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Performance and complexity in MIMO communications

• Setting of interest: general outage limited MIMO communications

y = Hx +w

⋆ mimo, mimo-ofdm, mimo-mac, mimo-arq, cooperative, hybrid...

⋆ Rx knows H , Tx does not

Examples:
• Communication of CSIT over feedback link (even with reciprocity in
multiuser case)
• After interference cancellation
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Performance and complexity in MIMO communications1

(
SNR ρ, rate R, reliability Perr, complexity C

)
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Rate and reliability measure and exponent

Perr = P (x̂ 6= xtx)

R =
1

T
log |Code|, |Code| = 2RT

high-snr Perr behavior: exponent over ρ

d(r) := − lim
ρ→∞

logPerr

log ρ
, Perr

.
= ρ−d(r) r =

R

log ρ
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Computational complexity measure

Nmax

maximum allowable computational resources (per T channel uses)

• chip size, number of flops (after that effort must terminate), etc.
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Fluctuating complexity introduces a tradeoff

• Keep in mind: Generally complexity fluctuates with channel

• Generally Perr ↑ as Nmax ↓
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Fluctuating complexity introduces a tradeoff1

Small example

• Can you achieve (Perr, R, ρ) with Nmax = 2000 flops?

⋆ No! Too common early-terminations for search based decoders
(N(H) varies) - or too weak linear receivers

• Can you do it with Nmax = 100000 flops?

⋆ No, but we are getting there.

• How about with 132957 flops?

⋆ Yes!

• How about with 132956 flops?

⋆ No!

• OK, for (Perr, R, ρ) you need Nmax = 132957 flops.
Else (Perr, R, ρ) is not achievable.
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Complexity exponent

c(r) := lim
ρ→∞

logNmax

log ρ
,

Nmax
.
= ρc(r) = 2R

c(r)
r ≤̇ρrT = |X |

c(r) > 0 =⇒ Nmax exponential in R (and often in RT )
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Meaningful matching of error and complexity exponents

c(r) := lim
ρ→∞

logNmax

log ρ
, d(r) := − lim

ρ→∞

logPerr

log ρ

• Reliability and complexity naturally polynomial in ρ

Nmax : 1 → K · |Code| ≈ 2RT ≈ ρrT , Perr : ρ
0 → ρ−dopt(r)

January 24, 2012 9



Practical ramifications of both exponents

• Performance: From highly unreliable to near-ergodic reliability

• Complexity: From easy to impossible

⋆ c(r) = 0: linear - very fast

⋆ c(r) = rT −→ Nmax = 2rT → ρ36
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For now focus on search-based lattice decoders

• For now we neglect linear receivers

⋆ Without lattice reduction they are extremely suboptimal

⋆ May have unbounded gap to optimal solutions even with LR

⋆ LR problematic in ubiquitous scenarios (inner-outer codes)

• We instead focus on search based (ML and lattice decoding)

⋆ aka: ML sphere decoding, and lattice sphere decoding

• We also focus on linear lattice code designs
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Search-based decoders

Search-based decoders

ML-based sphere decoding

(Regularized) Lattice-based sphere decoding

no lattice reduction
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Preview: d(r), c(r) for ML and lattice decoders
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Search based decoders

y = Hx +w = QRx +w

ML: Solve min
x̂∈Code

‖ỹ −Rx̂‖2

(Regularized) Lattice decoding: Solve min
x̂∈Lattice

‖ỹ −Rx̂‖2 + α‖x̂‖2T

by searching over ‖ỹ −Rx̂‖2 ≤ (radius)2
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Sphere decoding example, numerics
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Sphere decoding example, numerics
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Sphere decoding example, numerics
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Sphere decoding example, numerics
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Sphere decoding example, numerics
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Sphere decoding example, numerics
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Sphere decoding example, numerics
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Sphere decoding example, numerics
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Sphere decoding example, numerics
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Sphere decoding example, numerics
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Sphere decoding example, numerics
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Sphere decoding example, numerics
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Sphere decoding example, numerics
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Sphere decoding example, numerics
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Sphere decoding example, numerics
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Sphere decoding example, numerics
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Sphere decoding example, numerics
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Sphere decoding example, numerics
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Sphere decoding example, numerics
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Sphere decoding example, numerics
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Sphere decoding example, numerics
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Sphere decoding example, numerics
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Sphere decoding example, numerics
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Sphere decoding example, numerics
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Sphere decoding example, numerics
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Accumulated complexity

Snapshot of instantaneous complexity
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Universal bounds and equivalence of ML and lattice decoding

• We derived universal bounds for general MIMO (all scenarios, statistics, etc)

• We derived tightness whenever possible (broad setting)

• We will not get into that now: we focus on simpler more insightful settings

Theorem: (Equivalence of ML and lattice decoding - Restatement)
ML based sphere decoding and regularized lattice sphere decoding share the same com-
plexity exponent for a very broad setting (share bounds and ‘tightness’)

⇒ All following results will hold for ML as well as for
(regularized) lattice sphere decoding
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DMT-opt quasi-static nT × nR (nT ≤ nR)

Universal Bounds - Quasi static

Theorem: c(r) is upper bounded as (piecewise linear)

c(r) ≤ c̄(r) =
T

nT

r(nT − r), r = 0, 1, · · · , nT

for all fading statistics, all full rate lattice designs, and all decoding order policies
︸ ︷︷ ︸

?

.
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Example: 2× nR Quasi-static

Example: (2× nR channel (nR ≥ 2))

c̄(r) =

{

r r ≤ 1,

2− r r ≥ 1.
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Decoding ordering and computational-halting policies
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Decoding ordering and computational-halting policies1
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Decoding ordering and computational-halting policies2
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Tightness: DMT-opt quasi-static

Tightness of universal bound

Theorem: (Quasi-static, Rayleigh, nR ≥ nT ) With probability 1 in the choice of
the DMT optimal lattice design, the above is tight for all ordering policies.

Theorem: (Quasi-static, Rayleigh, nR ≥ nT ) The bound is tight for all layered designs,
for several fixed orderings including the natural ordering.

(Some hope remains for complexity reductions using dynamic policies)
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Complexity-constrained DMT

Find max d(r) given complexity constraint Nmax
.
= ρcD(r) flops

From uncoded to coded without increasing resources: a good idea?
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Performance-Complexity ramifications of feedback

Performance-Complexity ramifications of feedback
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Performance-Complexity ramifications of feedback

Two interesting questions:

• What is the feedback-aided complexity to achieve DMT d∗(r)?

• What is the complexity to achieve the feedback-aided DMT1 d∗(r/L)?
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Feedback-aided complexity for optimal DMT d∗(r)

Corollary: (quasi-static iid Regular nR ≥ nT, LT = nT)
Minimum c(r) for d∗(r), (minimized over all lattice designs, all L-round ARQ schemes,
all halting and decoding order policies), bounded as (piecewise linear r = 0, 1, · · · , nT )

c(r) ≤ cred(r) =
1

nT

r(nT − r).

• Compare to c(r) = r(nT − r)

• Important role of “aggressive intermediate halting policies”
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Feedback aided complexity for optimal DMT (nR < nT)

Corollary: nT × 1 MISO L = nT, then c(r) = 0 for d∗(r)
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Complexity cost for feedback-aided DMT d∗(r/L)

Seeking to c(r) needed to achieve d∗(r/L)

Recall:
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Complexity reduces with feedback despite increased d∗(r/L)

Theorem: (L|nT, quasi-static, nR ≥ nT)
Minimum c(r) to achieve optimal d∗(r/L) is bounded as ((mult. of L))

c(r) ≤ cdmd(r) =
rnT

L2

(

L−
r

nT

)

.

Corollary: The above with L = nT gives

c(r) ≤ cDMD(r) =

(

1−
1

nT

)

r.
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Have feedback: Go for basic DMT or feedback-aided DMT?

Joint performance-complexity measure

Γ(r) = d(r) − γc(r)
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Multiple access channel

MIMO MAC

Corollary: (K user MAC, nT = 1, nR = 1, r per user, Rayleigh, K odd)
The minimum c(r) (over all lattice designs and halting and decoding order policies)
to achieve the optimal MAC-DMT, is upper bounded as

c(r) ≤ cmac(r) =

{

(K − 1)r for r ≤ 1
K+1,

(K − 1)Kr for 1
K+1 < r ≤ 1

K
.
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Conclusion on search based algorithms

Multiplexing gain r
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Conclusion for ML and (regularized) lattice based solutions

• Very considerable complexity for high performance

⋆ Feedback helps

• No known way to drop below the upper bounds
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Lattice reduction

Lets get some help from lattice reduction (LR)

But remember

LR Problematic in unavoidable scenarios (inner-outer code)
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Lattice reduction

Change representation of lattice

LR: Input H, Output T (unimodular matrix of integers)

H︸︷︷︸
channel

· s︸︷︷︸
∈Z

= HT−1
︸ ︷︷ ︸

better
channel

· Ts︸︷︷︸

still
∈ Z

,
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Achieving optimal exponents - but unbounded gap

Theorem: (Trans-IT Oct 2010) LR-aided reguralized linear decoding and LR-based
halting, achieves c(r) = 0, d(r) = dopt(r), for all r, all codes, all MIMO scenarios
and all fading statistics. (at most O(n2) flops per bit)

• First ever solution to achieve optimal d∗(r) with subexponential complexity.

• BUT! Potentially unbounded gap to exact lattice decoding!
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Achieving a vanishing gap at subexponential complexity

Theorem: (Trans-IT subm. July 2011) LR-aided regularized lattice sphere decoding
with LR- and outage-based halting policies, introduces a zero complexity exponent, and
achieves a vanishing gap to the exact implementation of lattice decoding (all MIMO
scenarios, all statistics, all codes).

• First ever to achieve a vanishing gap to the exact solution of (regularized) lattice
decoding, with subexponential computational complexity

• Again though - remember LR limitation!
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Conclusions: Flops for Ergodicity

Can small chips (rather than CSIT) give us ergodicity?

• With LR - Yes: for a very broad setting, but not for near-ergodic rates

• With LR and 1 bit of feedback - Yes: for all r

• BUT: LR might not apply

• Without LR: Mostly NO - open problem - there might be hope!

⋆ A little bit of feedback goes a long way

⋆ High multiplexing gain most problematic
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Other contributions

Other research contributions
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Other contributions

• Cooperative wireless networks (Trans. IT 2009)+(subm. Trans-IT 2011)

• Two-way multi-directional communications

⋆ patents (pending) - publications - funding - award

• Cross layer optimization - queue/channel (Trans. IT 2009)

⋆ Towards a consummated union: finite delay results

• Feedback (Trans. IT 2009)

• Connectivity in networks with bounding constraints (publications)
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Other contributions1

• Soft-biometrics / surveillance networks / computer vision (publications)2

⋆ Will spend some time at well known biometrics lab in US

• Interference (preliminary work)

⋆ Interference alignment and diversity (potential submission ISIT-2012)

⋆ Stale CSIT (potential submission ISIT-2012)

⋆ Uplink-downlink DOF (ITA-2011, ISIT-2011)

⋆ Finite SNR IA. LR-aided IA.

2“Search pruning video surveillance systems: Efficiency-reliability tradeoff,” 1st IEEE
Workshop on Information Theory in Computer Vision and Pattern Recognition, Nov. 2011.
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Other than that

• Successful funding efforts (e.g. ANR Blanc International)( also on surveillance)

• Relatively close to industry

• Tutorials + awards (for last two results + two-way)

• Efforts to recruit talented students
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Thank you

Thank you very much for coming
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