Bits and Flops in Non-Ergodic MIMO:

CAN (A REASONABLE NUMBER OF) FLOPS PROVABLY OFFER ERGODIC-LIKE BEHAVIOR

Petros Elia

January 24, 2012

Performance and complexity in MIMO communications

• Setting of interest: general *outage limited* MIMO communications

 $\mathbf{y} = \boldsymbol{H}\boldsymbol{x} + \boldsymbol{w}$

 \star MIMO, MIMO-OFDM, MIMO-MAC, MIMO-ARQ, COOPERATIVE, HYBRID...

 \star Rx knows \boldsymbol{H} , Tx does not

Examples:

• Communication of CSIT over feedback link (even with reciprocity in multiuser case)

• After interference cancellation

Performance and complexity in MIMO communications $_1$

(SNR ρ , rate R, reliability $P_{\rm err}$, complexity C)

$$P_{\rm err} = P(\mathbf{\hat{x}} \neq \boldsymbol{x}_{\rm tx})$$

$$R = \frac{1}{T} \log |\text{Code}|, \quad |\text{Code}| = 2^{RT}$$

HIGH-SNR $P_{\rm err}$ behavior: exponent over ρ

$$d(r) := -\lim_{\rho \to \infty} \frac{\log P_{\text{err}}}{\log \rho}, \qquad P_{\text{err}} \doteq \rho^{-d(r)} \qquad r = \frac{R}{\log \rho}$$

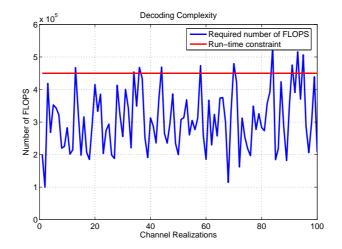
 $N_{\rm max}$

MAXIMUM ALLOWABLE COMPUTATIONAL RESOURCES (PER T CHANNEL USES)

• chip size, number of flops (after that effort must terminate), etc.

Fluctuating complexity introduces a tradeoff

- Keep in mind: Generally complexity fluctuates with channel
- Generally $P_{\rm err} \uparrow$ as $N_{\rm max} \downarrow$



Instantaneous algorithmic complexity fluctuations

Fluctuating complexity introduces a tradeoff₁

Small example

• Can you achieve $(P_{\text{err}}, R, \rho)$ with $N_{\text{max}} = 2000$ flops?

* No! Too common early-terminations for search based decoders (N(H) varies) - or too weak linear receivers

• Can you do it with $N_{\text{max}} = 100000$ flops?

 \star No, but we are getting there.

• How about with 132957 flops?

★ Yes!

• How about with 132956 flops?

★ No!

• OK, for $(P_{\text{err}}, R, \rho)$ you need $N_{\text{max}} = 132957$ flops. Else $(P_{\text{err}}, R, \rho)$ is not achievable.

$$c(r) := \lim_{\rho \to \infty} \frac{\log N_{\max}}{\log \rho},$$

$$N_{\max} \doteq \rho^{c(r)} = 2^{R\frac{c(r)}{r}} \stackrel{.}{\leq} \rho^{rT} = |\mathcal{X}|$$

 $c(r) > 0 \implies N_{\max}$ exponential in R (and often in RT)

January 24, 2012

Meaningful matching of error and complexity exponents

$$c(r) := \lim_{\rho \to \infty} \frac{\log N_{\max}}{\log \rho}, \qquad \qquad d(r) := -\lim_{\rho \to \infty} \frac{\log P_{\text{err}}}{\log \rho}$$

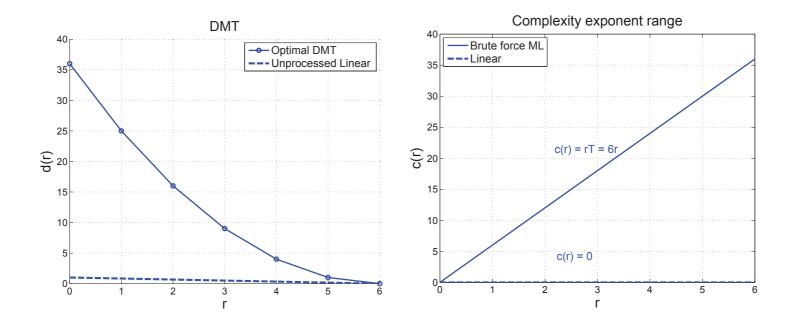
• Reliability and complexity naturally polynomial in ρ

$$N_{\max}: 1 \to K \cdot |\text{Code}| \approx 2^{RT} \approx \rho^{rT}, \qquad P_{\text{err}}: \rho^0 \to \rho^{-d_{\text{opt}}(r)}$$

Practical ramifications of both exponents

- Performance: From highly unreliable to near-ergodic reliability
- Complexity: From easy to impossible

★
$$c(r) = 0$$
: linear - very fast
★ $c(r) = rT \longrightarrow N_{\text{max}} = 2^{rT} \longrightarrow \rho^{36}$



January 24, 2012

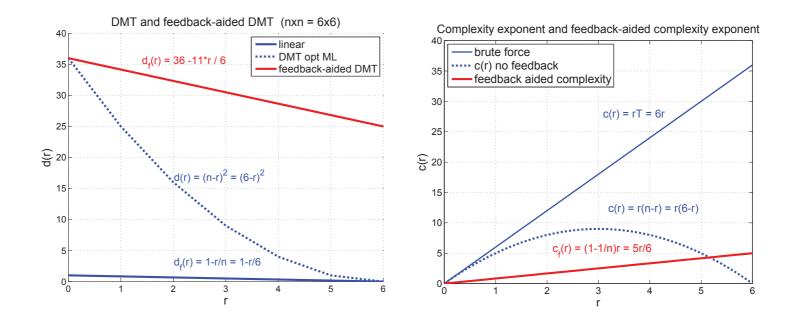
- For now we neglect linear receivers
 - \star Without lattice reduction they are extremely suboptimal
 - \star May have unbounded gap to optimal solutions even with LR
 - \star LR problematic in ubiquitous scenarios (inner-outer codes)
- We instead focus on search based (ML and lattice decoding)
 * aka: ML sphere decoding, and lattice sphere decoding
- We also focus on linear lattice code designs

SEARCH-BASED DECODERS

ML-based sphere decoding

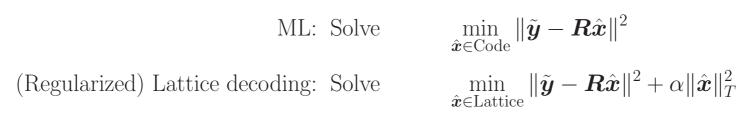
(REGULARIZED) LATTICE-BASED SPHERE DECODING

NO LATTICE REDUCTION

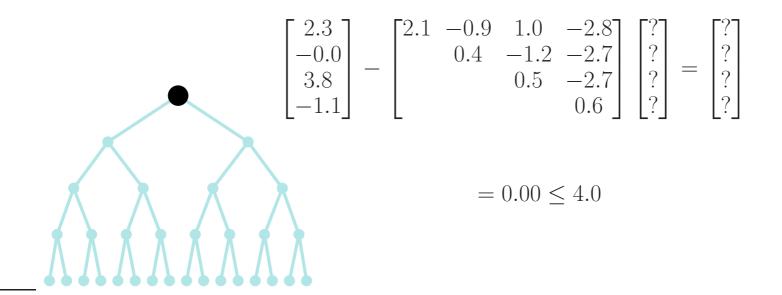


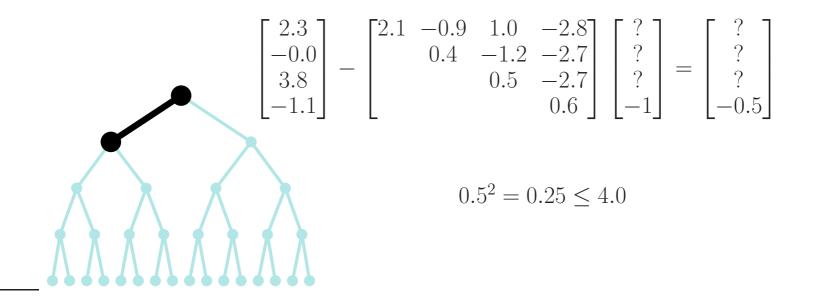
• Answer will lie somewhere in the middle

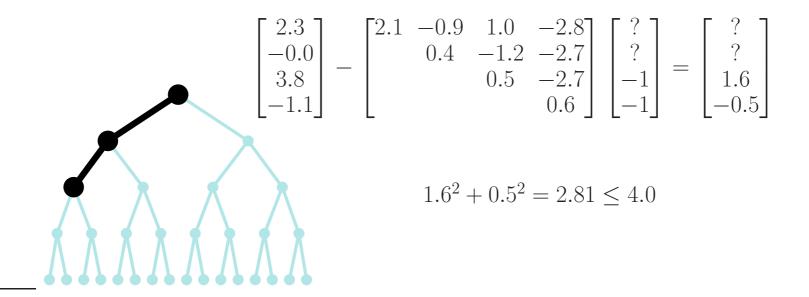
$\mathbf{y} = H\boldsymbol{x} + \boldsymbol{w} = \boldsymbol{Q}\boldsymbol{R}\boldsymbol{x} + \boldsymbol{w}$

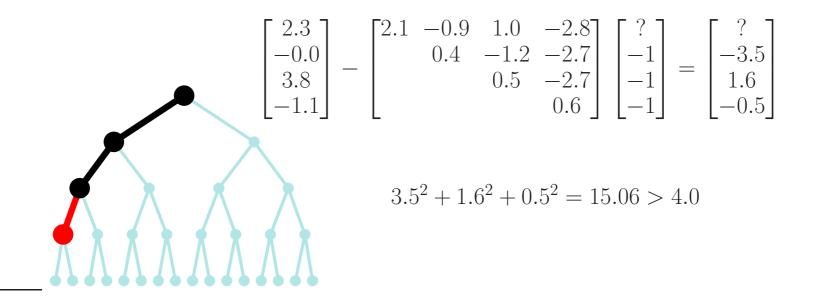


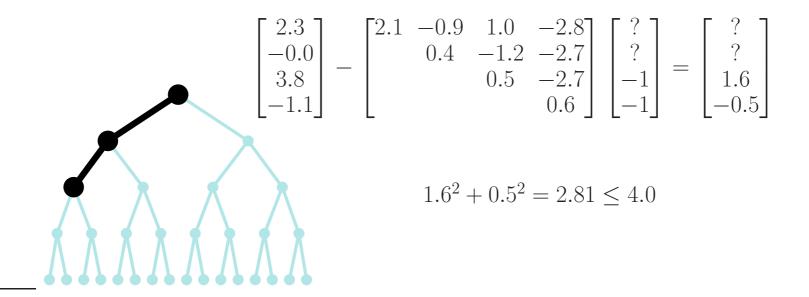
by searching over
$$\|\tilde{\boldsymbol{y}} - \boldsymbol{R}\hat{\boldsymbol{x}}\|^2 \leq (\text{radius})^2$$

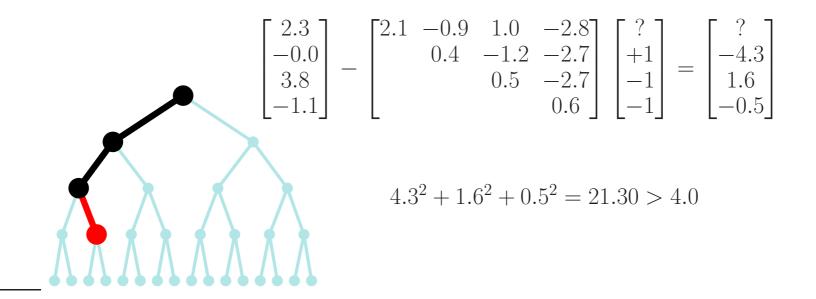


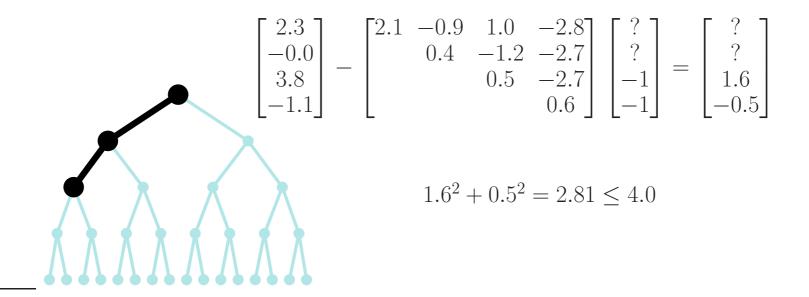


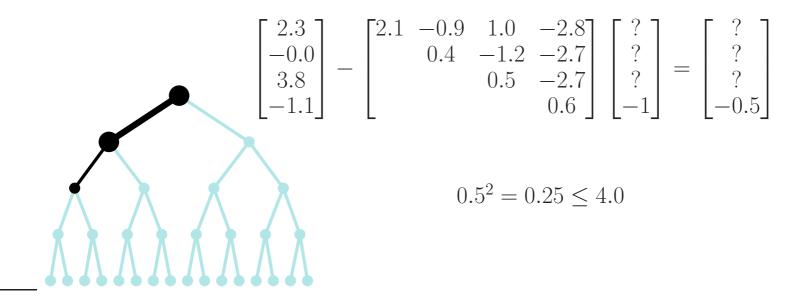


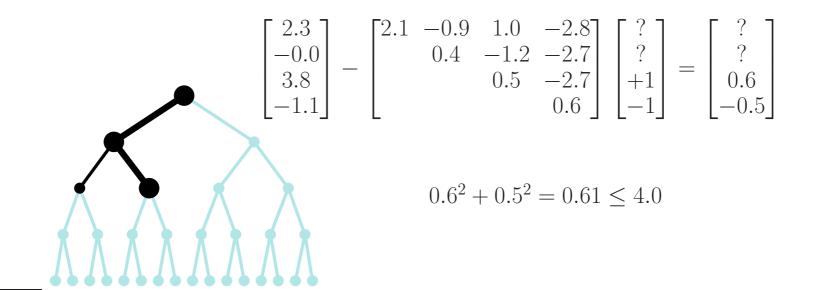




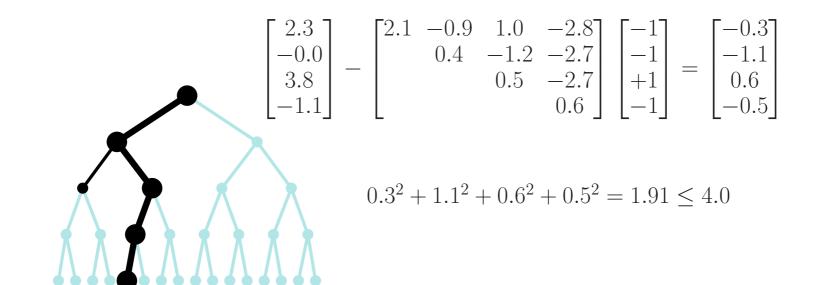


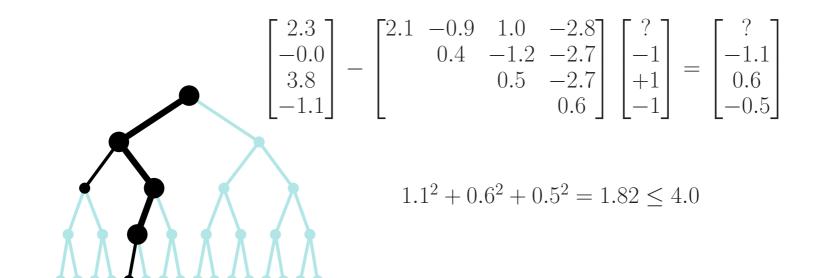


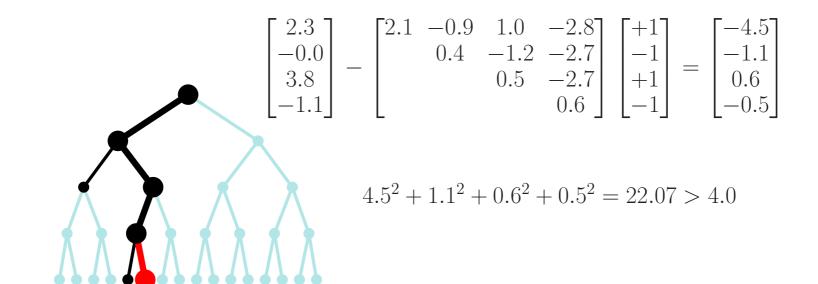


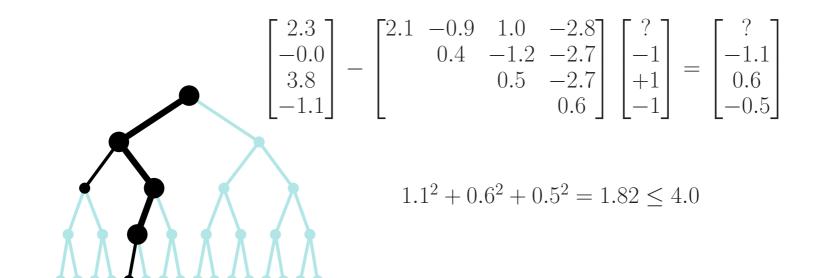


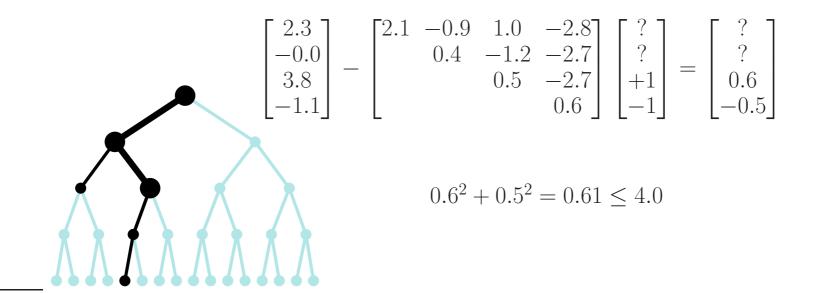
$$\begin{bmatrix} 2.3 \\ -0.0 \\ 3.8 \\ -1.1 \end{bmatrix} - \begin{bmatrix} 2.1 & -0.9 & 1.0 & -2.8 \\ 0.4 & -1.2 & -2.7 \\ 0.5 & -2.7 \\ 0.6 \end{bmatrix} \begin{bmatrix} ? \\ -1 \\ +1 \\ -1 \end{bmatrix} = \begin{bmatrix} ? \\ -1.1 \\ 0.6 \\ -0.5 \end{bmatrix}$$
$$1.1^2 + 0.6^2 + 0.5^2 = 1.82 \le 4.0$$

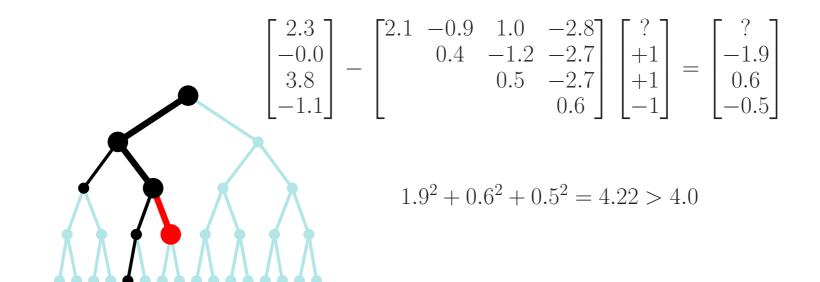


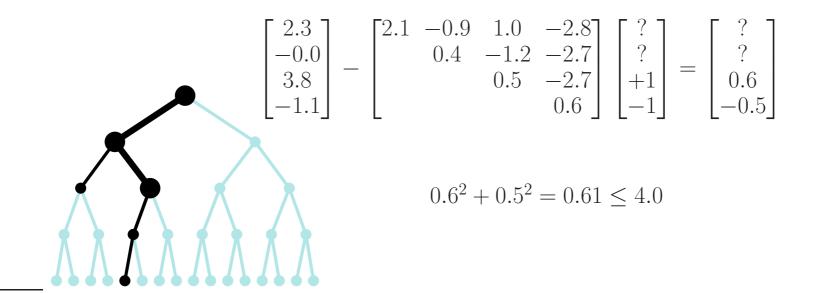


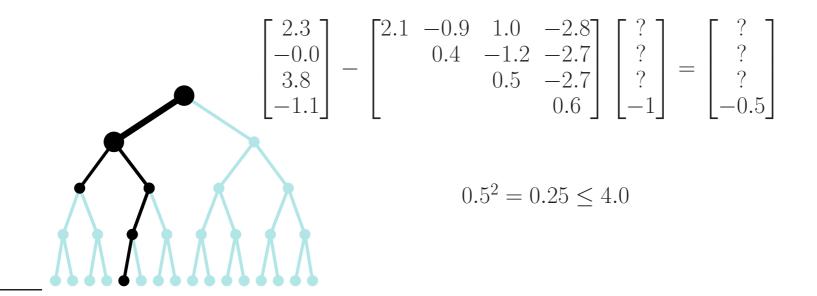


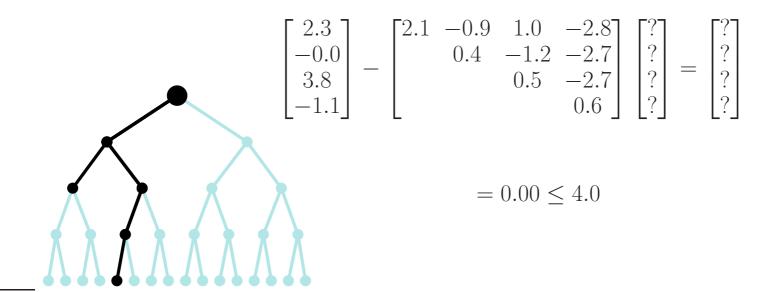


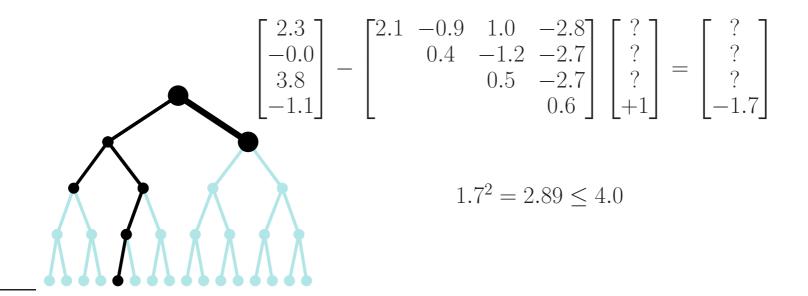


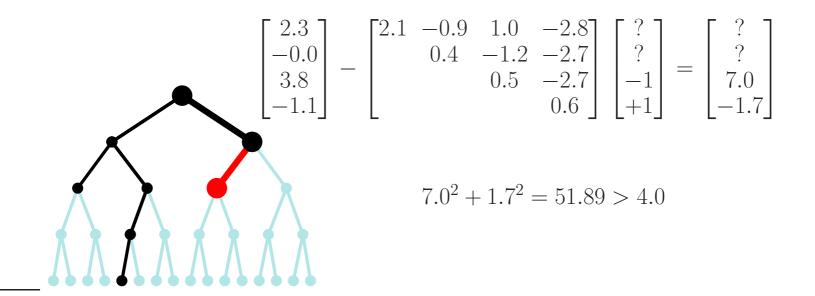


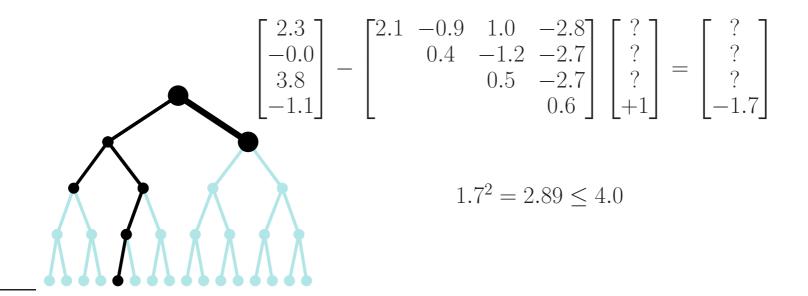


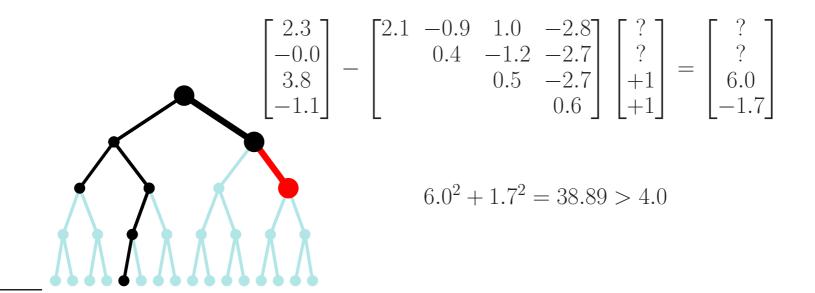


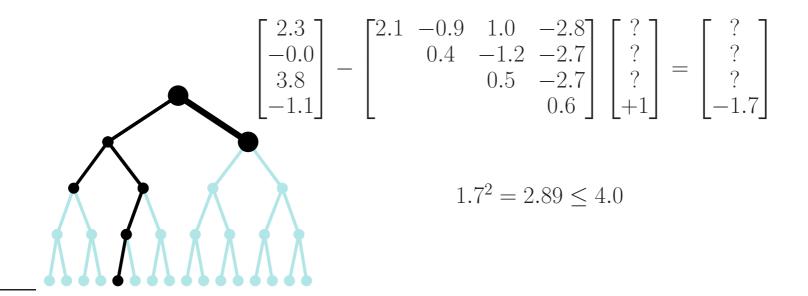


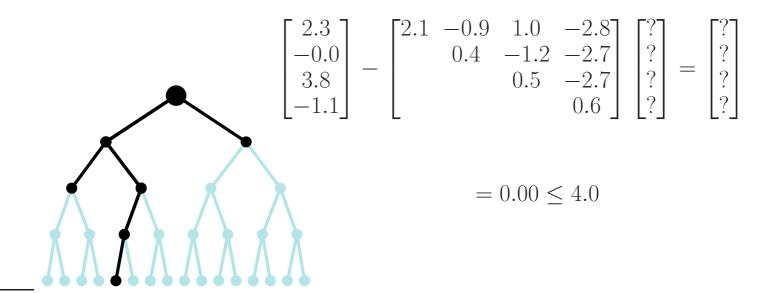


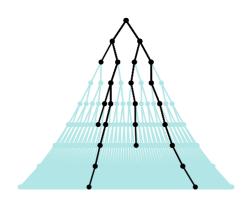












Snapshot of instantaneous complexity

January 24, 2012

Universal bounds and equivalence of ML and lattice decoding

- We derived <u>universal bounds</u> for general MIMO (all scenarios, statistics, etc)
- We derived tightness whenever possible (broad setting)
- We will not get into that now: we focus on simpler more insightful settings

Theorem: (Equivalence of ML and lattice decoding - Restatement) ML based sphere decoding and regularized lattice sphere decoding share the same complexity exponent for a very broad setting (share bounds and 'tightness')

 \Rightarrow All following results will hold for ML as well as for (regularized) lattice sphere decoding

DMT-opt quasi-static $n_T \times n_R \ (n_T \le n_R)$

UNIVERSAL BOUNDS - QUASI STATIC

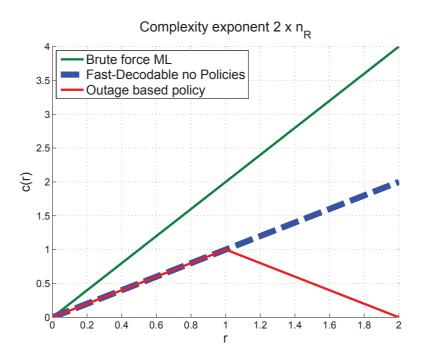
Theorem: c(r) is upper bounded as (piecewise linear)

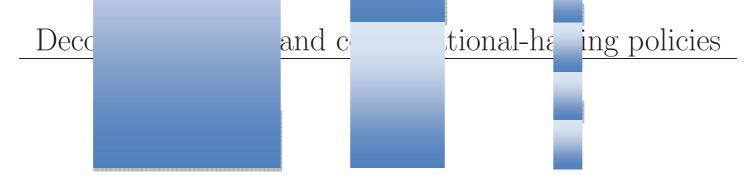
$$c(r) \le \bar{c}(r) = \frac{T}{n_T} r(n_T - r), \quad r = 0, 1, \cdots, n_T$$

for all fading statistics, all full rate lattice designs, and all $\underbrace{\text{decoding order policies}}_?$

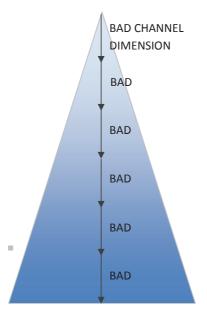
EXAMPLE: $(2 \times n_{\rm R} \text{ channel } (n_{\rm R} \ge 2))$

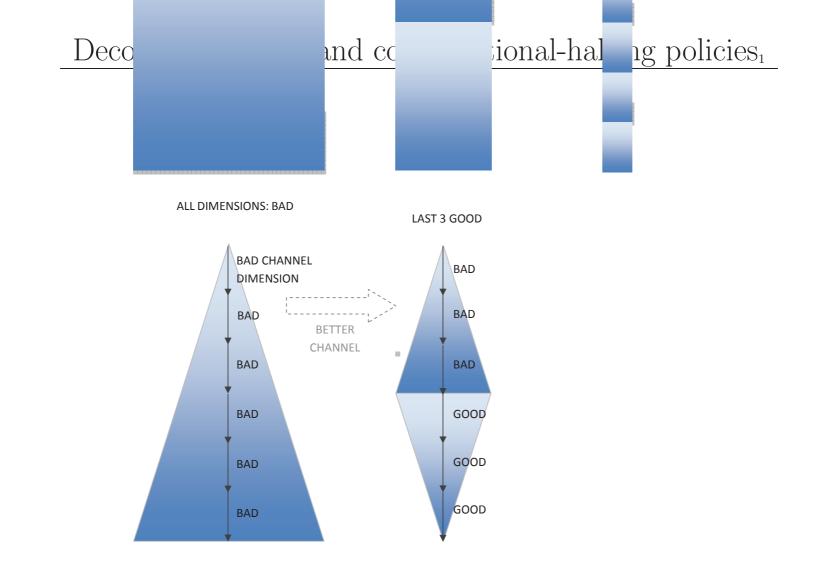
$$\bar{c}(r) = \begin{cases} r & r \le 1, \\ 2-r & r \ge 1. \end{cases}$$



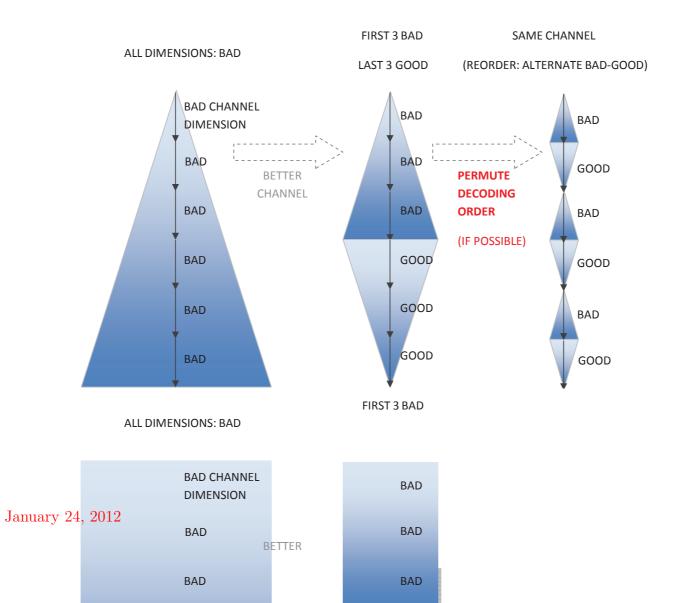


CODE/CHANNEL DIMENSIONS





Decoding ordering and computational-halting $policies_2$



22

TIGHTNESS OF UNIVERSAL BOUND

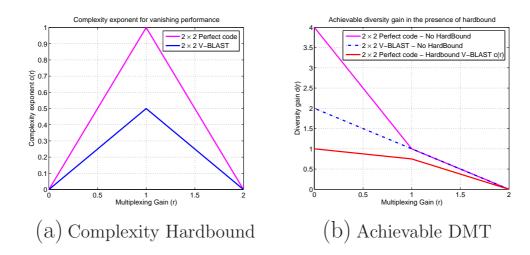
Theorem: (Quasi-static, Rayleigh, $n_R \ge n_T$) With probability 1 in the choice of the DMT optimal lattice design, the above is tight for all ordering policies.

Theorem: (Quasi-static, Rayleigh, $n_R \ge n_T$) The bound is tight for all <u>layered designs</u>, for several fixed orderings including the natural ordering.

(Some hope remains for complexity reductions using dynamic policies)

Find max d(r) given complexity constraint $N_{\max} \doteq \rho^{c_{\mathcal{D}}(r)}$ flops

From uncoded to coded without increasing resources: a good idea?



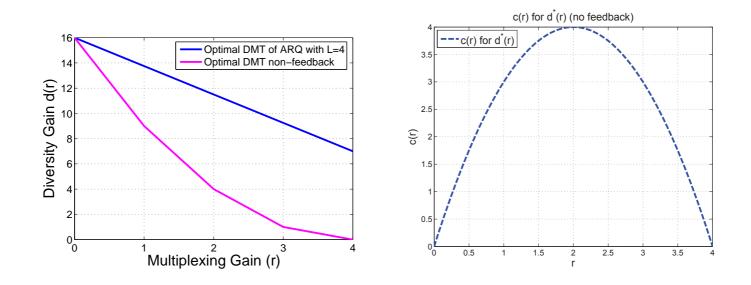
Performance-Complexity ramifications of feedback

PERFORMANCE-COMPLEXITY RAMIFICATIONS OF FEEDBACK

Performance-Complexity ramifications of feedback

Two interesting questions:

- What is the feedback-aided complexity to achieve DMT $d^*(r)$?
- What is the complexity to achieve the feedback-aided DMT¹ $d^*(r/L)$?



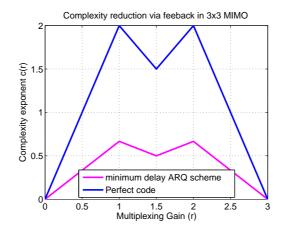
¹El Gamal, Caire, Damen

Feedback-aided complexity for optimal DMT $d^*(r)$

Corollary: (quasi-static iid Regular $n_{\rm R} \ge n_{\rm T}$, $LT = n_{\rm T}$) Minimum c(r) for $d^*(r)$, (minimized over all lattice designs, all L-round ARQ schemes, all halting and decoding order policies), bounded as (piecewise linear $r = 0, 1, \dots, n_T$)

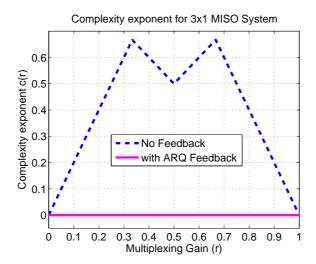
$$c(r) \leq \overline{c}_{red}(r) = \frac{1}{n_T}r(n_T - r).$$

- Compare to $c(r) = r(n_T r)$
- Important role of "aggressive intermediate halting policies"



Feedback aided complexity for optimal DMT $(n_{\rm R} < n_{\rm T})$

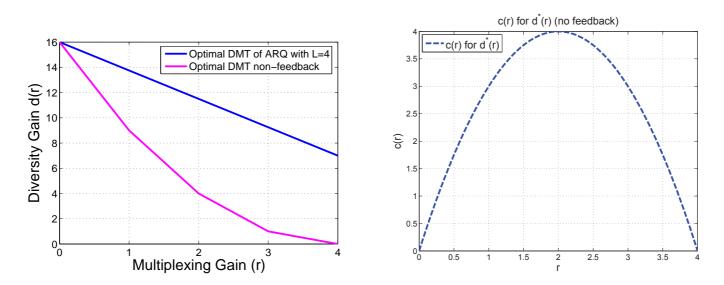
Corollary: $n_{\rm T} \times 1$ MISO $L = n_{\rm T}$, then c(r) = 0 for $d^*(r)$



Complexity cost for feedback-aided DMT $d^*(r/L)$

Seeking to c(r) needed to achieve $d^*(r/L)$

Recall:



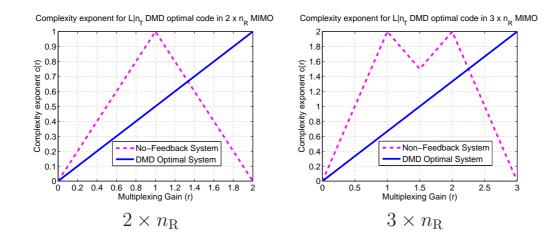
Complexity reduces with feedback despite increased $d^*(r/L)$

Theorem: $(L|n_{\rm T}, \text{ quasi-static}, n_{\rm R} \ge n_{\rm T})$ Minimum c(r) to achieve optimal $d^*(r/L)$ is bounded as ((mult. of L))

$$c(r) \leq \overline{c}_{dmd}(r) = \frac{rn_{\mathrm{T}}}{L^2} \left(L - \frac{r}{n_{\mathrm{T}}}\right).$$

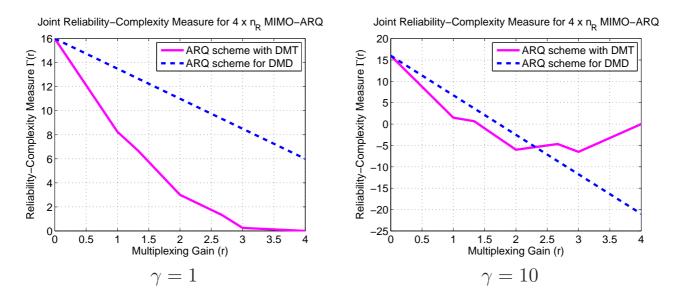
Corollary: The above with $L = n_T$ gives

$$c(r) \leq \overline{c}_{DMD}(r) = \left(1 - \frac{1}{n_T}\right)r.$$



Joint performance-complexity measure

$$\Gamma(r) = d(r) - \gamma c(r)$$

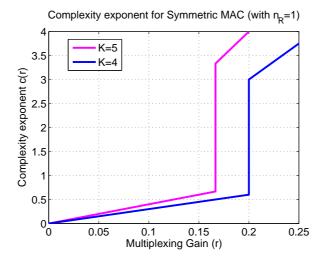


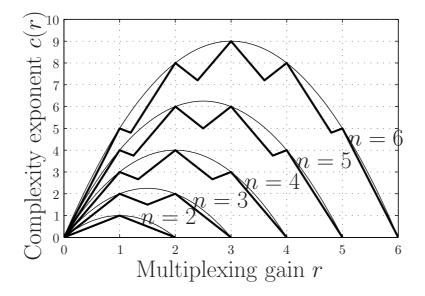
Joint reliability-complexity measure for DMT and DMD optimal ARQ schemes

MIMO MAC

Corollary: (K user MAC, $n_{\rm T} = 1$, $n_{\rm R} = 1$, r per user, Rayleigh, K odd) The minimum c(r) (over all lattice designs and halting and decoding order policies) to achieve the optimal MAC-DMT, is upper bounded as

$$c(r) \le \overline{c}_{mac}(r) = \begin{cases} (K-1)r & \text{for } r \le \frac{1}{K+1}, \\ (K-1)Kr & \text{for } \frac{1}{K+1} < r \le \frac{1}{K}. \end{cases}$$





Conclusion for ML and (regularized) lattice based solutions

- Very considerable complexity for high performance
 - \star Feedback helps
- No known way to drop below the upper bounds

Lets get some help from lattice reduction (LR)

BUT REMEMBER

LR PROBLEMATIC IN UNAVOIDABLE SCENARIOS (INNER-OUTER CODE)

January 24, 2012

CHANGE REPRESENTATION OF LATTICE

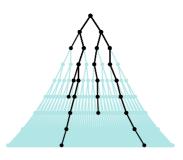
LR: Input H, Output T (unimodular matrix of integers)

$$\underbrace{\boldsymbol{H}}_{\text{CHANNEL}} \cdot \underbrace{\boldsymbol{s}}_{\in \mathbb{Z}} = \underbrace{\boldsymbol{H}\boldsymbol{T}^{-1}}_{\text{better}} \cdot \underbrace{\boldsymbol{T}\boldsymbol{s}}_{\text{still}},$$

$$\operatorname{channel} \quad \in \mathbb{Z}$$

Theorem: (Trans-IT Oct 2010) LR-aided reguralized linear decoding and LR-based halting, achieves c(r) = 0, $d(r) = d_{opt}(r)$, for all r, all codes, all MIMO scenarios and all fading statistics. (at most $O(n^2)$ flops per bit)

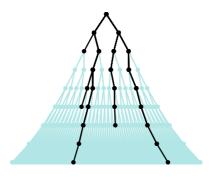
• First ever solution to achieve optimal $d^*(r)$ with subexponential complexity.



• BUT! Potentially unbounded gap to exact lattice decoding!

Achieving a vanishing gap at subexponential complexity

Theorem: (Trans-IT subm. July 2011) LR-aided regularized lattice sphere decoding with LR- and outage-based halting policies, introduces a zero complexity exponent, and achieves a vanishing gap to the exact implementation of lattice decoding (all MIMO scenarios, all statistics, all codes).



- First ever to achieve a vanishing gap to the exact solution of (regularized) lattice decoding, with subexponential computational complexity
- Again though remember LR limitation!

Can small chips (rather than CSIT) give us ergodicity?

- With LR Yes: for a very broad setting, but not for near-ergodic rates
- With LR and 1 bit of feedback Yes: for all r
- BUT: LR might not apply
- Without LR: Mostly NO open problem there might be hope!
 - \star A little bit of feedback goes a long way
 - \star High multiplexing gain most problematic

OTHER RESEARCH CONTRIBUTIONS

January 24, 2012

- Cooperative wireless networks (Trans. IT 2009)+(subm. Trans-IT 2011)
- Two-way multi-directional communications
 - \star patents (pending) publications funding award
- Cross layer optimization queue/channel (Trans. IT 2009)
 * Towards a consummated union: finite delay results
- Feedback (Trans. IT 2009)
- Connectivity in networks with bounding constraints (publications)

- \bullet Soft-biometrics / surveillance networks / computer vision (publications)^2
 - \star Will spend some time at well known biometrics lab in US
- Interference (preliminary work)
 - \star Interference alignment and diversity (potential submission ISIT-2012)
 - \star Stale CSIT (potential submission ISIT-2012)
 - ★ Uplink-downlink DOF (ITA-2011, ISIT-2011)
 - \star Finite SNR IA. LR-aided IA.

² "Search pruning video surveillance systems: Efficiency-reliability tradeoff," 1st IEEE Workshop on Information Theory in Computer Vision and Pattern Recognition, Nov. 2011.

- Successful funding efforts (e.g. ANR Blanc International)(also on surveillance)
- Relatively close to industry
- Tutorials + awards (for last two results + two-way)
- Efforts to recruit talented students

THANK YOU VERY MUCH FOR COMING