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Confidence intervals for Shapley value in Markovian
dynamic games

Konstantin Avrachenkov, Laura Cottatellucci, Lorenzo Maggi

Abstract

We consider a dynamic multiagent system in which several states succeed

each other, following a Markov chain process. In each state, a different single

stage game among the agents, or players, is played, and cooperation among

subsets of players can arise in order to achieve a common goal. We assume

that each coalition can ensure a certain value for itself. The Shapley value

is a well known method to share the value of the grand coalition, formed

by all the players, among the players themselves. It reflects the effective

incremental asset brought by each player to the community. Unfortunately,

the exact computation of the Shapley value for each player requires an ex-

ponential complexity in the number of players. Moreover, we prove that an

exponential number of queries is necessary for any deterministic algorithm

even to approximate the Shapley value in a Markovian dynamic game with

polynomial accuracy. Motivated by these reasons, we propose three differ-

ent methods to compute a confidence interval for the Shapley value in the

Markovian game. Our approaches require a polynomial number of queries

to achieve a polynomial accuracy. We compare our confidence intervals in

terms of their tightness and we provide a straightforward sampling strategy

to optimize the tightness of one of them.

Index Terms

Economic paradigms: Game theory (cooperative and non-cooperative), Agent

Cooperation: Implicit Cooperation
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1 Introduction

Cooperative game theory is perhaps the most powerful tool to analyze, predict

and, especially, influence the interactions among several agents - or players - capa-

ble to form subcoalitions in order to pursue a common interest. It is crucial to have

at our disposal an allocation rule that shares the payoff of the grand coalition, i.e.

the coalition made up of all the players, among all the players themselves.

Introduced by Lloyd S. Shapley in its seminal paper [17], the Shapley value

(Sv) is one of the most well known and useful allocation rules among the partic-

ipants of a transferable utility cooperative game. The Sv always exists under a

reasonable superadditive assumption and it is the only allocation fulfilling three

reasonable conditions of symmetry, additiveness and dummy player compensation

(see [17] for details). The significance of the Sv is evidenced by the broadness of its

applications, spanning from pure economics [3] to internet economics [6, 14, 19],

to politics [4], and to wireless communications [13]. Moreover, the concept of

Sv was successfully applied to the case of weighted voting games, and referred

to as Shapley-Shubik power index [18]. Such games typically imply that several

agents possess resources and they need to collect a certain amount of resources to

accomplish a task.

The computation of the Sv requires an exponential complexity in the number

of players P , under oracle access to the characteristic function. Hence, when P
grows large, it becomes more and more crucial to find a suitable way to approx-

imate it with a manageable number of queries. This problem was addressed for

static games in [7], where the authors provided a confidence interval for two power

indeces, i.e. the Banzhaf index and the Shapley-Shubik index.

In this work, we consider that the game is not played one-shot but over an in-

finite horizon: there exist several single stage games that come one after the other

over time, following a discrete time homogeneous Markov chain process. We take

into account two criteria to sum over time the allocations earned in each single

stage game, specifically the average and the discount one. Our model is equivalent

to the one in [16], except that we consider the utility to be transferable. We study in

Section 4 the tradeoff complexity/accuracy of deterministic algorithms to compute

the Sv in the Markovian game (SvM). We propose three different approaches to

compute a confidence interval for SvM in Sections 5, 6.1, and 6.2. We propose in

Section 6.1.1 a straightforward way to optimize the tightness of the second interval.

We compare in Section 7 our three approaches in terms of tightness of the confi-

dence interval. Finally, in Section 8 we provide a tradeoff complexity/accuracy for

our randomized algorithm.

All the results found for SvM are also valid for the Shapley-Shubik index in

Markovian weighted voting games. The extension of our results in simple games

to the Banzhaf index [8] is straightforward.
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2 Model and Background results

In this paper we consider Markovian cooperative games. We have a set of

states S = {s1, . . . , sN}; in each state s ∈ S the game Ψs ≡ (P, v) is played

among P players. Let P = {1, . . . , P} be the grand coalition of players. In state

s each coalition Λ ⊆ P can ensure for itself the value vs(Λ), that, under a TU

(transferable utility) assumption, can be shared in any manner among the players.

Let Vs(Λ) be the half-space of all feasible allocations for coalition Λ in the TU

game Ψs, i.e. the set of real |Λ|-tuple a ∈ R
|Λ| such that

∑
j aj ≤ vs(Λ). We

suppose that the coalition values are superadditive, i.e.

vs(Λ1 ∪ Λ2) ≥ vs(Λ1) + vs(Λ2), ∀Λ1 ∩ Λ2 = ∅.

The succession of the states is a discrete time homogeneous Markov chain,

whose transition probability matrix is P. Let x(Ψs) ∈ R
P be a payoff allocation

among the players in the single stage game Ψs. Under the β-discounted criterion,

where β ∈ [0; 1), the discounted allocation in the Markovian dynamic game Γsk ,

starting from state sk, can be expressed as

∞∑

t=0

βt
N∑

i=1

pt(si|sk)x(Ψsi) =

N∑

i=1

νi(sk)x(Ψsi)

where pt(si|sk) is the probability for the process to be after t steps in state si
when the initial state is sk, and ν(sk) is the k-th row of the non negative matrix

(I − βP)−1. Under the average criterion, if the transition probability matrix P is

irreducible, then the allocation in the long run game Γsk can be written as

lim
T→∞

1

T + 1

T∑

t=0

N∑

i=1

pt(si|sk)x(Ψsi) =
N∑

i=1

πi x(Ψsi)

where π is the stationary distribution of the matrix P. All the results in this paper

are valid both for the discounted criterion and, provided that P is irreducible, for

the average one.

We define V(Λ,Γs) as the set of feasible allocations in the long run game Γs

for coalition Λ, i.e. the Minkowski sum:

V(Λ,Γs) ≡
N∑

i=1

σi(s)Vsi(Λ).

where σi(s) ≡ νi(s) if the discounted criterion is adopted, and σi(s) ≡ πi in case

of average criterion.

Proposition 1 ( [5]). V(Λ,Γs) is equivalent to the set A of real R|Λ|-tuples a such

that
∑|Λ|

i=1 ai ≤ v(Λ,Γs), where v(Λ,Γs) =
∑N

i=1 σi(s) vsi(Λ), for all s ∈ S,

Λ ⊆ P.
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Thanks to Proposition 1, we are legitimated to define v(Λ,Γs) as the value of

coalition Λ ⊆ P in the long run game Γs.

Let us now define the Sv [17].

Definition 1. Let ∆ = (P, v) be a TU cooperative game. The Shapley value

Sv(∆) is a real P -tuple whose j-th component is the payoff allocation to player

j:

Svj(∆) =
∑

Λ⊆P/{j}

|Λ|!(P−|Λ|−1)!

P !

[
v(Λ∪{j},∆) − v(Λ,∆)

]
.

In this paper we are mainly interested in providing confidence intervals for the

SvM Sv(Γs), that can be expressed, thanks to Proposition 1 and to the standard

linearity property of Sv, as

Svj(Γs) =

N∑

i=1

σi(s)Svj(Ψsi), ∀ s ∈ S, 1 ≤ j ≤ P. (1)

In the next sections we will exploit Hoeffding’s inequality [12] to derive some

confidence intervals for the Shapley value of Markovian games.

Theorem 1 (Hoeffding’s inequality). Let A1, . . . , An be n independent random

variables, where Ai ∈ [ai, bi]. Then, for all δ ∈ (0; 1), there exists ǫ(n, δ) > 0
such that

Pr

(
n∑

i=1

Ai −E
[ n∑

i=1

Ai

]
≥ nǫ

)
≤ 2 exp

(
− 2n2ǫ2∑n

i=1(bi − ai)2

)

In this paper we will derive some results especially for simple and weighted

voting games.

Definition 2. A simple Markovian game is a Markovian cooperative game in which

the coalition values associated to each single stage TU cooperative game are bi-

nary, i.e. can assume only the values 0 and 1.

We say that player i is critical for coalition Λ ⊆ P\{i} in state s if vs(Λ ∪
{i}) − vs(Λ) = 1. Technically, weighted voting games are not TU cooperative

game, since the value of a coalition does not represent a payoff to be shared among

the players, but rather it indicates the effectiveness of a coalition at completing a

specific task.

Definition 3. A weighted voting Markovian game is a Markovian game in which

each single stage game Ψs is associated to a 3-tuple (P,Ts, v) in which 1, . . . , P
are the players, Ts is a task, and v are binary coalition values, such that vs(Λ) = 1
iff the coalition Λ ⊆ P can complete the task Ts in state s ∈ S.
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Even in the case of weighted voting games, we will still assume that the coali-

tion values in the long run game Γ possess the linearity property of Proposition

1. In other words, v(Λ,Γs) can be interpreted as the expected effectiveness in the

long run game Γs of coalition Λ at completing the different tasks associated to each

single stage game.

The concept of Sv applied to weighted voting games is called Shapley-Shubik in-

dex, and its formulation is the same as in Definition 1.

3 Motivations

Games on Markov chains arise especially in telecommunications. In the lit-

erature, the channel model under which the channel coefficients follow a discrete

Markov chain over time has been extensively studied (e.g. see [10,11]). Moreover,

it is well known that the static gaussian multiple access channel can be seen as a

concave game, hence its Sv lies in the capacity region and is the centroid of its

Core (e.g. see [15]). Hence, by considering the channel coefficients as constant

throughout the whole duration of a codeword, the multiple access channel with

Markovian channel coefficients is an example of our model.

For equation (1), the SvM Sv(Γs) can be distributed in the course of the game

by assigning the single stage Shapley value Sv(Ψs′) to the agents in each state

s′ ∈ S. In such a case, Sv(Γs) is the long run expected payoff allocation in

the long run game starting from state s. Moreover, such allocation procedure is

time consistent [5], i.e. the expected long run allocation is still Sv(ΓSt) for any

subgame starting from state St at a later time step t. Therefore, it is useful to

provide a confidence interval for both Sv(Ψs) and Sv(Γs). The former issue is

already addressed in [7], while we study the latter. Also, Section 6.2 provides a

bridge between the two.

4 Complexity of deterministic algorithms

Since the exact computation of the Sv - or, equivalently, of the Shapley-Shubik

index - involves the calculation of the incremental asset brought by a player to each

coalition, then its complexity is proportional to the number of such coalitions, i.e.

2P−1. We mean by “game instance” a particular coalition value distribution.

Definition 4. Let us assume that the Sv for player j in the game ∆ is Svj(∆) = a.

We say that a deterministic algorithm has an accuracy of at least d > 0 whenever,

for all d′ > d, there exist no game instances for which the algorithm answers

Svj(∆) ∈ a± d′.

A query consists in evaluating the marginal contribution of player j with re-

spect to a coalition. We will first show that an exponential number of queries is
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necessary in order to achieve a polynomial accuracy for any deterministic algo-

rithm aiming to approximate the Shapley-Shubik index in the static case. This is

an extension of Theorem 3 in [7] to the Shapley-Shubik index.

Theorem 2. Any deterministic algorithm computing the Shapley value in the sim-

ple single stage game Ψs requires Ω(2P /
√
P ) samples to achieve an accuracy of

at least 1/(2P ), for all s ∈ S.

Proof. We will prove that there exists a class F of game instances for which any

deterministic algorithm computing Svj(Ψs) with accuracy of at least 1/(2P ) must

utilize Ω(2P /
√
P ) queries. Similarly to [7], let us construct F when P is odd. Let

Λ ⊆ P\{j}. There exists a set Do of
( P−1
[P−1]/2

)
/2 coalitions of cardinality [P−1]/2

such that player j is critical only for Do. In particular, for |Λ| ≤ [P − 1]/2,

vs(Λ) = 0; if |Λ| = [P − 1]/2, then, if Λ ∈ Do, vs(Λ ∪ {j}) = 1, otherwise

vs(Λ ∪ {j}) = 0. The values of the remaining coalitions are 1 if and only if they

contain a winning coalition among the ones constructed so far. The Sv for player j
is thus:

Svj(Ψs) =
([P − 1]/2)! ([P − 1]/2)!

2(P )!

(
P − 1

[P − 1]/2

)
=

1

2P

Hence, for any deterministic algorithm Ao employing a number of queries smaller

than µo(P ), where

µo(P ) =
1

2

(
P − 1

[P − 1]/2

)
,

there always exists an instance belonging to F for which Ao would answer Svj(Ψs) =
0. By Stirling’s approximation, we can say that µo(P ) ∈ Ω(2P /

√
P ). Let us now

construct the class F of instances when P is even and P > 2. Let De be a set of( P−2
[P−2]/2

)
coalitions of cardinality [P − 2]/2, belonging to C\{j}, such that player

j is critical only for De. Then,

Svj(Ψs) =
(P/2 − 1)! (P/2)!

(P )!

(
P − 2

[P − 2]/2

)
=

1

2[P − 1]
>

1

2P
.

Similarly to before, for any deterministic algorithm Ae using a number of queries

smaller than

µe(P ) =

(
P − 1

[P − 2]/2

)
−
(

P − 2

[P − 2]/2

)
=

P − 2

P

(
P − 2

[P − 2]/2

)

there always exists an instance belonging to F for which Ae would answer Svj(Ψs) =
0. By Stirling approximation, we can say that µe(P ) ∈ Ω(2P /

√
P ). Hence, a

number of samples µ ∈ Ω(2P /
√
P ) is needed to achieve an accuracy of at least

1/(2P ). Hence, the thesis is proved.

We are ready to derive the complexity of a deterministic algorithm computing

SvM in a simple game, as a function of the number of players P .
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Corollary 1. There exists c > 0 such that any deterministic algorithm computing

the Shapley value in the simple Markovian game Γs requires Ω(2P /
√
P ) samples

to achieve an accuracy of at least c/P , for all s ∈ S.

Proof. Any deterministic algorithm will employ a certain number of queries in

each state s in order to compute Svj(Γs) =
∑N

i=1 σi(s)Svj(Ψsi). Let I0 be

the instance for which player j is a dummy player in all the single stage games

{Ψs}s∈S , i.e. Svj(Ψs) = 0 for all s ∈ S. Let I1 be the instance such that

Svj(Ψs) = 0 for all s except for sk, for which σ(sk) 6= 0, and such that the

game Ψsk belongs to the class F of instances described in the proof of Theorem 2.

Therefore,

Svj(Γs) =
σk(s)

2P

in the case that P is odd and

Svj(Γs) =
σk(s)

2[P − 1]

if P is even. Hence, any deterministic algorithm needs Ω(2P /
√
P ) queries in state

sk to achieve an accuracy better than σk(s)/(2P ). Set c = σk(s)/2. Hence, the

thesis is proved.

The results of this section clearly discourage from computing exactly or even

approximating SvM with a deterministic algorithm when the number of players P
is high. Motivated by this, in the next sections we will propose three methods to

construct confidence intervals for Sv, whose complexity does not even depend on

P .

5 Static approach

In this section we will propose our first approach to compute a confidence

interval for SvM. We assume to have at our disposal beforehand the value of all

coalitions in each single stage games.

Assumption 1. The estimator agent has access to all the coalition values in each

state:

{vs(Λ), ∀Λ ⊆ P, s ∈ S}
at the same time.

Let us first find a formulation of Sv which is suitable for our purpose. Let X
be the set of all the permutations of {1, . . . , P}. Let Cχ(j) be the coalition of all

the players whose index precedes j in the permutation χ ∈ X, i.e.

Cχ(j) ≡ {i : χ(i) < χ(j)}. (2)

6



We can write the Sv of the long run game Γs, either for the discount or for the

average criterion, as

Svj(Γs) =

N∑

i=1

σi(s)Svj(Ψsi)

=
1

P !

∑

χ∈X

N∑

i=1

σi(s)
[
vsi(Cχ(j) ∪ {j}) − vsi(Cχ(j))

]

= Eχ

[ N∑

i=1

σi(s)
[
vsi(Cχ(j) ∪ {j}) − vsi(Cχ(j))

]]
,

where Eχ is the expectation over all the permutations χ ∈ X, each having the

same probability 1/P !.

We now propose the first algorithm to compute a confidence interval for Svj(Γs),
for each player j and initial state s. For each query t = 1, . . . , n, let us select inde-

pendently a random permutation χt of {1, . . . , P}. Let us define Z as the random

(over X) variable

Z ≡
N∑

i=1

σi(s)
[
vsi(Cχ(j) ∪ {j}) − vsi(Cχ(j))

]
(3)

= v(Cχ(j) ∪ {j},Γs)− v(Cχ(j),Γs)

and let Zt be the t-th realization of Z , over the permutation χt. Thanks to Hoeffd-

ing’s inequality, we can write that, for all δ ∈ (0; 1),

Pr

(∣∣∣∣∣
1

n

n∑

t=1

Zt − Svj(Γs)

∣∣∣∣∣ ≥ ǫ

)
≤ 2 exp

(
−2nǫ2(n, δ)

[y − y]2

)

where

y = max
C⊆P

N∑

i=1

σi(s)
[
vsi(C ∪ {j}) − vsi(C)

]

y = min
C⊆P

N∑

i=1

σi(s)
[
vsi(C ∪ {j}) − vsi(C)

]

Hence, we can propose our first confidence interval.

Confidence interval 1 (SCI). Let 1 ≤ j ≤ P , s ∈ S. With probability at least

1− δ, Svj(Γs) belongs to the confidence interval

[
1

n

n∑

t=1

Zt − ǫ(n, δ) ;
1

n

n∑

t=1

Zt + ǫ(n, δ)

]
,

7



where

ǫ(n, δ) =

√
[y − y]2 log(2/δ)

2n
(4)

In the case of simple games,

[
y − y

]2
≤
[ N∑

i=1

σi(s)
]2
,

hence (4) becomes

ǫ(n, δ) =

√√√√
[∑N

i=1 σi(s)
]2

log(2/δ)

2n
. (5)

6 Dynamic approach

Not surprisingly, the confidence interval SCI is analogous to the one found

in [7] for single shot games. Indeed, the intrinsic notion of dynamicity of the game

is surpassed by Assumption 1, for which the estimator has global knowledge of all

the coalition values.

In the following, we will we propose two methods to compute a confidence

interval for SvM, for which Assumption 1 on global knowledge of coalition values

is no longer necessary. Their conception naturally arises from the assumption that

the estimator learns the coalition values in each single stage game while the Markov

chain process unfolds.

Assumption 2. The state in which the estimator agent finds itself at each time step

follows the same Markov chain process of the Markovian game itself. Hence, at

step t, the estimator agent has access only to the coalition values associated to the

game ΨSt of the current state St.

Of course, the following approaches can also be employed under Assumption

1, and we will show that, in this case, they outperform the confidence interval SCI

in terms of tightness.

6.1 First dynamic method

Let χ ∈ X be, as before, a uniformly random permutation of {1, . . . , P}. Let

us define Y (i) as the random variable associated to state si:

Y (i) ≡ vsi(Cχ(j) ∪ {j}) − vsi(Cχ(j)) (6)

8



Let us assume that Y (i) has been sampled ni times in state si, and
∑N

i=1 ni = n.

We can still exploit Hoeffding’s inequality to say that, for all δ ∈ (0; 1),

Pr

(∣∣∣∣∣

N∑

i=1

σi(s)

ni

ni∑

t=1

Y
(i)
t − Svj(Γs)

∣∣∣∣∣ ≥ nǫ′(n, δ)

)
≤

2 exp

(
− 2[nǫ′(n, δ)]2
∑N

i=1 σ
2
i (s)[x(i)− x(i)]2/ni

)

where, for all i = 1, . . . , N ,

x(i) = max
C⊆P

vsi(C ∪ {j}) − vsi(C)

x(i) = min
C⊆P

vsi(C ∪ {j}) − vsi(C)

Set ǫ̃(n, δ) = n ǫ′(n, δ). We are now ready to propose our second confidence

interval for Svj(Γs).

Confidence interval 2 (DCI1). Let 1 ≤ j ≤ P , s ∈ S. With a probability of

confidence of at least 1− δ, Svj(Γs) belongs to the confidence interval

[
N∑

i=1

σi(s)

ni

ni∑

t=1

Y
(i)
t − ǫ̃(n, δ) ;

N∑

i=1

σi(s)

ni

ni∑

t=1

Y
(i)
t + ǫ̃(n, δ)

]
,

where

ǫ̃(n, δ) =

√√√√ log(2/δ)

2

N∑

i=1

σ
2
i (s)

ni
[x(i)− x(i)]2 (7)

In the case of simple games, x(i) = 1 and x(i) = 0 for all i = 1, . . . , N , hence (7)

becomes

ǫ̃(n, δ) =

√√√√ log(2/δ)

2

N∑

i=1

σ
2
i (s)

ni
. (8)

6.1.1 Optimum sampling strategy

It is interesting to investigate the optimum number of times the variable Y (i)

should be sampled in each state si, in order to minimize the length of the confidence

interval DCI1, keeping the confidence probability fixed. We notice that, by fixing

1 − δ, we can find the optimal values for n1, . . . , nN by setting up the following

minimization problem over integers:

{
min

n1,...,nN

∑N
i=1 σ

2
i (s)[x

2(i)− x2(i)]/ni
∑N

i=1 ni = n, ni ∈ N

(9)
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If the static Assumption 1 holds, then the computation of the optimum values

n∗
1, . . . , n

∗
N in (9) is sufficient to optimize the tightness of the confidence interval

DCI1, since the sampling is done offline. Otherwise, if Assumption 2 holds, the

estimator does not know in advance the succession of states hit by the process,

hence it is crucial to plan a sampling strategy of the variable Y (i) along the Markov

chain. Of course, a possible strategy would be, when n is fixed, to sample n∗
i times

the variable Y (i) only the first time the state si is hit, until all the states are hit.

Nevertheless, this approach is clearly not efficient, since in several time steps the

estimator is forced to remain idle.

Hence, we now assess the performance of an efficient and straightforward sampling

strategy, consisting in sampling Y (i), each time the state si is hit, an equal number

of times over all i = 1, . . . , N . Let us first show a useful classical result for Markov

chains (e.g., see [2]). Let η be the number of steps performed by the Markov chain

{St, t ∈ [0; η − 1]}. Let ηi be the number of visits to state si, i.e.

ηi =

η−1∑

t=0

1I(St = si).

Theorem 3. Let {St, t ≥ 1} be an ergodic Markov chain. Let π̂
(η)
i ≡ ηi/η. Then,

for any initial distribution and for all i = 1, . . . , N ,

π̂
(η)
i

η↑∞−→ πi with probability 1,

where π is the stationary distribution of the Markov chain.

We will now show under which conditions the straightforward and efficient

sampling strategy described above is also optimal, under the average criterion.

Theorem 4. Suppose that Assumption 2 holds and that the Markov chain of the

Markovian game is ergodic. Fix the confidence probability 1 − δ. Under the av-

erage criterion and in the case of simple Markovian game, if in each state si the

estimator agent samples the random variable Y (i), defined in (6), an equal number

of times, then

√
n ǫ̃(n, δ)

n↑∞−→ inf
n∈N

min
n1,...,nN :∑

i ni=n

√
n ǫ̃(n, δ) =

√
log(2/δ)

2
,

where the equality occurs with probability 1.

Proof. Let us consider the following constrained minimization problem over the

reals: {
min

ω1,...,ωN

∑N
i=1 σ

2
i (s)/ωi

∑N
i=1 ωi = n, ωi ∈ R

(10)

10



By using, e.g., the Lagrangian multiplier technique, it is easy to see that the opti-

mum value for ωi is

ω∗
i =

σi(s)n∑N
k=1 σk(s)

(11)

and that the minimum value of the objective function is

ξ∗ =

[∑N
i=1 σi(s)

]2

n
(12)

The value ξ∗ clearly represents a lower bound for the optimization problem over

the integers in the case of simple games. Since we deal with the average criterion,

let σi(s) ≡ πi. We can find now a lower bound for
√
n ǫ̃(n, δ) over n that does

not depend on the number of samples n:

inf
n∈N

min
n1,...,nN :∑

i ni=n

√
n ǫ̃(n, δ) =

= inf
n∈N

min
n1,...,nN∈N:∑

i ni=n

√√√√n log(2/δ)

2

N∑

i=1

π
2
i

ni
(13)

= inf
q1,...,qN∈Q+:∑

i qi=1

√√√√ log(2/δ)

2

N∑

i=1

π
2
i

qi

= min
x1,...,xN∈R+:∑

i xi=1

√√√√ log(2/δ)

2

N∑

i=1

π
2
i

xi
(14)

=

√
log(2/δ)

2

and the optimum value of xi in (14) is

x∗i =
πi∑N
k=1 πk

= πi .

For Theorem 3,

ni/n
n↑∞−→ πi with probability 1.

Hence, ni/n converges with probability 1 to the optimum value x∗i and, by conti-

nuity, the thesis is proved.

6.2 Second dynamic method

Since Hoeffding’s inequality has a very general applicability and does not refer

to any particular probability distribution of the random variables at issue, it is natu-

ral to look for confidence intervals suited to particular instances of games. Suppose

11



now that we can compute the confidence intervals [li; ri] for the Svs of the single

stage games Svj(Ψsi). In this section we will show a third confidence interval for

the Sv of the long run game Γ which is tighter i) the higher the confidence probabil-

ity 1− δ is and ii) the tighter the confidence intervals [li; ri] are. As an example, in

section 6.2.1 we will show a tight confidence interval for simple Markovian games.

The confidence interval proposed in this section is based on the following

Lemma.

Lemma 1. Let A1, . . . , Ak be k random variables such that Pr(Ai ∈ [li; ri]) ≥
1− δi. Let ci ≥ 0, for i = 1, . . . , k. Then,

Pr

(
k∑

i=1

ciAi ∈
[

k∑

i=1

cili ;

k∑

i=1

ciri

])
≥

k∏

i=1

(1− δi)

Proof. We will provide the proof for continuous random variables; the proof for

the discrete case is totally similar. By induction, it is sufficient to prove that, if

Pr(A1 ∈ [l1; r1]) ≥ 1− δ1 and Pr(A2 ∈ [l2; r2]) ≥ 1− δ2, then

Pr (A1 +A2 ∈ [l1 + l2 ; r1; r2]) ≥ (1 − δ1)(1 − δ2)

Let fA be the probability density function of the random variable A. Let fAi
(x) =

fAi
(x)1I(x ∈ [li; ri]), i = 1, 2. Then,

Pr
(
A1 +A2 ∈ [l1 + l2; r1; r2]

)
=

∫ r1+r2

l1+l2

fA1+A2
(x)dx

=

∫ r1+r2

l1+l2

∫

R

fA1
(x− τ) fA2

(τ) dτ dx

≥
∫ r1+r2

l1+l2

∫

R

fA1
(x− τ) fA2

(τ) dτ dx

=

∫

R

∫

R

fA1
(x− τ) fA2

(τ) dτ dx

=

∫

R

fA1
(x) dx

∫

R

fA2
(x) dx

= Pr(A1 ∈ [l1; r1]) Pr(A2 ∈ [l2; r2])

≥ (1− δ1)(1 − δ2)

It is straightforward to see that the lower bound on the confidence probabil-

ity
∏k

i=1(1 − δi) in Lemma 1 is tighter the smaller the single confidence levels

δ1, . . . , δk are. Lemma 1 suggests a new confidence interval for SvM.

We are now ready to show our second dynamic approach. Let the random

variable Y (i) be defined as in (6). Also this method implies that Y (i) is sampled ni

times in state si, for all i = 1, . . . , N .

12



Confidence interval 3 (DCI2). Set the confidence levels δi ∈ (0; 1), for all i =
1, . . . , N . Let

[
l(si)

(
ni,

n∑

t=1

Y
(si)
t , δi

)
; r(si)

(
ni,

n∑

t=1

Y
(si)
t , δi

)]

be the confidence interval for Sv(Ψsi), for all i = 1, . . . , N . Let 1 ≤ j ≤ P , s ∈
S. With a confidence probability

∏N
i=1(1− δi), Svj(Γs) belongs to the confidence

interval

[ N∑

i=1

σi(s) l
(si)

(
ni,

n∑

t=1

Y
(si)
t , δi

)
;

N∑

i=1

σi(s) r
(si)

(
ni,

n∑

t=1

Y
(si)
t , δi

)]
(15)

It is interesting to note that, in the case of the confidence interval DCI1, we

could optimize its tightness by modifying the number of samples n1, . . . , nN .

Here, in addition, we can optimize DCI2 also over the set of confidence levels

δ1, . . . , δN , under the nonlinear constraint:

N∏

i=1

(1− δi) = 1− δ .

6.2.1 Confidence interval for single stage games: example for simple games

In this section we will show an example in which the employment of the con-

fidence interval DCI2 is well justified. In [7], the authors derived a confidence

interval for the Sv of a single stage game, based on Hoeffding’s inequality. In the

case of simple games, a tighter confidence interval can be obtained. Let χ ∈ X
be a permutation of {1, . . . , P}. Let us assume that all χ ∈ X have the same

probability 1/P !. Let us define the Bernoulli variable B(s) as

B(s) = vs
(
Cχ(j) ∪ {j}

)
− vs

(
Cχ(j)

)
,

where Cχ(j) is defined as in (2). As pointed out in [7], we can interpret the Sv

Svj(Ψs) as

Svj(Ψs) = Pr (B(s) = 1) .

LetB1, . . . , Bn be n independent realization of B(s). It is evident that
∑n

t=1Bt ∼
B(n,Svj(Ψs)), where B(a, b) is the binomial distribution with parameters a, b.
Hence, computing a confidence interval for Svj(Ψs) boils down to the compu-

tation of confidence intervals of the the probability of success of the Bernoulli

variable B(s) given the proportion of successes
∑n

t=1Bt/n, which is a well know

problem in literature. Of course, one might still utilize Hoeffding’s inequality to

do that, but over the last decades some more efficient methods have been proposed,

like Wilson’s score interval [21], the Wald interval [20], the adjusted Wald inter-

val [1], and the “exact” Clopper-Pearson interval [9].
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7 Comparison among the proposed approaches

If the dynamic Assumption 2 fails to hold, but instead we consider the static

Assumption 1, then we are allowed to use any of the three methods presented in

this paper, SCI, DCI1, and DCI2, to compute a confidence interval for the Sv. In

fact, DCI1 and DCI2 involve independent queries over the different states, and this

can be also done under Assumptions 1. Hence, in this case, we are allowed to

compare the tightness of the two confidence intervals SCI and DCI1.

Lemma 2. In the case of simple Markovian games, for any integer n and for any

confidence probability 1− δ,

ǫ(n, δ) ≤ ǫ̃(n, δ).

Proof. In the case of simple Markovian games, the optimization problem (9) turns

into {
min

n1,...,nN

∑N
i=1 σ

2
i (s)/ni

∑N
i=1 ni = n, ni ∈ N

(16)

Let us consider the constrained minimization problem over the reals in (10). Since

evidently ξ∗, defined in (12), is not greater than the mimimum value of the objective

function in (16), then the thesis is proved by straighforward inspection over the

expressions (5) and (8).

The reader should not be misled by the result in Lemma 2. In fact, n being

equal in the two cases, the number of queries needed for confidence interval SCI

is N times bigger than for DCI1, since each sampling of the variable Z , defined

in (3), requires the query of N incremental coalition values, one per each state.

The complexity in the two cases would be the same only if the estimator agent had

access to the coalition values of the long run game {v(Λ,Γs)}s,Λ.

Hence, it is reasonable to compare the length of the confidence interval for the

static case 2 ǫ(n, δ) with the one for the dynamic case, 2 ǫ̃(Nn, δ), calculated with

N times many queries. It is interesting to notice that, in this case, the relation

between the tightness of SCI and DCI can be reversed.

Lemma 3. In the case of simple Markovian games, for all the integer n,

min
n′

1
,...,n′

N
:

∑
i n

′

i=Nn

ǫ̃(Nn, δ) ≤ ǫ(n, δ)

Proof. We can write

min
n′

1
,...,n′

N
:

∑
i n

′

i=Nn

N∑

i=1

σ
2
i (s)

n′
i

≤
N∑

i=1

σ
2
i (s)∑N

j=1 n
′
j/N

=
N∑

i=1

σ
2
i (s)

n

≤

[∑N
i=1 σi(s)

]2

n

14



where the last inequality holds since σi(s) ≥ 0. Hence, by inspection over the

expressions (5) and (8), the thesis is proved.

Lemmas 2 and 3 clarify the relation between the confidence intervals SCI and

DCI1, under the condition of simple Markovian games. Indeed, the dynamic ap-

proach is better than the static one in terms of accuracy of the confidence interval,

when the number of queries is equal for the two methods. Moreover, simulations

showed that, when the number of samples n and the confidence level δ are equal

for the two methods, then the effective confidence probability for SCI is generally

higher than for DCI1, i.e. the lower bound 1 − δ is less tight. We explain this by

reminding that the centres of the confidence intervals SCI and DC1, respectively

1

n

n∑

t=1

Zt ;
N∑

i=1

σi(s)

ni

ni∑

t=1

X
(i)
t

are already two estimators for Sv(Γs), and the former possesses a smaller variance

than the second one.

About the performances of confidence interval DCI2, the simulations con-

firmed our intuitions. We utilized both the Hoeffding inequality and the Clopper-

Pearson interval to compute a confidence interval for the Sv of simple single stage

games, and we saw that the confidence interval is more and more tight when the

confidence probability approaches 1 and the Clopper-Pearson method gives gener-

ates intervals.

In Table 7 we show, for each value of confidence probability 1−δ, the percent-

age a3≻2 of cases in which the confidence iterval DCI2 is narrower than confidence

interval DCI1. We see that, for 1 − δ < 0.8, the two confidence interval have a

comparable length. For 1 − δ ≥ 0.8, the confidence iterval DCI2 is to be strongly

preferred to DCI1, in terms of accuracy, under these settings.

1− δ a3≻2 (%)

.97 100

.95 99.9

.9 87.5

.8 57.7

8 Complexity of confidence intervals

In Section 4 we called for a randomized algorithm who could reach a poly-

nomial accuracy in the number of players P without the need of an exponential

number of queries. In this case, by “accuracy” we mean the length of confidence

interval, keeping fixed the confidence probability. In the previous sections we de-

rived three confidence intervals, SCI, DCI1, and DCI2, whose expression do not

depend on the number of players P .
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Proposition 2. Fix the confidence level δ and the length of confidence interval 2 ǫ.
Then n queries are required for the confidence interval SCI, where

n =

[
y − y

]2
log(2/δ)

2 ǫ2
.

Proof. The proof follows straightforward from the expression of confidence inter-

val SCI.

Proposition 3. Fix the confidence level δ and the length of confidence interval 2 ǫ̃.
Then, there exists a set of n1, . . . , nN ,

∑
i ni = n, such that n queries are required

for the confidence interval DCI1, where

n ≤
N
[
y − y

]2
log(2/δ)

2 ǫ̃2

Proof. The proof follows straightforward from Lemma 3.

From Propositions 2 and 3 the following result follows.

Theorem 5. The number of required queries to achieve an accuracy of 1/p(P ),
where p(P ) is a polynomial of P , is O(p2(P )), for both the confidence interval

SCI and DCI1.

Since we do not provide an explicit expression for the confidence interval

DCI2, then we can not provide an analogous result for DCI2. Nevertheless, we

notice that its expression does not depend on the number of players P , and that if

the Hoeffding’s inequality is used to compute the confidence interval for the Sv in

the single stage games, then a similar result of Theorem 5 can be derived.

Corollary 1 and Theorem 5 confirm that our randomized approaches are better

than any deterministic approach for a number of players sufficiently high.

Remark: All the results in this paper for simple Markovian games are also valid

for the Shapley-Shubik index in the case of weighted voting Markovian games. In

fact, for our purposes, the Shapley-Shubik index and the Sv are totally equivalent,

since they both possess the linearity property (1).

9 Conclusions

We proved in Section 4 that an exponential number of queries is necessary

for any deterministic algorithm even to approximate SvM with polynomial accu-

racy. Hence, we focused on randomized algorithms and we proposed three different

methods to compute a confidence interval for SvM. The first, described in Section 5

and called SCI, is a static one, since it assumes that we have at our disposal the val-

ues in each state at the same time. The remaining two methods, DCI1 in Sections
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6.1 and DCI2 in Section 6.2, are also valid if we assume that the estimator learns

the coalition values in each single stage game while the Markov chain process un-

folds. We focused then on simple Markovian games. We proposed in Section 6.1.1

a straightforward way to optimize the tightness of DCI1. We compare in Section

7 our three approaches in terms of tightness of the confidence interval. The sim-

ulations confirmed that DCI2 is better than the first two when both the confidence

probability is close to 1 and a tight confidence interval for the Sv of the single stage

games is available. We prove that DCI1 is tighter than SCI, with an equal number

of queries. Hence, the dynamic approach is better than the static one, although it

relies on milder assumptions. This is essentially because it allows to tune the num-

ber of samples according to the weight of the state. Finally, in Section 8 we show

that a polynomial number of queries is sufficient to achieve a polynomial accuracy

for our algorithms. Hence, in order to compute SvM, our randomized approaches

are better than any deterministic approach for a number of players sufficiently high.
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