

(14)

where B(x, y) denotes the beta function [16]. The inequality

is strict for all 0 < β2 < 1.1

1Proposition 2 corrects a mistake in [19] where ΓZF,2(n) was set equal to
the second line of (14).
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From (14) and the asymptotic expansion Hn ∼ lnn + γ it

follows that

ΓZF,2

(

neβ2) ≈ lnn + γ ≈ ΓSCN(n).

for n large. Thus, there is a performance degradation compared

to optimal scheduling. To exemplify, for β = 1 one needs

approximately 35% more users to attain the same mean SINR.

For the following results we will assume that β 6= 0 in

order to obtain strict inequalities. For the special case β = 0
we have that ΓSCN, ΓSCP and ΓZF are identical and the results

are trivial.

Proposition 3: The mean SINR with ZFBF and optimal

scheduling is

ΓZF(n) = ρHn −ρ

n
∑

k=1

(

β2

1 + β2

)k
1

k

> ρHn −ρ ln(1 + β2),

(15)

where the last inequality is asymptotically tight. Additionally,

ΓZF

(

n(1 + β2)) < ΓSCN(n) < ΓZF

(

n(1 + n+1
n β2)). (16)

We next give an upper bound to the performance of SCP

with optimal scheduling.

Proposition 4: Assume SCP and optimal scheduling. The

mean SINR satisfies the following upper bound

ΓSCP

(

n(1 + β2ρ lnn)
)

< ΓSCN(n). (17)

Note that we already know from Section VI that the

inequality is asymptotically tight.

VIII. IMPLICATIONS FOR THE PER-CELL SUM-RATE

We now briefly consider the per-cell sum-rates. Define

Cχ(n) := E log2

(

1 + Γχ(n)
)

for χ ∈ {SCN, SCP, ZF}. Unfortunately, the concavity of the

log2

(

1+(·)
)

function prevents most of the results concerning

the mean SINR to automatically carry over to the per-cell

sum-rate. However, we still have the following results.

Proposition 5: The per-cell sum-rate with SCP and optimal

scheduling satisfies the following bounds

log2(1 + ρ lnn) < CSCP

(

n(1 + β2ρ ln n)
)

< log2(1 + ρHn).

The per-cell sum-rate with ZFBF and optimal scheduling

satisfies

log2(1 + ρ lnn) < CZF

(

n(1 + β2)
)

< log2(1 + ρHn),

for n sufficiently large.

The above results together with (13) suggest the approxi-

mation

CSCP

(

n(1 + β2ρ ln n)
)

≈ CSCN(n) ≈ CZF

(

n(1 + β2)
)

(18)

for n large. We will illustrate the accuracy of the above

relations in the next section. Proposition 5 also implies that

the difference in the per-cell sum-rate with SCP and ZFBF

goes to zero as the number of users goes to infinity. Let

∆C(n) := CZF(n) − CSCP(n) and consider the estimate

∆C(n) ≈ log2

(

1 + µZF(n)
)

− log2

(

1 + µSCP(n)
)

= log2

(

1 +
ln(1 + β2ρ ln t) − ln(1 + β2)

1/ρ + ln t

)

≈ log2(e)
ln
(

β2

1+β2 ρ ln t
)

ln t

(19)

where t is the unique solution to n = t(1 + β2ρ ln t). Hence

∆C(n) converges to zero, but only at the rate of O
(

ln ln n
ln n

)

.

IX. NUMERICAL RESULTS

In this section we illustrate some our results numerically.

Since Γχ(n) is a direct function of exponential random

variables we can easily evaluate Cχ(n) through Monte Carlo

simulations (χ ∈ {SCN, SCP, ZF}). We first consider the

approximate relationship in (18). Specifically, in Fig. 2 we

plot the sum-rate per-cell corresponding to

(i) a SCN scenario with n users,

(ii) ZFBF with n(1 + β2) users per-cell and

(iii) SCP with n(1 + β2ρ ln n) users per-cell

in the same plot. In all three cases the mean SNR is ρ = 10 dB

and for (ii) and (iii) we have β = 1. Observe that there is a

remarkably good fit between the three graphs even for small

n. Thus, the approximations in (18) seems to be well justified.

The magnified section of the plot also reveals that the ordering

between (i) and (ii) is as expected from (16). However, we

point out that part of the difference is likely to result from

the concavity of the rate function. The ordering of (i) and (iii)

is also as one would expect from (17). However, in this case

the concavity of the rate function is likely to lead to a small

decrease in the difference as one would otherwise expect.

The large difference in the number of users per cell between

multicell ZFBF and SCP to attain the same performance is

also interesting. To exemplify consider a SCN with n = 10
users. One then needs n(1 + β2 lnn) ≈ 240 users with SCP

as opposed to n(1 + β2) ≈ 20 users with ZFBF to attain the

same rate per-cell in a multicell network.

In Fig. 3 we plot the sum-rate per-cell corresponding to a

SCN, multicell ZFBF and SCP for the same number of users.

Note that there is a significant gain with ZFBF over SCP. In

accordance with (19) there is little reduction in the gain even

for very large number of users. The convergence of the two

curves appears to have little impact in the pre-asymptotic user

regime.

X. CONCLUSION

We have considered coordinated multicell ZBFB on the

fading downlink of a linear cell-array. The beamforming

coefficients and the optimal scheduling policy under a per-

base power constraint were both identified. Furthermore, the

resulting mean post-scheduling SINR was extensively studied.

To put the performance in perspective SCP with optimal

scheduling was used as a benchmark. Specifically, we gave

asymptotic expressions for the additional number of users per

cell to compensate for inter-cell interference with ZFBF and
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Fig. 2. The per-cell sum-rate for an interference free network with n users,
ZFBF with n(1 + β2) users, and SCP with n(1 + β2ρ ln n) users.
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Fig. 3. The per-cell sum-rate for an interference free network, ZFBF and
SCP as a function of the number of users per cell n.

SCP. The difference in per-cell sum-rate between SCP and

multicell ZFBF goes to zero as the number of users goes to

infinity. However, we demonstrated that the convergence is too

slow to have any practical impact. Thus, for practical systems

multicell ZFBF has a significant gain over SCP.

APPENDIX

A. ΓSCN,ΓSCP and ΓZF are in the domain of the Gumbel

distribution

The claim follows immediately from the following result

due to Von Mises [20]:

Suppose X is random variable with cdf F (x) and a pdf f(x)
which is positive and differentiable on a neighborhood of

x∗ := sup{x|F (x) < 1}. If

lim
x→x∗

d

dx

(

1 − F (x)

f(x)

)

= 0, (20)

then X is in the domain of attraction of the Gumbel distribu-

tion.

B. The distribution of ΓZF(n) is given according to (8)

We have by definition ΓZF

d
= ρ[|ai(k)|2 − β2|bi(k)|2]+ for

a fixed i and k. Since ΓZF cannot assume negative values we

have FZF(x) = 0 for x < 0. Let FZF(x|z) denote the cdf of

ΓZF conditioned on |bi(k)|2 = z, let F|a|2(x) denote the cdf of

|ai(k)|2 and let f|b|2(x) denote the pdf of |bi(k)|2 . Note that

|ai(k)|2 and |bi(k)|2 are exponential random variables with

unit mean. By marginalizing over |bi(k)|2 the cdf of ΓZF can

be expressed as

FZF(x) =

∫ ∞

0

FZF(x|z)f|b|2(z) dz

=

∫ ∞

0

F|a|2

(

x
ρ + β2z

)

f|b|2(z) dz

=

∫ ∞

0

(

1 − e−( x
ρ
+β2z)

)

e−z dz

= 1 − e−x/ρ

1 + β2
,

for x > 0.

C. Proof of Proposition 1

Let Ak := |ai(k)|2, Bk := |bi(k)|2 and Ck := Ak/Bk

for a fixed i. We seek E[Ak∗ − β2Bk∗ ]+ where k∗ =
arg max1≤k≤n Ck. The crucial point to observe is that know-

ing that Ck∗ is the largest out of n variables do not give any

extra information regarding Ak∗ once the exact value of Ck∗

is given. Thus,

fAk∗
(x|Ck∗ = z) = fAk

(x|Ck = z)

for all k. Now since Ak and Bk have exponential distributions

if follows that Ck has a F -distribution [21, p. 946] with pdf

fCk
(z) =

1

(1 + z)2
, z ≥ 0.

Furthermore, Ck conditioned on Ak has an inverse exponential

distribution with pdf

fCk
(z|Ak = x) =

x

z2
e−x/z, z ≥ 0.

Based on Bayes’ theorem we now obtain

fAk∗
(x|Ck∗ = z) =

fAk
(x)fCk

(z|Ak = x)

fCk
(z)

=
(

1 +
1

z

)2

x e−
(

1+ 1
z

)

x.

This is a Gamma distribution [22, p. 103] with mean

E{Ak∗ |Ck∗ = z} =
2

(

1 + 1
z

)2 < 2.

Thus, regardless of the distribution of Ck∗ we have E{Ak∗} <
2. Finally,

ΓZF,3(n) = ρE[Ak∗ − β2Bk∗ ]+ < 2ρ

which is the desired result.
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D. Proof of Proposition 2

Throughout the proof of Proposition 2 we let ρ = 1 for

simplicity. However, the general results follow by noting that

the SINR is linear in ρ for ZFBF.

Let Ak := |ai(k)|2, Bk := β2|bi(k)|2 and k∗ :=
arg max1≤k≤n Ak. Since Ak and Bk are exponential random

variables it follows that Ak∗ has pdf

fAk∗
(x) = ne−x

(

1 − e−x
)n−1

, x ≥ 0

and Bk∗ has pdf

fBk∗
(y) =

1

β2
e−x/β2

, x ≥ 0.

Now, define B
′

k∗ such that

[Ak∗ − Bk∗ ]+ = Ak − B
′

k∗ .

The distribution of B
′

k∗ conditioned on Ak∗ is then

FB
′

k∗

(y|Ak∗ = x) =

{

1 − e−y/β2

, y ≤ x

1, y > x.

and the conditional mean is

E{B′

k∗ |Ak∗ = x} =

∞
∫

0

1 − FB
′

k∗

(y|Ak∗ = x)dy

= β2
(

1 − e−x
)

.

Finally,

ΓZF,2(n) = E [Ak∗ − Bk∗ ]+

=

∫∫

x,y≥0

(x − y)fAk∗
(x)fB

′

k∗

(y|Ak∗ = x) dydx

=

∫

x≥0

(x − E{B′

k∗ |Ak∗ = x})fAk∗
(x) dx

=

∫

x≥0

(

x − β2
(

1 − e−x/β2))

fAk∗
(x) dx

= Hn −
∫

x≥0

β2
(

1 − e−x/β2)

ne−x
(

1 − e−x
)n−1

dx

= Hn −β2 + β2n

∫ 1

0

t1/β2

(1 − t)n−1 dx

= Hn −β2 + β2nB(1 + 1/β2, n)

≤ Hn −β2 + β2 1

n + 1

where use the substitution t = 1−e−x. The inequality follows

from observing that Beta-function is monotonically decreasing

in both variables. Thus B(1 + 1/β2, n) ≤ B(2, n) = 1
n(n+1)

with equality only for β2 = 1.

Before we prove Proposition 3 we state the following useful

result on the harmonic numbers.

E. Result on the harmonic numbers

There exist monotonically decreasing functions ǫ(x) and

η(x) such that the harmonic numbers satisfy the following

relations

Hx = lnx + γ + ǫ(x) (21)

= lnx + γ +
1

2x
− η(x), (22)

for x ≥ 1 [23].

F. Proof of Proposition 3

1) Proof of (15): A direct calculation gives

ΓZF(n) =

∫ ∞

0

1 − Fn
ZF(x) dx

=

∫ ∞

0

1 −
(

1 − e−x/ρ

1 + β2

)n

dx

= ρ

∫ 1

β2

1+β2

1 − zn

1 − z
dz

= ρ

∫ 1

β2

1+β2

n
∑

k=1

zk−1 dz

= ρ

n
∑

k=1

1

k
− ρ

n
∑

k=1

(

β2

1 + β2

)k
1

k

> ρHn −ρ ln(1 + β2)

where we have used the substitution z = 1 − e−x

1+β2 . The

inequality follows from the identity [21, p. 68]

ln(x) =

∞
∑

k=1

(

x − 1

x

)k
1

k
.

2) Proof of (16): The left side follows from the following

calculation

ΓZF

(

n(1 + β2)
)

=

∫ ∞

0

1 −
(

1 − e−x/ρ

1 + β2

)n(1+β2)

dx

<

∫ ∞

0

1 −
(

1 − e−x/ρ
)n

dx

= ΓSCN(n)

where we use Bernoulli’s inequality, (1 + x)r > 1 + rx for

x > −1 and r > 1 [24].

We now turn to the right hand side of the inequality. Let

y := n(1 + n+1
n β2). From (15) and (22) we have

ΓZF(y)/ρ > ln y + γ +
1

2y
− η(y) − ln

(

1 + β2
)

= lnn + γ +
1

2y
− η(y) + ln

(

1 +
1

n

β2

1 + β2

)

and

ΓSCN(n)/ρ = lnn + γ +
1

2n
− η(n).

Thus, since η(x) is monotonically decreasing it is sufficient

to show

ln
(

1 +
1

n

β2

1 + β2

)

+
1

2n(1 + β2 + 1
nβ2)

≥ 1

2n
. (23)
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To proceed we use the following inequality [21, p. 68]

ln

(

1 +
1

x

)

>
1

x + 1
, x > 0.

Applied to the left side of (23) this gives

β2

n(1 + β2) + β2
+

1

2n(1 + β2 + 1
nβ2)

=
1 + 2β2

1 + β2 + 1
nβ2

1

2n
.

Thus, ΓZF

(

n(1 + n+1
n β2)

)

> ΓSCN(n) for n ≥ 1.

Before we prove Propostion 4 we will review the probability

integral transform theorem [25].

G. The probability integral transform theorem

Suppose X is a random variable with continuous cdf FX .

By the integral transform theorem we have that U := FX(X)
is a uniform random variable on [0, 1]. Thus, X = F−1

X (U).
The following extension is straight forward. Define X+ :=
[X]+ and let FX+

(x) denote its cdf. Then F−1
X+

(x) =

[F−1
X (x)]+. Therefore

X+ = [F−1
X (U)]+ = F−1

X+
(U).

H. Proof of Proposition 4

To prove (17) the following results will be convenient.

ΓSCN(y)
d
= ΓSCP(y) + ρ ln

(

1 + β2ΓSCP(y)
)

(24)

FU

(

E U1/y
)

= 1 − 1

y + 1
> 1 − 1

y
(25)

ΓSCP(y) > ρ lnn (26)

E ln
(

1 + β2ΓSCP(y)
)

> ln
(

1 + β2ρ ln n
)

(27)

Here U is uniformly distributed on [0, 1] and n is the unique

solution to y = n(1 + β2ρ ln n) ≥ 1. Assuming the above

results to be true, we obtain

ΓSCP(y) = ΓSCN(y) − ρE ln
(

1 + β2ΓSCP(y)
)

< ρ ln y + ργ + ρǫ(y) − ρ ln
(

1 + β2ρ lnn
)

= ρ ln n + ργ + ρǫ(y)

< ρ ln n + ργ + ρǫ(n)

= ΓSCN(n).

which is the desired result. The last inequality follows follows

from the fact that ǫ(x) is monotonically decreasing.

1) Proof of (24): By the probability integral transform

theorem we have

U
d
= F y

SCN

(

ΓSCN(y)
)

d
= F y

SCP

(

ΓSCP(y)
)

.

This in turn yields

ΓSCN(y)
d
= [F y

SCN]−1 ◦ F y
SCP

(

ΓSCP(y)
)

= −ρ ln

(

1 −
[

F y
SCP

(

ΓSCP(y)
)

]1/y
)

= −ρ ln

(

e−ΓSCB(y)/ρ

1 + β2ΓSCB(y)

)

= ΓSCB(y) + ρ ln
(

1 + β2ΓSCB(y)
)

.

2) Proof of (25): The pdf and cdf of U are FU (x) = x,

fU (x) = 1, 0 ≤ x ≤ 1. Thus,

FU

(

E U1/y
)

= E U1/y =

1
∫

0

fU (x)x1/ydx = 1 − 1

y + 1
.

3) Proof of (26): Applying the probability integral theorem

we have U
d
= F y

SCP

(

ΓSCP(y)
)

. Thus, U1/y d
= FSCP

(

ΓSCP(y)
)

.

Therefore, if FSCP is concave we have

E U1/n ≤ FSCP

(

ΓSCP(y)
)

by Jensen’s inequality. This in turn gives

ΓSCP(y) ≥ F−1
SCP

(

E U1/y
)

> F−1
SCP

(

1 − 1

y

)

= ρ lnn (28)

where the second inequality follows from (26) and the last

equality from the relation

FSCP(ρ ln n) = 1 − 1

n(1 + β2 lnn)
.

To prove the concavity of FSCN we show that its second

derivative is non-positive.

d2

dx2
FSCN(x) =

(

1 − e−g(x)
)

′′

=
(

e−g(x)g′(x)
)

′

= −e−g(x)
(

(

g′(x)
)2 − g′′(x)

)

≤ 0

where g(x) := x/ρ + ln(1 + β2x).

4) Proof of (27): Let Λ(y) := ln
(

1+β2 ΓSCP(y)
)

. The cdf

F y
Λ of Λ(y) is then

F y
Λ(x) = F y

SCN

(

ex − 1

β2

)

=
(

1 − e
−x+ ex

−1

ρβ2
)y

.

If FΛ := F 1
Λ is concave we now have

E ln
(

1 + β2ΓSCP(y)
)

= EF−1
Λ

(

U1/y
)

≥ F−1
Λ

(

E U1/y
)

= ln
(

1 + β2F−1
SCP

(

E U1/y
)

)

> ln
(

1 + β2ρ ln n
)

,

where we use the probability integral transform theorem,

Jensen’s inequality and finally (26). To prove the concavity of

FΛ we demonstrate that its second derivative is non-positive.

d2

dx2
FΛ(x) =

(

1 − e−g(x)
)

′′

= −e−g(x)
(

(

g′(x)
)2 − g′′(x)

)

= −e−g(x)
((

1 +
ex

ρβ2

)2

− ex

ρβ2

)

< 0,

where g(x) := x + ex−1
ρβ2 .
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I. Proof of Proposition 5

From Jensen’s inequality and Proposition 4 we have

CSCP

(

n(1 + β2ρ lnn)
)

= E log2

(

1 + ΓSCP

(

n(1 + β2ρ ln n)
)

)

< log2

(

1 + E ΓSCP

(

n(1 + β2ρ ln n)
)

)

< log2

(

1 + E ΓSCN(n)
)

= log2

(

1 + ρHn

)

Likewise, from Jensen’s inequality and Proposition 3 we have

CZF

(

n(1 + β2)
)

< log2

(

1 + ρHn

)

.

From (27) it immediately follows that

CSCP

(

n(1 + β2ρ ln n)
)

> log2

(

1 + ρ ln n
)

.

Finally we turn to the claim,

CZF

(

n(1 + β2)
)

> log2(1 + ρ ln n)

for n sufficiently large. We first introduce the notation

R(y) := log2

(

1 + ΓZF(y)
)

and R := R(1). The cdf of R is then FR(x) = FZF

(

2x−1
)

. To

prove the desired result we postulate the existence of a random

variable Z with cdf FZ such that u(x) := F−1
Z ◦ FR(x) is

concave and

FZ

(

E Z(y)
)

> 1 − 1

y
(29)

for y sufficiently large. Here Z(y) is defined through its cdf

FZ(y)(x) =
(

FZ(x)
)y

. By the integral transform theorem we

then have

R(y)
d
= F−1

R ◦ FZ

(

Z(y)
)

= u−1 (Z(y))

where u−1(x) is convex since u(x) is concave. The desired

result then follows from Jensen’s inequality since

CZF

(

n(1 + β2)
)

= ER
(

n(1 + β2)
)

≥ F−1
R ◦ FZ

(

E Z
(

n(1 + β2)
)

)

> F−1
R

(

1 − 1

n(1 + β2)

)

= log2

(

1 + F−1
ZF

(

1 − 1

n(1 + β2)

))

= log2(1 + ρ lnn).

To prove the existence of Z we introduce the following

quantities

h1(x) := β2

1+β2 + 1
1+β2

2x−1
ρ

xm := h−1
1

(

1 − e−1

1+β2

)

c2 := h
′

1(xm)

h2(x) := 1 − e−1

1+β2 + c2(x − xm)

xe := h−1
2 (1).

We now define Z to have support [0, xe] and cdf

FZ(x) :=

{

h1(x), 0 ≤ x ≤ xm

h2(x), xm < x ≤ xe.

Note that FZ has a continuous derivative on its support. To

prove the concavity of u(x) we fist show that the second

derivative of u(x) is negative on
[

0, F−1
R

(

1 − e−1

1+β2

))

and

then on
(

F−1
R

(

1 − e−1

1+β2

)

,∞). Since u(x) has a continuous

derivative it follows that u(x) is concave on the whole of

[0,∞).

For x ∈
[

0, F−1
R

(

1 − e−1

1+β2

))

we have

u(x) = log2

(

1 + ρ
(

(1 + β2)FR(x) − β2
))

= log2

(

1 + ρ
(

1 − e−
2x

−1

ρ

))

.

Now let v(x) denote the argument of log2(·) above. By taking

the second derivative of u(x) we obtain

u′′(x) =

(

1

ln 2

v′(x)

v(x)

)′

=
1

ln 2

v′′(x)

v(x)
− 1

ln 2

(

v′(x)
)2

v(x)2

=
ln 2 2xe−

2x
−1

ρ

v(x)
·
{

1 − 2xe−
2x

−1

ρ

1 + ρ
(

1 − e−
2x

−1

ρ

) − 2x

ρ

}

.

By applying the inequality e−x ≤ 1−x twice inside the curly

brackets we get

u′′(x) ≤ − ln 2 2xe−
2x

−1

ρ

v(x)

1

ρ
< 0.

For x ∈
(

F−1
R

(

1 − e−1

1+β2

)

,∞
)

we have

u(x) = xm +
1

c2

(

FR(x) +
e−1

1 + β2
− 1
)

.

By taking the second derivative we obtain

u′′(x) =
1

c2

(

1 − e−
2x

−1

ρ

1 + β2

)′′

=
1

c2

(

e−
2x

−1

ρ

1 + β2

2x

ρ
ln 2

)′

=
1

c2

(

e−
2x

−1

ρ

1 + β2

2x

ρ
(ln 2)2

)

·
{

1 − 2x

ρ

}

,

which is negative for x > log2(ρ). Hence u′′(x) is negative

for x > F−1
R

(

1 − e−1

1+β2

)

= log2(1 + ρ).

To prove (29) we introduce the function

h3(x) :=
β2

1 + β2
+ c3x,

with c3 := 1−e−1

(1+β2)xm
. Note that h3(x) satisfies h3(x) > h1(x)
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for x ∈ (0, xm). Hence,

E Z(y) =

∫ xe

0

1 −
(

FZ(x)
)y

dx

=

∫ xm

0

1 −
(

h1(x)
)y

dx +

∫ xe

xm

1 −
(

h2(x)
)y

dx

>

∫ xm

0

1 −
(

h3(x)
)y

dx +

∫ xe

xm

1 −
(

h2(x)
)y

dx

= xe −
1/c3

y + 1

[

(

1 − e−1

1+β2

)y+1 −
(

β2

1+β2

)y+1
]

− 1/c2

y + 1

[

1 −
(

1 − e−1

1+β2

)y+1
]

.

Since E Z(y) goes to xe with increasing y we have for y
sufficiently large

FZ

(

E Z(y)
)

= 1 − e−1

1+β2 + c2

(

E Z(y) − xm

)

.

Substituting with the lower bound for E Z(y) we obtain

FZ

(

E Z(y)
)

> 1 −
(

c2

c3
− 1)

(

1 − e−1
)y+1

+ 1

y + 1
.

This completes the proof since

(

c2

c3
− 1)

(

1 − e−1
)y+1

+ 1

y + 1
<

1

y

for y sufficiently large.
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