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Abstract

We deal with multi-agent Markov Decision Processes (MDPs) in which co-

operation among players is allowed. We find a cooperative payoff distribu-

tion procedure (MDP-CPDP) that distributes in the course of the game the

payoff that players would get in the long run static game. We show under

which conditions such a MDP-CPDP fulfills a time consistency property,

contents greedy players, and strengthen the coalition cohesiveness through-

out the game.

Index Terms

Cooperative Markov decision processes, stochastic games, payoff distribu-
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1 Introduction

Repeated cooperative games constitute one of the most recent and interesting

topics in game theory. They attempt to model real situations in which the same

game is repeated over time and players can cooperate and form coalitions through-

out the duration of the game. The papers by Oviedo (2000) and by Kranich, Perea,

and Peters (2001) are the two independent pioneering works in this field.

While the theory of competitive Markov decision processes (MDPs), other-

wisely called non-cooperative stochastic games, has been thoroughly studied (Filar

and Vrieze 1996 for an extensive survey), to the best of the authors’ knowledge,

there is very little work in the literature on cooperative MDPs. Unlike classic

repeated games, there are several different stage games that follow one another ac-

cording to a discrete-time Markov chain, whose transition probabilities depend on

the players’ actions in each stage game. Players can decide whether to join the

grand coalition or, throughout the game, forming coalitions. The payoff gained

by a coalition is, under the transferable utility (TU) assumption, shared among its

participants. Once a group of players has withdrawn from the grand coalition, it

cannot rejoin it later on. Petrosjan (2002), in his pioneering work, proposed a coo-

perative payoff distribution procedure (CPDP) in cooperative games on finite trees.

In this paper we deal with discount cooperative MDPs, in which the payoffs at

each stage are multiplied by a discount factor and summed up over time. Our game

model is in fact more general than the one by Petrosjan (2002), since we allow for

cycles on the state space and we do not impose the finiteness of the game horizon.

We also point out that our model is different from the one proposed by Predtetchin-

ski (2007), since we assume that the utility of the coalitions is transferable and the

probability transitions among the single stage games does depend on the players’

actions in each stage.

In static cooperative game theory (e.g. Peleg and Sudhölter 2007), in which

only one stage game is played, the main challenge is to find a payoff sharing pro-

cedure among all players such that it is both optimum for the whole community of

players and it does not prompt any subset of players to withdraw from the grand

coalition. On the contrary, in our framework of cooperative MDPs, since the hori-

zon of the game is not even finite, then it is legitimate to suppose that all players

demand to be rewarded at each stage, and not at the end of the whole game. There-

fore, the situation is more tricky than in the classic static setting, because we need

to find a stage-wise payoff distribution such that all the players are content with it

at each stage of the game.

The paper is organized as follows. Section 2 is a short survey on non-cooperative

and cooperative multi-agent MDPs. Following the lines of Petrosjan’s work, in

Section 3 we propose a stationary stage-wise CPDP for cooperative discounted

MDPs (MDP-CPDP). In Section 4 we prove that our MDP-CPDP satisfies what
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we call the “terminal fairness property”, i.e. the expected discounted sum of pay-

off allocations belongs to a cooperative solution (i.e. Shapley Value, Core, etc.) of

the whole discounted game. In Section 5 we show that our MDP-CPDP fulfills the

time consistency property, which is a crucial one in repeated games theory (e.g.

Filar and Petrosjan 2000): it suggests that a CPDP should respect the terminal fair-

ness property in a subgame starting from any time step. In Section 6 we show that,

under some conditions, for all discount factors small enough, also the greedy play-

ers having a myopic perspective of the game are satisfied with our MDP-CPDP.

Section 7 deals with a special case of our model, entaling that the transition proba-

bilities among the states do not depend on the players’ strategies. In Section 8 we

deal perhaps with the most meaningful attribute for a CPDP, which is the n-tuple

step cooperation maintenance property. It claims that, at each stage of the game,

the long run reward that each group of players expects to get by withdrawing from

the grand coalition after n step should be less than what it would get by sticking

to the grand coalition forever. In some sense, if such a condition is fulfilled for all

integers n’s, then no players are enticed to withdraw from the grand coalition. We

find that the single step cooperation maintenance property, earliest introduced in a

deterministic setting by Mazalov and Rettieva (2010), is the strongest one among

all n’s. Furthermore, we give a necessary and sufficient condition, inspired by the

celebrated Bondareva-Shapley Theorem (Bondareva 1963; Shapley 1967), for our

MDP-CPDP to satisfy the n-tuple step cooperation maintenance property, for all

integers n.

Some notation remarks. The ordering relations <,>, if referred to vectors,

are component-wise, as well as the max and min operators. The entry that lies in

the i-th row and in the j-th column of matrix A is written as Ai,j . An equivalent

notation for the n-by-m matrix A is [Ai,j]
n,m
i=1,j=1. The i-th element of column

vector a is denoted by ai. The expression val(A) stands for the value (e.g. Filar

and Vrieze 1996) of the matrix A. Let {Ci}i be a collection of sets; we define the

set
∑

iCi as {
∑

i ci : ci ∈ Ci, ∀ i}.

2 Discounted Cooperative Markov Decision Processes

In a multi-agent Markov Decision Process (MDP) Γ with P > 1 players there

is a finite set of states S= {s1, s2, . . . , sN}, and for each state s the set of actions

available to the i-th player is denoted by Ai(s), i = 1, . . . , P , and |Ai(s)| = mi(s).
To each (P + 1)-tuple (s, a1, . . . , aP ), with ai ∈ Ai(s), an immediate reward

ri(s, a1, . . . , aP ) for player i = 1, . . . , P and a transition probability distribution

p(.|s, a1, . . . , aP ) on the state space S are assigned.

Let C = {1, . . . , P} be the grand coalition. We assume that any subset of

players Λ ⊆ C can withdraw from the grand coalition and form a coalition at any

time stage of the game, and all the players are compelled to play throughout the
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whole duration of the game. Moreover, once a coalition is formed, it can no longer

rejoin the grand coalition in the future.

Let AΛ(s) =
∏

i∈Λ Ai(s) be the set of actions available to coalition Λ in state s,

for all s ∈ S. A stationary strategy fΛ for the coalition Λ determines the probability

fΛ(a|s) that in state s the coalition Λ chooses the action a ∈ AΛ(s). We define with

FΛ the set of stationary strategies for coalition Λ ⊆ C. If for every s ∈ S there

exists a(s) such that fΛ(a(s)|s) = 1, then the stationary strategy fΛ is called pure

(or deterministic).

Let us define the transition probability distribution on the state space S, given the

independent strategies fΛ ∈ FΛ, fC\Λ ∈ FC\Λ, as

p(s′|s, fΛ, fC\Λ) =
∑

aΛ∈AΛ(s)

∑

aC\Λ∈AC\Λ(s)

p(s′|s, aΛ, aC\Λ) fΛ(aΛ|s) fC\Λ(aC\Λ|s),

for all s, s′ ∈ S. Analogously, let ri(s, fΛ, fC\Λ) be the expected instantaneous

reward for player i in state s.

Let β ∈ [0; 1) be the discount factor and let

rΛ(s, fΛ, fC\Λ) =
∑

i∈Λ

ri(s, fΛ, fC\Λ)

be the instantaneous reward gained by the coalition Λ in state s. We define Φ
(β)
Λ (fΛ, fC\Λ)

as the N -by-1 vector whose k-th component equals the expected β-discounted long

run reward for coalition Λ ⊆ C, when the initial state of the game is sk, i.e.

Φ
(β)
Λ (fΛ, fC\Λ) =

∞∑

t=0

βtPt(fΛ, fC\Λ) rΛ(fΛ, fC\Λ), (1)

where P(fΛ, fC\Λ) is the N-by-N transition probability matrix and rΛ(fΛ, fC\Λ) is

a N-by-1 vector, whose k-th component is rΛ(sk, fΛ, fC\Λ).
Let Γs be the game Γ starting in state s ∈ S. For any β ∈ [0; 1) and for

every state s, we assign to each coalition Λ a real utility v(β)(Λ,Γs). Under the

transferable utility (TU) condition, the coalition values can be shared in any manner

among the members of the coalition. Hence, the set of feasible allocations for

coalition Λ ⊆ C in the game Γs is V(β)(Λ,Γs), where

V(β)(Λ,Γs) =

{
x ∈ R

P :
∑

i∈Λ

xi ≤ v(β)(Λ,Γs)

}
.

It is widely accepted to assign to the empty coalition the null utility, i.e.

v(β)({∅},Γs) = 0.
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We consider the value associated to the grand coalition v(β)(C,Γs) to be the biggest

achievable discounted sum of reward in the game Γs:

v(β)(C,Γs) = Φ
(β)
Λ (s, f

(β)∗
C )

f
(β)∗
C = argmax

fC∈FC

Φ
(β)
C (fC), ∀ β ∈ [0; 1) (2)

where f
(β)∗
C the global optimum strategy for the grand coalition, for all Γs, s ∈ S.

In most applications it makes sense to define the coalition value v(β)(Λ,Γs) as the

maximum total reward that coalition Λ can ensure for itself in the β-discounted

long run game Γs (von Neumann and Morgenstern 1944), i.e.

v(β)(Λ,Γs) = max
fΛ∈FΛ

min
fC\Λ∈FC\Λ

Φ
(β)
Λ (s, fΛ, fC\Λ)

= min
fC\Λ∈FC\Λ

max
fΛ∈FΛ

Φ
(β)
Λ (s, fΛ, fC\Λ), ∀Λ ⊆ C/{∅}. (3)

Throughout the paper, if not specified, we always consider nonempty coalitions.

We now provide some useful definitions and results.

Definition 1 (Linear combination of games). Let V(∆i,Λ) be the set of feasible

allocations for the coalition Λ ⊆ C in the game ∆i, for i = 1, . . . , N . The linear

combination
∑

i bi∆i is a game in which the set of feasible allocations for the

coalition Λ is the Minkowski sum V(
∑

i bi∆i,Λ) ≡
∑

i biV(∆i,Λ).

Proposition 1. Let ∆1, . . . ,∆N be N games with transferable utilities. Let v(Λ,∆i)
be the value of coalition Λ ⊆ C in the game ∆i. Let b1, . . . , bN be non negative co-

efficients. Then,
∑

i bi∆i is a TU game such that the value of the coalition Λ ⊆ C
is

v

(
Λ,

N∑

i=1

bi∆i

)
=
∑

i

biv(Λ,∆i).

Proof. Let

Ṽ(Λ) =



x ∈ R

P :
∑

i:{i}∈Λ

xi ≤
∑

i

biv(Λ,∆i)



 .

We have to prove that, for all Λ ⊆ C, V(
∑

i bi∆i,Λ) ≡
∑

i biV(∆i,Λ) = Ṽ(Λ).
Let the real P -tuple c(i) ∈ V(∆i,Λ), for all i. It is straightforward to see that∑

i bic(i) ∈ Ṽ(Λ). Then,
∑

i biV(∆i,Λ) ⊆ Ṽ(Λ). Let us fix the real P -tuple

c̃ ∈ Ṽ(Λ). We define I = {i : bi > 0}. We need to find {c′(i) ∈ V(∆i,Λ)}i∈I
such that

∑
i∈I bic

′(i) = c̃. Let c′j(i) = c̃j/(|I|bi) for all j such that {j} /∈ Λ.

To determine the remaining |I||Λ| elements {c′j(i), ∀ i ∈ I, j : {j} ∈ Λ}, we

introduce the following set of inequalities:

{∑
i∈I bic

′
j(i) = c̃j ∀ j : {j} ∈ Λ∑

j:{j}∈Λ c′j(i) ≤ v(Λ,∆i) ∀ i ∈ I
(4)
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Let us prove that (4) admits a solution. Let ǫi ≥ 0, for all i ∈ I , be such that

∑

i∈I

ǫi =
∑

i∈I

biv(Λ,∆i)−
∑

j:{j}∈Λ

c̃j ≥ 0 (5)

We write the following linear system

{∑
i∈I bic

′
j(i) = c̃j ∀ j : {j} ∈ Λ

bi
∑

j:{j}∈Λ c′j(i) = biv(Λ,∆i)− ǫi ∀ i ∈ I
(6)

Evidently, any solution to (6) is also a solution to (4). Thanks to (5), the sum of

the first |Λ| equations of (6) equals the sum of the remaining |I| equations. By

discarding the last equation of (6) we get a linear system with |Λ|+ |I|−1 linearly

independent equations in |Λ||I| > |Λ|+ |I|−1 unknowns. Hence, a solution to (6)

exists and
∑

i biV(∆i,Λ) ⊇ Ṽ (Λ). Then,
∑

i biV(∆i,Λ) = Ṽ(Λ) and the thesis

is proved.

Definition 2 (Terminal cooperative solution). Set β ∈ [0; 1). The terminal coope-

rative solution T(β)(Γs) is a set-valued function which represents a static coope-

rative solution (e.g. Shapley value, Core, etc.) of the whole game starting in state

s, i.e.

T(β)(Γs) ≡ T(β)
(
Γs, {v

(β)(Λ,Γs)}Λ⊆C

)
: R2P−1 → R

P , ∀ s ∈ S.

Analogously, we define T(β)(
∑

i biΓsi) as the terminal cooperative solution of

the cooperative game with coalition values {v(β)(Λ,
∑

i biΓsi)}Λ⊆C .

The terminal cooperative solution T(β) can represent any of the classical coo-

perative solutions. For example, T ≡ Co represents the Core of the β-discounted

game Γs, that is the set, possibly empty, of the real P -tuples x satisfying

{∑
i∈C xi = v(β)(C,Γs)∑
i∈Λ xi ≥ v(β)(Λ,Γs), ∀Λ ⊂ C.

(7)

The strict Core sCo(β)(Γs) is defined in (7), but with the strict inequality signs.

The terminal cooperative solution T ≡ Sh(β)(Γs) stands for the Shapley value of

the β-discounted game Γs, i.e. for all i = 1, . . . , P ,

Sh
(β)
i (Γs) =

∑

Λ⊆C/{i}

|Λ|! (P−|Λ|−1)!

P !

[
v(β)(Λ ∪ {i},Γs)− v(β)(Λ,Γs)

]
.

We now state the following results, used in the following sections.

Proposition 2. Let ∆1, . . . ,∆N be games with transferable utilities with non empty

Cores Co(∆1), . . . ,Co(∆N ), respectively. Let b1, . . . , bN be non negative coeffi-

cients. Then,
∑N

i=1 biCo(∆i) ⊆ Co(
∑N

i=1 bi∆i).
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Proof. Let x1(i), . . . ,xP (i) be an allocation belonging to the Core Co(∆i). Thanks

to the linearity property of coalition values shown in Proposition 1, we can write

N∑

i=1

∑

k∈C

bixk(i) =
N∑

i=1

biv(C,∆i) = v

(
C,

N∑

i=1

bi∆i

)

N∑

i=1

∑

k∈Λ

bixk(i) ≥
N∑

i=1

biv(Λ,∆i) = v

(
Λ,

N∑

i=1

bi∆i

)
, ∀Λ ⊂ C.

Then, any point belonging to
∑N

i=1 biCo(∆i) is also in Co(
∑N

i=1 bi∆i). Hence,

the thesis is proved.

Proposition 3. For all β ∈ [0; 1),
∑N

i=1 biSh
(β)(Γsi) = Sh(β)(

∑N
i=1 biΓsi),

where bi ≥ 0, ∀ i.

Proof. The proof follows straightforward from Proposition 1 and from the linearity

property of the Shapley value.

3 Cooperative Payoff Distribution Procedure

In cooperative MDPs, different stage games follow one another in time; the

game may have an infinite length, or the players may not know when the game

reaches the end. This is the case of transient games, for which

∞∑

t=0

∑

s′∈S

pt(s
′|s, fC) < ∞, ∀ s ∈ S, fC ∈ FC . (8)

where pt(s
′|s) = p(St = s′|S0 = s) is the probability of being in state s′ at the

t-th step, knowing that the starting state was s. Therefore, it is reasonable to as-

sume that all the players demand to be rewarded at each stage of the game, and not

only at its conclusion. With respect to static cooperative game theory, an additional

complication lies in satisfying all the players at each time stage of the game, since

coalitions are allowed to form throughout the game unfolding.

According to classic cooperative game theory, player i gets the terminal coopera-

tive solution T
(β)
i (Γs) at the end of the β-discounted game Γs. The goal here is

to find a way to stage-wisely share among the participants the value of the grand

coalition.

Remark: All the results presented in the current section, as well as the ones in Sec-

tions 4, 5, 8, can be easily extended to undiscounted transient MDPs, i.e. games for

which equation (8) holds and β = 1. Note in fact that, mathematically, introducing

a discount factor β ∈ [0; 1) is equivalent to multiplying each transition probability

by β, which automatically ensures the transient condition (8).
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In his pioneering work, Petrosjan (2002) introduced a cooperative payoff dis-

tribution procedure (CPDP) for games on finite trees. Following his lines, in this

section we propose a CPDP for cooperative MDPs with β-discounted criterion,

with β ∈ [0; 1) fixed a priori.

Definition 3 (CPDP). The cooperative payoff distribution procedure (CPDP) g(β) =

[g
(β)
1 , . . . ,g

(β)
P ] is a recursive function that, for each time step t≥ 0, associates a

real P -tuple g(β)(ht) to the past history ht = [S0,g
(β)(h0), S1, . . . , g(β)(ht−1), St]

of states succession and stage-wise allocations up to time t.

The following are two alternative interpretations for g
(β)
i :

i) βtg
(β)
i (ht) is the payoff that player i ∈ C gets at the stage t of the game,

when ht is the history of the process;

ii) g
(β)
i (ht) is the payoff that player i gets at time t when the new transition pro-

babilities p′ are reduced by a factor β, i.e. p′(s′|s, f
(β)∗
C ) = βp(s′|s, f

(β)∗
C ).

Hence, 1− β is the stopping probability in each state.

Let us now define stationary CPDPs.

Definition 4 (Stationarity). Set β ∈ [0; 1). A CPDP g(β) is stationary iff g(β)(ht) =
g(β)(St=s) = g(β)(s), for all t ≥ 0 and ht.

Hence, a stationary CPDP g(β) : S → R
P is a stage-wise payoff distribution

law that does not depend on the whole history of the process up to time t, but only

on the state at time t.

We finally propose a CPDP for cooperative MDPs (MDP-CPDP).

Definition 5 (MDP-CPDP). Set β ∈ [0; 1). Select the real P -tuple T
(β)

(Γs) ∈
T(β)(Γs), ∀ s ∈ S. Our MDPs cooperative payoff distribution procedure (MDP-

CPDP) is the function γ
(β)(s) between the Euclidean spaces R → R

N defined

by

γ
(β)(s) =

∑

s′∈S

[
δs,s′ − β p(s′|s, f

(β)∗
C )

]
T

(β)
(Γs′), ∀ s ∈ S. (9)

In the following sections we will illustrate some appealing properties of such a

CPDP.

4 Terminal Fairness

In this section, we let the terminal cooperative solution T be any of the classic

cooperative solution (Core, Shapley value, Nucleolus, etc.). We now propose two

desirable properties for a CPDP and we prove that the MDP-CPDP defined in (9)

fulfills both of them.
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The first fundamental feasibility property of a stationary CPDP consists in sharing

among the players the total payoff attained by the grand coalition at each stage

of the game. In order to ensure always such a property, we also require that the

instantaneous rewards are deterministic.

Property 1 (Stage-wise efficiency). Set β ∈ [0; 1). The CPDP g(β) is stage-wise

efficient iff
∑

i∈C g
(β)
i (s) =

∑
i∈C ri(s, f

(β)∗
C ) for all s ∈ S, where f

(β)∗
C is a pure

stationary strategy.

Theorem 1. The MDP-CPDP γ
(β), defined in (9), fulfills the stage-wise efficiency

Property 1, for all β ∈ [0; 1).

Proof. The global optimum strategy f
(β)∗
C is pure, since the optimization problem

(2) that it solves can be formulated as a Markov Decision Process (Puterman 1994).

Hence, ri(s, f
(β)∗
C ) is deterministic as a function of s, for all i ∈ C.

Let us sum (9) over all possible i ∈ C, for all s ∈ S:

v(β)(C,Γs) =
∑

i∈C

γ
(β)
i (s) + β

∑

s′∈S

p(s′|s, f
(β)∗
C )v(β)(C,Γs′).

Since the following is also valid for all s ∈ S from the definition of v(β):

v(β)(C,Γs) =
∑

i∈C

ri(s, f
(β)∗
C ) + β

∑

s′∈S

p(s′|s, f
(β)∗
C )vβ(C,Γs′),

then,
∑

i∈C γ
(β)
i (s) =

∑
i∈C ri(s, f

(β)∗
C ), surely.

In order to guarantee a continuity between static cooperative game theory and

dynamic payoff allocation, we require the expected discounted sum of the stage-

wise allocations to be equal to the terminal cooperative solution of the game.

Property 2 (Terminal fairness). Set β ∈ [0; 1). The CPDP g(β) is said to be

terminal fair iff the terminal cooperative solution is stage-wisely distributed in the

course of the game, i.e. E
[∑

t≥0 β
tg(β)(ht)|S0 = s

]
∈ T(β)(Γs), for all s ∈ S.

Theorem 2. The MDP-CPDPγ
(β)(s) ∈ R

P , defined in (9) is the unique stationary

CPDP that satisfies the terminal fairness Property 2, for all β ∈ [0; 1).

Proof. We know from Filar and Vrieze (1996) that, for all i ∈ C,



E[
∑

t≥0 β
t
γ
(β)
i (St)|S0 = s1]

...

E[
∑

t≥0 β
t
γ
(β)
i (St)|S0 = sN ]


 =

∑

t≥0

βtPt(f
(β)∗
C )



γ
(β)
i (s1)

...

γ
(β)
i (sN )


 .

If we substitute (9) in the equation above, we find that γ
(β)
i defined in (9) satisfies

the relation:

E
[∑

t≥0

βt
γ
(β)(St)|S0 = s

]
= T

(β)
(Γs), ∀ s ∈ S, i ∈ C.
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Since the matrix
∑

t≥0 β
tPt(f

(β)∗
C ) = (I − βP(f

(β)∗
C ))−1 is invertible, then such

γ
(β) is also unique.

It is straightforward to verify that the MDP-CPDP γ
(β) defined in (9) also

fulfills a terminal efficiency property, i.e.

∑

i∈C

E
[∑

t≥0

βtγ
(β)
i (St|S0 = s)

]
= v(β)(C,Γs), ∀ s ∈ S.

5 Time Consistency

Time consistency is a well known concept in dynamic cooperative theory (Filar

and Petrosjan 2000 and references therein). It captures the idea that the stage-wise

allocation must respect the terminal fairness Property 2 even from a later starting

time of the game, for any possible trajectory of the game up to that time. In other

words, if players renegotiate the agreement on CPDP at any intermediate time step,

assuming that cooperation has prevailed from initial date until that instant, then

the payoff distribution procedure would remain the same. This property can be

formalized as follows.

Property 3 (Time consistency). Set β ∈ [0; 1). The CPDP g(β) in (9) is said to

be time consistent iff, for all n ≥ 1 and for all possible allocation/state histories

hn−1 up to time n−1,

E

[
∞∑

t=n

βtg(β)(St,ht−1)
∣∣∣hn−1

]
∈ βnT(β)

(
∑

s′∈S

p(s′|Sn−1=s, f
(β)∗
C )Γs′

)
,

(10)

where s is the latest state of history hn−1.

Now we are ready to state the main result of this section.

Theorem 3. The stationary MDP-CPDP γ
(β) satisfies the time consistency Prop-

erty 3 for all β ∈ [0; 1), where T represents the Shapley Value, or the Core if we

suppose that Co(β)(Γs) is nonempty for any s ∈ S.

Proof. Since γ
(β) is stationary, we can rewrite (10) as

E

[
∞∑

t=0

βt
γ
(β)(St+n)

∣∣∣Sn−1 = s

]
∈ T(β)

(
∑

s′∈S

p(s′|s, f
(β)∗
C )Γs′

)
. (11)

Let us rewrite now equation (9), for all s ∈ S, as

T
(β)

(Γs) = γ
(β)(s) + β

∑

s′∈S

p(s′|s, f
(β)∗
C )T

(β)
(Γs′), (12)

9



where γ(s) = [γ1(s), . . . , γP (s)]
T and T

(β)
(Γs) ∈ T(β)(Γs). Thanks to (12), we

can write

E

[
∞∑

t=0

βt
γ
(β)(St+n)

∣∣∣Sn−1 = s

]
=
∑

s′∈S

p(s′|s, f
(β)∗
C )T

(β)
(Γs′).

It is implicit that any player, after being rewarded with γ
(β)(s) in state s at step

n − 1, can withdraw from the grand coalition only in the following time step n.

Then, also the transition probabilities from state s are invariant with respect to

a change of strategy. Therefore, we can exploit Proposition 2 to claim that, if

T ≡ Co, then

E

[
∞∑

t=0

βt
γ
(β)(St+n)

∣∣∣Sn−1 = s

]
∈ Co(β)

(
∑

s′∈S

p(s′|s, f
(β)∗
C )Γs′

)
.

Thanks to Proposition 3 we can state that, if T ≡ Sh, then

E

[
∞∑

t=0

βt
γ
(β)(St+n)

∣∣∣Sn−1 = s

]
= Sh(β)

(
∑

s′∈S

p(s′|s, f
(β)∗
C )Γs′

)

So, (11) is verified, and the thesis is proved.

6 Greedy Players Satisfaction

We now consider the presence of greedy players, i.e. players having a myopic

perspective of the game and who only look to get the highest reward in the single

stage game. We try to find conditions under which greedy players are satisfied as

well.

In this section we consider the coalition value v(β)(Λ,Γs) to be the β-discounted

value of the two player zero sum game of coalition Λ against C\Λ in the game Γs.

This concept is expressed by Condition 1.

Condition 1 (Maxmin coalition values). The coalition value v(β)(Λ,Γs) is com-

puted as the max-min expression in (3).

Let Ωs be the single stage game in state s, for any s ∈ S. We assume that Ωs

is also a TU game, in which the coalition value v(Λ,Ωs) is, analogously to (3), the

value of the zero sum game played by the coalition Λ against C\Λ, for each Λ ⊆ C.

Obviously, v(0)(Λ,Γs) ≡ v(Λ,Ωs).

The new property that we are seeking for in this section can be summarized as

follows.

Property 4 (Greedy players satisfaction). Set β ∈ [0; 1). For all s ∈ S, the CPDP

g(β)(s) belongs to Core of the stage-wise game Ωs, i.e. g(β)(s) ∈ Co(Ωs).

10



The intuition here is to let the discount factor β tend to zero and to probe under

which conditions γ
(β)(s) lies in Co(Ωs). For this purpose, in the current section

we consider T ≡ Sh.

Lemma 1. There exists a pure strategy f∗C ∈ FC and β∗ > 0 such that f∗C is optimal

for all β ∈ [0;β∗).

Proof. The global optimization problem is a Markov Decision Process (MDP) hav-

ing Φ
(β)
C as discounted reward. Take a strictly decreasing sequence {βk} such that

limk→∞ βk = 0. Since both the actions and the states have a finite cardinality, then

there exists a pure strategy f∗C and an infinite subsequence of {βk}, namely {βnk
},

with nk < nk+1 ∀ k, such that f∗C is optimal for all the discount factors {βnk
}. Fix

a pure strategy fC ∈ FC. Then

y(βn
k
)(s, fC) = Φ

(βn
k
)

C (s, f∗C)− Φ
(βn

k
)

C (s, fC) ≥ 0, ∀ k ∈ N. (13)

It is easy to see that y(β), with β ∈ (0; 1), is a continuous rational function. Then,

either it is identically zero for all β ∈ (0; 1) or y(β) = 0 in a finite number of

points in the interval (0; 1). Hence, for (13), there exists β∗(s, fC) > 0 such that

y(β)(s, fC) ≥ 0, for all β ∈ (0;β∗(s, fC)). Take β∗ = mins,fC β
∗(s, fC) > 0.

Since Φ
(β)
C (s, f∗C) is also continuous in β = 0 from the right, then f∗C is also optimal

for β = 0. The thesis is proved.

Define now Θs as the affine space:

Θs :

{
x ∈ R

P :
∑

i∈C

xi =
∑

i∈C

ri(s, f
∗
C)

}
, (14)

where f∗C is the global optimal strategy for all discount factors sufficiently close to

0.

Corollary 1. For any s ∈ S, γ(β)(s) belongs to the affine space Θs, for all β
sufficiently close to 0.

Proof. The proof follows straightforward from Theorem 1 and from Lemma 1.

Here we present a useful result.

Lemma 2. Let T ≡ Sh. Under Condition 1, limβ↓0 γ
(β)(s) = Sh(0)(Γs) ≡

Sh(Ωs).

Proof. Recall the expression (9) of γ(β), that we rewrite as

γ
(β)(s) =

∑

s′∈S

[
δs,s′ − β p(s′|s, f

(β)∗
C )

]
Sh(β)(Γs′), ∀ s ∈ S.

11



It is sufficient to prove that limβ↓0 Sh
(β)(Γs) = Sh(0)(Γs), ∀ s ∈ S. Since each

component of the vector Sh(β)(Γs) is a linear combination of the discounted values

{vβ(Λ,Γs)}Λ⊆C , then we only need to show that

lim
β↓0

v(β)(Λ,Γs) = v(0)(Λ,Γs) ≡ v(Λ,Ωs), ∀ s ∈ S, ∀Λ ⊆ C.

First of all we recall the relation (Filar and Vrieze 1996)

| val(B)− val(C)| ≤ max
i,j

|Bi,j −Ci,j| (15)

where B,C are matrices with the same size. We know from (Filar and Vrieze

1996) that

v(β)(Λ,Γs) = val

([∑

i∈Λ

ri(s, aΛ, aC\Λ) + . . .

+β
∑

s′∈S

p(s′|s, aΛ, aC\Λ) v
(β)(Λ,Γs′)

]mΛ(s),mC\Λ(s)

aΛ=1,aC\Λ=1

)
, (16)

where aΛ ∈ AΛ(s) and aC\Λ ∈ AC\Λ(s). Thus, from (15,16) we can say that, for

all Λ ⊆ C,

|v(β)(Λ,Γs)− v(0)(Λ,Γs)| ≤ max
aΛ,aC\Λ

∣∣∣β
∑

s′∈S

p(s′|s, aΛ, aC\Λ) v
(β)(Λ,Γs′)

∣∣∣

≤
β

1− β
M

where M = maxs,aΛ,aC\Λ |rΛ(s, aΛ, aC\Λ)|. Fix ǫ > 0. Set δ = ǫ/(M + ǫ). Then

for all β ∈ [0; δ), we have |v(β)(Λ,Γs) − v(0)(Λ,Γs)| < ǫ. Hence, v(β)(Λ,Γs) is

right continuous in β at β = 0 for all s ∈ S, Λ ⊆ C.

Let us formulate an additional condition, which holds only in the current section.

Condition 2 (Stage-wise strict convexity). The single stage games {Ωs}s∈S are

strictly convex, i.e. v(Λ1 ∪ Λ2,Ωs) + v(Λ1 ∩ Λ2,Ωs) > v(Λ1,Ωs) + v(Λ2,Ωs),
∀ s ∈ S, ∀Λ1,Λ2 ⊆ C.

We know from Shapley (1971) that, if Condition 2 holds, then the Core of Ωs

is (P −1)-dimensional for any s ∈ S, i.e. the affine hull of Co(Ωs) coincides with

Θs in (14), for any s ∈ S. Note that, in general, the affine hull of Co(Ωs) could

be a strict subset of Θs.

Corollary 2. Suppose that the stage-wise strict convexity Condition 2 holds. Then

(i) the Shapley value of Ωs lie in the relative interior of Co(Ωs), for any s ∈ S;
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(ii) the interior of Co(Ωs) relative to Θs coincides with the strict Core sCo(Ωs),
for any s ∈ S.

Proof. For the proof of (i), see Shapley (1971). Now we prove (ii). Fix a generic

s ∈ S. If for a coalition Λ ⊂ C,
∑

i∈Λ xi = v(Λ,Ωs), then take (k, j) such that

j ∈ Λ, k /∈ Λ. For all α ∈ R, the vector x(kj) = x + α[e(k) − e(j)] does not lie

in Co(Ωs), where e(i) ∈ R
P is 1 in its i-th component and 0 elsewhere. Hence, x

does not belong to the relative interior of Co(Ωs).
Conversely, if a vector x ∈ sCo(Ωs), then it is straightforward to see that it also

belongs to the relative interior of Co(Ωs).

Theorem 4. Let γβ be the MDP-CPDP associated to the terminal cooperative

solution T. Consider T(Γs) ≡ Sh(Γs), for all s ∈ S. Then, under Conditions 1

and 2, the greedy players satisfaction Property 4 is verified by γ(β) for all discount

factors β sufficiently close to 0.

Proof. Take β∗ > 0, such that f∗C is global optimum for all β ∈ [0, β∗). Fix s ∈ S.

We know from Corollary 2 that Sh(Ωs) lies in the relative interior of Co(Ωs). The

affine hull of Co(Ωs) coincides with the hyperplane Θs for Condition 2. Moreover,

from Corollary 1 we know that, for all s ∈ S, γ(β)(s) belongs to the affine space

Θs for all β ∈ [0, β∗). Hence, for Lemma 2 we can say that for all ǫ > 0 there

exists δs ∈ (0, β∗) such that

∀ β ∈ [0; δs), γ
β(s) ∈ [Bδs ∩Θs] ⊆ Co(Ωs),

where Bδs is the ball belonging to R
P having radius of δs. Take δ = mins∈S δs.

The thesis is proved.

Hence, under Condition 2, for all β ∈ [0; δ), all the greedy players are content

with the stage-wise allocation as well.

7 Transition probabilities not depending on the actions

In this section we deal with a special case of our model, entaling that the tran-

sition probabilities among the states do not depend on the players’ strategies.

Condition 3. The actions taken by players in state s do not influence the transition

probabilities from state s, i.e. p(s′|s, a1, . . . , aP ) = p(s′|s), for all ai ∈ Ai(s) and

for each s, s′ ∈ S.

Like in Section 6, we consider the single stage game Ωs to possess transferable

utilities {v(Λ,Ωs)}s∈S,Λ⊆C . Nevertheless, we no longer impose the maxmin Con-

dition 1 on the coalition values. This model is equivalent to the one of Predtetchin-

ski (2007), except for the TU assumption. Let us provide our main result of this

section. It states that, under Condition 3, if we choose a stage-wise allocation

belonging to the Core of each single stage game, this is actually a MDP-CPDP,
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fulfilling the greedy players satifaction Property 4 and whose discounted long run

sum belongs to the Core of each long run game Γs, s ∈ S.

Theorem 5. Set β ∈ [0; 1). Let T
(β)

(Γs) ∈ R
P be a terminal cooperative solution,

for all s ∈ S. Let the stage wise allocation γ
(β) be the MDP-CPDP associated to

T
(β)

. Under Condition 3, if γ(β) fulfills the greedy players satisfaction Property 4

for all s ∈ S, then T(Γs) ∈ Co(β)(Γs), for all s ∈ S.

Proof. For each Λ ⊆ C, let V(Ωs,Λ) and V(Λ,Γs) be the set of feasible alloca-

tions for coalition Λ in the games Ωs and Γs, respectively. Since the transition

probability matrix does not depend on the players’ actions, we can write


V(Γs1 ,Λ)

...

V(ΓsN ,Λ)


 = (I − βP)−1



V(Ωs1 ,Λ)

...

V(ΩsN ,Λ)


 , ∀Λ ⊆ C. (17)

Since the matrix (I − βP)−1 is non negative, the thesis follows straighforward

from Proposition 2.

In Section 6 we showed that, when the transition probabilities among the states

depend on the players’ actions, a MDP-CPDP fulfills the greedy players satisfac-

tion Property 4 provided that T ≡ Sh, the single stage games {Ωs}s∈S are strictly

convex and β is sufficiently close to zero. It is interesting that instead, in this case,

we only need to assume that the games {Ωs}s∈S all possess a non empty Core, in

order to fulfill Property 4 for all β ∈ [0; 1).
The reader should also notice that the converse of Theorem 5 is not true. Indeed,

it is possible to find a terminal cooperative solution belonging to the Core of the

long run games Γs, for all s ∈ S, to which it is associated a MDP-CPDP outside

the Core of at least one single stage games Ωs.

We conclude here by providing the analogous result of Theorem 5 for the Shap-

ley value. The proof follows straightforward from (17) and from Proposition 3.

Corollary 3. Set β ∈ [0; 1). Let T
(β)

(Γs) ∈ R
P be a terminal cooperative so-

lution, for all s ∈ S. Let γ(β) be the MDP-CPDP associated to T
(β)

. Under

Condition 3, γ(β)(s) = Sh(Ωs), for all s ∈ S, if and only if T(Γs) = Sh(Γs), for

all s ∈ S.

It is now interesting to investigate about the loss incurred in the long run game by

a greedy coalition of players which withdraws from the grand coalition in a stage

of the game.

8 Cooperation Maintenance

The (single step) cooperation maintenance property was first introduced by

Mazalov and Rettieva (2010), who employed it in a deterministic fish war setting.
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Such a property helps to preserve the cooperation agreement throughout the game,

since the long run payoff that each coalition expects to get by deviating in the

next stage of the game is not smaller than the payoff that the coalition receives by

deviating in the current stage. We now adapt it to our cooperative MDP model. For

simplicity, we restrict the following definitions to stationary CPDPs.

Property 5 (First step cooperation maintenance). Set β ∈ [0; 1). The stationary

CPDP g(β) satisfies, for any initial state s ∈ S and for each coalition Λ ⊂ C,

∑

i∈Λ

g
(β)
i (s) + βv(β)

(
Λ,
∑

s′∈S

p(s′|s, f
(β)∗
C )Γs′

)
≥ v(β)(Λ,Γs).

In other words, Property 5 claims that each coalition is always incentivated to

postpone the moment in which it will withdraw from the grand coalition, under the

condition that, once a coalition Λ ⊂ C is formed, it can no longer rejoin the grand

coalition in the future. By induction, we can say that the cooperation maintenance

property enforces the grand coalition agreement throughout the whole game.

8.1 n-tuple step cooperation maintenance

We now generalize Property 5, by considering the dilemma faced by a coalition

which decides whether deviating in the current stage or after n steps. Hence, let us

then define the n-tuple step cooperation maintenance property, with n ≥ 1.

Property 6 (n-tuple step cooperation maintenance). Set β ∈ [0; 1). Let the integer

n ≥ 1. The stationary CPDP g(β) satisfies the n-tuple step cooperation mainte-

nance property iff, for any initial state s ∈ S and for each coalition Λ ⊂ C,

n−1∑

t=0

βtpt(s
′|s, f

(β)∗
C )

∑

i∈Λ

g
(β)
i (s′)+βnv(β)

(
Λ,
∑

s′∈S

pn(s
′|s, f

(β)∗
C )Γs′

)
≥ v(β)(Λ,Γs).

Let P∗(β) ≡ P(β)(f
(β)∗
C ) be the transition probability matrix associated to the

global optimal stationary strategy f
(β)∗
C , whose (i, j) element is p(sj|si, f

(β)∗
C ).

We now find a necessary and sufficient condition on the coalition values v(β) to

ensure the existence of our MDP-CPDP γ
(β), defined in (9), satisfying the n-tuple

step cooperation maintenance property, for any n ≥ 1. Let us denote v(β)(Λ) as

v(β)(Λ) ≡
[
v(β)(Λ,Γs1) . . . v(β)(Λ,ΓsN )

]T
, ∀Λ ⊆ C.

Theorem 6. Fix an integer n ≥ 1, β ∈ [0; 1). The set of stationary CPDPs γ(β)

satisfying the n-tuple step cooperation maintenance Property 6 is nonempty if and

only if the vectors

ṽ(β,n)(Λ) =
[
I−

[
βP∗(β)

]n]
v(β)(Λ), Λ ⊆ C
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are component-wisely balanced, i.e. for every function αs : 2
P /{∅} → [0; 1] such

that:

∀ i ∈ C :
∑

Λ⊆C:
Λ∋i

αs(Λ) = 1,

the following condition holds:

∑

Λ⊆C

αs(Λ)ṽ
(β,n)
k (Λ) ≤ ṽ

(β,n)
k (C), ∀ k ∈ [1;N ],

where ṽ
(β,n)
k (Λ) is the k-th component of ṽ(β,n)(Λ).

Proof. Recall the expression of γ(β) in equation (9), that can be rewritten as:

γ
(β)
i =

[
I− βP∗(β)

]
T

(β)
i , ∀ i ∈ C (18)

where γ
(β)
i = [γ

(β)
i (s1) . . . γ

(β)
i (sN )]T , T

(β)
i = [T

(β)
i (Γs1) . . .T

(β)
i (ΓsN )]

T ∈
T(β)(Γs) for each state s ∈ S. By exploiting twice the well known formula for

matrix geometric series:

n−1∑

k=0

[
βP∗(β)

]k
=
[
I− βP∗(β)

]−1 [
I−

[
βP∗(β)

]n]

we can reformulate Property 6 as

{[
I−

[
βP∗(β)

]n]∑
i∈Λ T

(β)
i ≥

[
I−

[
βP∗(β)

]n]
v(β)(Λ), ∀Λ ⊂ C

∑
i∈C T

(β)
i = v(β)(C)

(19)

where the second relation in (19) comes from the classic efficiency property of a

cooperative solution. Since the matrix (I − [βP∗(β)]n) is invertible, then we can

equivalently rewrite (19) as




∑
i∈Λ T̃

(β,n)

i ≥ ṽ(β,n)(Λ), ∀Λ ⊂ C
∑

i∈C T̃
(β,n)

i = ṽ(β,n)(C)
(20)

where

T̃
(β,n)

i =
[
I−

[
βP∗(β)

]n]
T

(β)
i

Since the relations in the systems of inequalities in (20) are component-wise, for

the Bondareva-Shapley Theorem (Bondareva 1963; Shapley 1967) the thesis is

proved.

The reader should note that, in the limit for n → ∞, the result of Theorem 6

coincides with the Bondareva-Shapley Theorem for static cooperative games.

We now state an important and intuitive result which further reinforces the

importance of the single step cooperation maintenance property.
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Theorem 7. Set β ∈ [0; 1). If the MDP-CPDP γ
(β) satisfies the single step co-

operation maintenance Property 5, then it satisfies the n-tuple step cooperation

maintenance Property 6, for all n > 1.

Proof. Let γ(β) be defined in (18), where T
(β)

satisfies the single step cooperation

maintenance Property 5, i.e., from (19),

{
βP∗(β)

[∑
i∈ΛT

(β)
i − v(β)(Λ)

]
≥
∑

i∈ΛT
(β)
i − v(β)(Λ), ∀Λ ⊂ C

∑
i∈C T

(β)
i = v(β)(C)

(21)

By iteratively left multiplying by the nonnegative matrix βP∗(β) both sides of the

first relation in (21), for each coalition Λ ⊂ C, we obtain

∑

i∈Λ

T
(β)
i −v(β)(Λ) ≤ βP∗(β)

[
∑

i∈Λ

T
(β)
i −v(β)(Λ)

]
≤
[
βP∗(β)

]2
[
∑

i∈Λ

T
(β)
i −v(β)(Λ)

]
≤ . . .

Hence, the thesis is proved.

8.2 Core selection criterion

In the following we prove that the single step cooperation maintenance Prop-

erty 5 also implies that the discounted sum of allocations for each player, when s
is the initial state, belongs to the Core of the game Γs,

Corollary 4. Set β ∈ [0; 1). If a MDP-CPDP γ
(β) satisfies the single step coop-

eration maintenance Property 5, then

E



∑

t≥0

βt
γ
(β)(St)|S0 = s


 ∈ Co(β)(Γs), ∀ s ∈ S. (22)

Proof. Let us define γ
(β) as in (18). We reformulate (22) as

{∑
i∈ΛT

(β)
i ≤ v(β)(Λ), ∀Λ ⊂ C,

∑
i∈C T

(β)
i = v(β)(C).

(23)

Since γ
(β) satisfies Property 5, then (19) is verified, with n = 1. By left multiply-

ing each set of inequalties in (19) by the nonnegative matrix (I − βP∗(β))−1, we

obtain the system of inequalities in (23).

In this section we showed how appealing the single step cooperation mainte-

nance property is. For Theorem 7, if our MDP-CPDP γ
(β) fulfills it, then each

coalition always prefers to withdraw from the grand coalition in the future, other

than at the current stage.

In the case we consider the Core as the terminal cooperative solution (T ≡

Co), Corollary 4 suggests that the point of the Core T
(β)

used to compute the
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MDP-CPDP γ
(β) in equation (9) should be picked such that T

(β)
also satisfies the

single step cooperation maintenance property. In this sense, Property 5 is also a

Core selection criterion.

8.2.1 Counterexample for the converse of Corollary 4

It is natural to ask whether the converse of Corollary 4 is true. We will show

in the following example that it does not hold in general, i.e. if a MDP-CPDP γ
(β)

satisfies (23), then not necessarily the single step cooperation maintenance Prop-

erty 5 holds.

Let us consider a cooperative MDP with only two players (P = 2), four states

(N = 4) and with perfect information, i.e. in each state at most one player has more

than one action available. Player 1 controls states (s1, s2), and the remaining states

(s3, s4) are controlled by player 2. Let the discount factor β = 0.8. The immediate

rewards for each player and the transition probabilities for each state/action pair

are shown in the following table.

(s, a) r1 r2 p(s1|s, a) p(s2|s, a) p(s3|s, a) p(s4|s, a)

pl. 1

(s1,a1) 1 3 0.1 0.4 0.1 0.4

(s1,a2) 2 1 0.4 0.1 0.1 0.3

(s1,a3) 1 0 0.4 0.2 0.4 0.1

(s2,a4) 2 1 0.1 0 0.4 0.4

(s2,a5) 3 1 0.2 0.2 0.2 0.5

(s2,a6) 4 3 0.2 0 0.2 0.3

pl. 2

(s3,a7) 5 1 0.3 0.6 0.4 0.1

(s3,a8) 1 3 0.3 0.4 0.2 0

(s3,a9) 2 6 0.3 0.3 0.1 0

(s4,a10) 0 1 0.5 0 0.1 0.1

(s4,a11) 2 2 0.1 0.3 0.5 0.2

(s4,a12) 3 0 0.1 0.5 0.3 0.6

Table 1: Immediate rewards and transition probabilities for each player, state, and strategy.

In this case, the state-wise value vectors for all the possible coalitions {1}, {2}
and C = {1, 2}, rounded off to the second decimal, are

v(0.8)({1}) ≈




8.73
10.03
7.34
7.16


 , v(0.8)({2}) ≈




9.57
8.65
10.93
11.23


 , v(0.8)({1, 2}) ≈




33.08
30.78
33.77
30.83


 .
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In order to contradict the converse of Corollary 4, it is sufficient to find a specific

long run allocation T
(0.8)

such that

[T
(0.8)
1 (sk) T

(0.8)
2 (sk)] ∈ Co(0.8)(Γsk), k = 1, 2, 3, 4, (24)

but for which the 4-by-1 MDP-CPDP:

γ
(β)
j =

[
I− βP∗(β)

]
T

(β)
j , j = 1, 2

does not respect the single step cooperation maintenance property for some initial

state s. In other words, we look for (T
(0.8)
1 ,T

(0.8)
2 ) such that





T
(0.8)
1 ≥ v(0.8)({1})

T
(0.8)
2 ≥ v(0.8)({2})

T
(0.8)
1 +T

(0.8)
2 = v(0.8)({1, 2})

(25)

and such that there exists at least one player i and an integer k ∈ [1; 4] such that

T̃
(0.8)

i (k) < ṽ
(0.8)
k ({i})

where

T̃
(0.8)

i =
[
I− βP∗(β)

]
T

(0.8)
i

ṽ(0.8)({i}) =
[
I− βP∗(β)

]
v(0.8)({i}) i = 1, 2. (26)

Since the values are component-wisely superadditive by construction, then the

Core Co(Γs) for the two-player case always exists, for all s ∈ S. Hence, there

always exist (T
(0.8)
1 ,T

(0.8)
2 ) ∈ R

2 satisfying (25). Let us select:

T
(0.8)
1 = v(0.8)({1}) +




0.7 0 0 0
0 0.4 0 0
0 0 0.2 0
0 0 0 1



[
v(0.8)({1, 2}) − [v(0.8)({1}) + v(0.8)({2})]

]

T
(0.8)
2 = v(0.8)({2}) +




0.3 0 0 0
0 0.6 0 0
0 0 0.8 0
0 0 0 0



[
v(0.8)({1, 2}) − [v(0.8)({1}) + v(0.8)({2})]

]

Substituting the values of v(0.8), we obtain

T
(0.8)
1 ≈

[
19.07 14.87 10.44 19.60

]T

T
(0.8)
2 ≈

[
14.01 15.91 23.32 11.23

]T
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By computing T̃
(0.8)

and ṽ(0.8) we find that:

T̃
(0.8)

1 (2) ≈ 2.92 < ṽ
(0.8)
2 ({1}) ≈ 3.65

T̃
(0.8)

1 (3) ≈ −0.75 < ṽ
(0.8)
3 ({1}) ≈ 0.51

T̃
(0.8)

2 (1) ≈ 0.48 < ṽ
(0.8)
1 ({2}) ≈ 1.61

T̃
(0.8)

2 (4) ≈ 0.90 < ṽ
(0.8)
4 ({2}) ≈ 3.00

Therefore, the converse of Corollary 4 is not true. On the other hand, it is interest-

ing to observe that in this example, by randomly generating vectors (T
(0.8)
1 ,T

(0.8)
2 )

and fulfilling the relation (24), in about the 99.45% of the trials the converse of

Corollary 4 was verified.

8.3 Strictly convex single stage games

In the spirit of Section 6, we show that the strict convexity Condition 2 on

the single stage games ensures the MDP-CPDP γ
(β) to satisfy Property 5 for all

discount factors small enough.

Theorem 8. Suppose that the strict convexity Condition 2 on the single stage

games {Ωs}s∈S is valid. Consider T ≡ Sh. Then the single step cooperation

maintenance Property 5 is valid for all β close enough to 0.

Proof. Thanks to the linearity property of coalition values (see Proposition 1) we

can reformulate Property 5 as

∑

i∈Λ

γ
(β)
i (s) ≥

∑

s′∈S

[
δs,s′ − βp(s′|s, f

(β)∗
C )

]
v(β)(Λ,Γs′), ∀Λ ⊂ C, s ∈ S.

From (9), considering T ≡ Sh,

∑

i∈Λ

γ
(β)
i (s) =

∑

s′∈S

[
δs,s′ − βp(s′|s, f

(β)∗
C )

]∑

i∈Λ

Sh
(β)
i (Γs′).

By hypothesis, for all s ∈ S the Shapley value Sh(Ωs) = Sh(0)(Γs) belongs to the

strict Core sCo(β)(Ωs) for all β sufficiently close to 0. Hence, by right continuity

of the Shapley value and of coalition values in β = 0 (see proof of Lemma 2), we

conclude that, for all β sufficiently close to 0,

∑

s′∈S

[
δs,s′ − βp(s′|s, f ∗C)

] [∑

i∈Λ

Sh
(β)
i (Γs′)− v(β)(Λ,Γs′)

]
≥ 0,

where f∗C is the optimal strategy for grand coalition for all β sufficiently small.

Hence, the thesis is proved.
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