— e e s wee e e Gee D GG BN BED O

——,

—
|

(]

_—

Stream Synchronization
in a Scalable Video Server Array

Werner Geyer

Technical report September 15, 1995

Institut Eurécom
2229, route des Crétes
Sophia Antipolis
F-06904 Sophia Antipolis Cedex, France
geyer@eurecom.fr

Directed by
Prof. Dr. Ernst Biersack and
Dipl.-Inform. Christoph Bernhardt

S

_i 4# A_WA_.A i B

s b a8 G V| i " i i i G it §1 i ¥ i i, i 5

Abstract

The design of video servers differs significantly from that of traditional storage and retrieval
servers. Video servers must satisfy the tight temporal constraints that stem from the continuous
nature of audio and video. Large transfer rates and storage capacity are required. Since video
servers are thought to offer multimedia services to a large gamut of applications they have to
be highly scalable. A novel video server architecture called video server array provides better
scalability properties and optimal load-balancing compared to traditional video servers. A sin-
gle multimedia stream is distributed across multiple server nodes. During retrieval of the
stream all involved server nodes are equally utilized. Server nodes deliver independent sub-
streams of media units that are recombined at the client. In the context of this architecture, the
thesis presents a scheme to ensure the continuous and synchronous delivery of data to the cli-
ent. We propose a protocol to initiate the playback of a stream in a synchronized manner and
we derive buffer requirements in order to maintain both the continuity within a single sub-
stream and the synchronization between related substreams. Furthermore, we employ the con-
cept of a buffer level control in order to detect asynchrony during retrieval, and to regain
synchronization. Experimental results prove the effectiveness of the proposed scheme that has
been implemented in a prototype of the video server array.

— —

4.

.

| _‘_q

—

| ,A_

4_

—

Table of Contents

List of Figures '
List of Tables vii
List of Abbreviations ix
1 Introduction 1
2 The Scalable Video Server Array 5
21 Autonomons Video BeBHErt il ved e viedie o Si P LDy b afoha 5

22 NieoSEIVEr ATIEY = i« s 5 isnns oo h s v dars bintan ohis Fhw o8 nbsan § o b 6

3 Multimedia Synchronization 9
Sl ARINEEIBN | i s s R e e ks £ 08 TR e Y AR G R s e 9

3.1.1 Jatra-Stsam SYRCHIONIEANON - . v 0. o o onhielisre o 05 4 S e s a8 ¥

3.1.2 Inter-Strénm SYRCIORIZAHON . . oo\ v oin diah i vs sanditn e s s ¥'a 11

3.2 Bequizrersts for SYneBfom2aton . o s iy dobanays s s s we ko s 11

3.3 Exigting Synchoonizalion SOMUGNSE . -, {5 s cunn i Sa ¥ s wabiufisn ¢ » ibs 12

2.5 A ARSI DAt B B o R R e s o i B R AN 12

3.3.2 Classification of Synchronization Solutions 13

4 Synchronization in the Video Server Array 17
4.1 Pasic Conicepts and ASSUMPHONT ..« vl v ah 2ho oS ais s davvans s sani 17

4,2 Sourees of Asynchrony in the SEIVEE AYEAN i .o dvias s s v a s iios abi. s 19

4.3 Characterization of the Synchronization Problem 20

44" Syvnthromnilion BEROME . 2 5l s Ui | o e s honias bl w s A o o 21

A1 OVEBIVIBW . .« o consocows anw w55 m s siommmmn s n s n s b 8 isb@8he # ¥ § 5 ¥ § o Gmmias s 21
4.4.2 General ASSUMPLONSottt 21
4.4.3 Model 1: Start-Up Synchronization, 22
44.3.1 Model PATEMEIEIE s commmms v o5 555 menwn ¢ b 6 5 ¥ » ewamns « 23

4.4.3.2 Start-Up Prototol., . . «oocow i ds o i i o nmwmae s e asps smeini s s 24

4433 Generalization0iitinrinenneneiaian 27

4.4.3.4 Example of the Start-UpProtocolc00vnen. 28

4.4.4 Model 2: Intra- and Inter-Stream Synchronization 29
44:4.1 Model PAramMBEIS . o ooovewime wvs 56 6 amaion s v 4553 s siiates & s 30

4.4.4.2 Synchronized Playout for a Single Substream. 31

4.4.4.3 Synchronized Playout for Multiple Substreams. 34

4.4.4.4 Start-up Protocol Influencecoveinvivssvonminmans 42

4445 Optimization,ccovviinnvnnenrnnnennenensns 44

4.4.5 Model 3: Resynchronizationot .. 45
4.4.5.1 Model PArameters. . .o v co s ws s cwmonna s e e s s o vimemsm s s - 48

4452 Biuffet LevelContiol . e s : s e s swmmmis s o 85 s & v » 48

446 Intra-frame SUAPINE . . .o csconmmssvisisdamonmesssssswmsesss 55

4.4.7 Synchronization of Multiple Streams 56

4.5 Experimental ReSUIS . .oy ovumemiamssoss s wmumme ks s b s sommine & o o & 37
Design of a Video Server Array Prototype 63
3.1 General System ArchiteCtille® . . s uawanws oo s ss swmeme covsvnewmames s 63
52 Application BrotocOl. ;¢ s« s s 5 ¢ smmenio ¢ g es s 4 SREley e i s 88 S WEeET s 64
5.2.1 Meta Server Control Protocol 64

§.2.2 Viden Transmission PRMEEol: ..eo i b vxv s ummmnce v v« o 2t s v x » 65

S8 BOIVEL sciv s smomes us 558 d 6 hEURETER E L E ¥ §§ SR ¢ R ¥ 5 s & K e 67
9.3 Desipn ParamBlers: . . « «» s swisims s gn b & 66 5k @y 56655 @oaoms s s s 67
5.3.2 IIODISIEHCIBH . ;v o546 nawmiai £ v 885 5 LOWENT 0§ ¥ 5o d SETEEE 58S 68
5321 Real-imeScheduler. 0uvomenmarsrenssmmsossiss 69

DSl SEEAI BIBAHIAEET . counvmce & 5 x 3 w5 amvsmomznes & € % + & 8 Scaen = % % 8 |

5323 DiskManafer. ..o unwwssussussvswansissssssmeesossas 71

Sk ACHEHE | :sscooommomsesissisopimie SR us o ABHEHEED RS S ABRERD kB ¥ 8 74|
5.4.1 Architectural Requirements i, 71
54.2 Implementationc.iitiitininr i, 72
O] CTLEntPIORBEE. « susomms s 4 s o8 s smyens s £ ¥ 3 3 PEsesesss s 12

2422 COraphical User TnRTaes ¢ s ussnmvavson s i s sbwmasans s s 74

5.5 MetaSEIVET . ottt e 76

___ | _______,V__‘_m_,44,,__ 4,__ Al e soe paies pees

iii

Appendix 79
A Start-Up FrotOeol MIeritBIN .. . ¢ & tvamases v o 55 oa Shis B g 8 ¥ a s 79

B Shifting Strategy with Different Delay Values 80
- BRI RIS o o o iy b e LR i e 5k A D g B R 81

D Example for the Protocol Flow for the Retrieval of a Video 84

E Structure of the Video Transmission Protocol Data Units 85

F stouoie Of the Brdfer QIRUBE . . .\ o0 coivisibn s v ois sb shias i s ¥ i ioe 85

T Sintae ol e NAEERIIAE . U e e Ak o & b AT s sk 87
Bibliography xi

Aw_ e i . e

List of Figures

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

O 00 1 O b bW N =

[N TR N T N T N T NG T S T S T N T N T S R i e e e e e
AR e I S~ s S R S S AT S el R e) SO e

v
Set of Single, Autonomous Video SEIVEIE. .. .c.cveivescsisniscssens 6
Btriting 10 the Video SErver VA, ool il ne o s Gevies sl s s s o o vd o id 7
Classification of Synchronization Mechanisms [Koe94]. 14
Distributed Architecture for the Synchronization Scheme. 17
Different Delays Experienced by Independent Substreams.. 19
Temporal Relationship for Inter-Frame Striping..................... 20
Example of the Start-Up Synchronization Protocol Flow.............. 28
Worst Case Sosnario for & Bingle Substream. o0 o0 oo viavinimn. oo 32
Worst Case ScenarioforaBumst Apival, . . . conivve i siasiumerin . 33
Multiple Substreams without and with Shifting. 35
Worst Case Scenario 1 for Multiple Substreams with Shifting 37
Worst Case Scenario 2 for Multiple Substreams with Shifting.......... 38
Buffer Saving for Different Shifts and Jitter Combinations. 40
Worst Case Scenario for Start-Up Protocol Influence................. 4
Bitlerent Types of LIStIITMIORE, '+ « . « co's v bifon o cunbnvssinooing os 46
System Model for the Buffer Level Control [Cen95]. 49
Buffer Model with Virtual and Real Buffer..coc .o vvcvvvnniees 50
Additional Buffering for different valuesof 53
Resynchronization Actions Due to Jitter Effects.. 53
Cumulative Arrival and Consumption for two Substreams............. o7
Resynchronization with the Fixed Offset Strategy. 59
Resynchronization with the Variable Offset Strategy................. 60
Configuration of the Prototypical Video Server Array. 63
Protocol Model in the Prototype Video Server Array. 65
Architecture of the Video Server Node.ol v cssblonfon s e 69
Architechire of he VBB CHENE.o coodems ov vssomions & s aths s 12
Graphieal U TMBHIEE. . 0. 5 oo o S bbb D « o 6 # o miiiyh ae s by et 75
Architecture of the Meta Server.. . o. .. .o iihiov s aiissnmminesssnnns 77
Worst Case Scenario for Different Jitter Values. 80

vi

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

30
31
32
33
34
35
36

Gap of -8 Frames Resynchronized with Fixed Offset. 81
Gap of -8 Frames Resynchronized with Variable Offset.. 81
Gap of -4 Frames Resynchronized with Fixed Offset. 82
Gap of -4 Frames Resynchronized with Variable Offset.. 82
Concentration of +4 Frames Resynchronized with Fixed Offset.. 83
Concentration of +4 Frames Resynchronized with Variable Offset. 83
Protocol Flow for the Retrieval of a Video. . . v cco v s v e snsnmwva s v 84

_ﬁ,u__.__ﬂ@_“. s

_ _\”..4“‘_4_.

==

vii

List of Tables

Table 1 Example for the Start-Up Calculations. 1. . oo .o covimmvvivvissasons 29
Table 2 Cainbuted Balter SaVERER. . % w7 ol g hs o S Bl A s b B v 40
Table 3 Experimental Results for Intra- and Inter-Stream Synchronization. 58
Table 4 Mean and Variance of the Resynchronization Duration. 61

List of Abbreviations

codec
fps
ms

2PC
AAL
ATM
AV
B-ISDN
EDF
FCFS
FDDI
FIFO
GCD
GUI
I/0

IP
JPEG
LAN

84 k.
LW
MPEG
NTP
PDU
QoS
RAID
RTS
Tcl/Tk
TCP

coding/decoding
frames per second

milliseconds

Two Phase Commit

ATM Adaptation Layer
Asynchronous Transfer Mode
Audio/Video

Broadband Integrated Services Digital Network

Earliest-Deadline-First
First-Come-First-Served

Fiber Distributed Data Interface
First-In-First-Out

Greatest Common Divisor

Graphical User Interface

Input/Output

Internet Protocol

Joint Photographic Expert Group
Local Area Network

Logical Time System

Lower Watermark

Motion Pictures Expert Group
Network Time Protocol

Protocol Data Unit

Quality of Service

Redundant Array of Inexpensive Disks
Relative Time Stamp

Tool command language and the Toolkit

Transmission Control Protocol

UDP
Uw

VCR
VHS

User Datagram Protocol
Upper Watermark

Video Cassette Recorder
Video Home System

.

i —

p—

1 Introduction

Advances in communication technology give rise to new applications in the domain of
multimedia. Emerging high-speed, fiber-optic networks have made it feasible for multi-
media applications such as Video On-Demand, Tele-Shopping or Distance Learning to
get on-line access to a variety of information. These applications typically integrate dif-
ferent kind of media such as audio, video, text or images. Customers of such a service
will be permitted to retrieve the digitally stored media from a server for real-time play-
back. The storage facility providing these multimedia services is commonly called video
server [Ber95b].

The design of a video server differs significantly from traditional storage and retrieval
services. First, the tight temporal constraints imposed by the continuous nature of audio
and video have to be satisfied. Audio and video streams consist of sequences of media
quanta (continuous media stream) which convey information only if presented continu-
ously in time. This is in contrast to a textual object, for which spatial continuity is suffi-
cient. Furthermore, the playback of multiple media streams constituting a multimedia
object should not only be continuous, but also temporally coordinated. Traditional file

servers cannot give guarantees on the timely delivery of data. [Ran92], [Gem95]

Second, the handling of multimedia data is very demanding with regard to transmission
bandwidth and storage capacity. Digital video and audio is played back at a very high
rate. Thus, scarce resources should be used efficiently and the overall workload has to be
distributed equally over all components of a server. A video server must provide efficient
mechanisms for storing, retrieving and manipulating large amounts of data at a high
speed. [Gem95]

Third, a video server should be designed scalable so as to allow a smooth adjustment to a
growing demand for multimedia services. Scalability allows for the expansion of the
video server’s capacity, for instance by introducing additional servers in an existing
architecture without changing software or underlying networks. Furthermore, different

size video servers are required because there exists a wide range of multimedia applica-

tions. [Ber95a]

A new video server architecture where the entire video server consists of several servers
grouped in a server array has been proposed by Bernhardt [Ber95a]. The architecture
has good scalability properties and allows for an optimal load balancing. The so-called
Video Server Array works similar to a RAID array. A single multimedia stream is distrib-
uted across multiple server nodes. Each node stores only a subset of the entire stream.
During retrieval each server contributes with its portion to the entire stream. The subsets
have to be sent in a coordinated manner to the client who has requested the service. Each

subset constitutes a so-called substream. [Ber95a]

The challenge associated with this architecture is to coordinate the presentation of a
media stream such that both the continuum of each substream and the temporal relation-
ship between substreams are maintained in order to offer a transparent service to the user.

The timely coordination of multimedia streams is called synchronization.

This diploma thesis presents a scheme that solves the problem of synchronization with
respect to the architecture of the Video Server Array. We propose a synchronization
approach based on three models. Each model covers certain issues of the synchroniza-
tion problem in the given architecture. Furthermore, we developed a prototype imple-
mentation of the Video Server Array so as to prove the feasibility and performance of
this architecture. Within this prototype we implemented the proposed synchronization

scheme, and we evaluated its performance in a real system environment.

The remainder of the thesis is structured as follows. The second Chapter gives a detailed
description of the architecture of the scalable Video Server Array. Differences and bene-
fits in contrast to traditional approaches are shown.

Throughout the third Chapter, general synchronization topics in multimedia are intro-
duced. We give a characterization of the term synchronization, and requirements with
respect to QoS of synchronization are discussed. Furthermore, we give a list of criteria in
order to classify the area of synchronization followed by a survey and classification of
existing synchronization solutions.

The synchronization approach is presented in Chapter four. We introduce the basic con-
cepts and assumptions of the scheme. The causes of asynchrony are discussed, and the
synchronization problem at hand is classified. We describe the three synchronization
models. Model 1 covers the problem of initiating the playback of a media stream in a
synchronized fashion. Based on the results of the first model we next consider the prob-

4,_‘1

lem of assuring a smooth playout during the playback of a stream. As soon as the syn-
chronization of a stream is lost it has to be resynchronized. Model 3 presents a
mechanism to handle the problem of resynchronization. Finally, we present some experi-

mental results gained in the prototype implementation.

Chapter five describes the prototype implementation of the Video Server Array. We give
an overview of the system architecture, followed by a description of the protocol flow
between the involved software components. Afterwards, the design of each component

of the prototype, namely server, client, and metaserver, is presented.

The work is concluded with a brief review and a discussion of the efficiency of the pro-

posed synchronization scheme.

2 The Scalable Video Server Array

2.1 Autonomous Video Server

A typical scenario for a multimedia on-demand service consists of several video servers
that are connected to clients or customers, respectively, via a high-speed network like
ATM or FDDI. The video server is the network element providing the source of multi-
media material, which can be requested by a customer [Del94]. The requested material is
stored on extremely high-capacity secondary storage media like hard disks and on ter-
tiary storage devices as well [Fed94].

The most critical element in a multimedia on-demand architecture is the video server that
supports continuous retrieval of media information from disks [Gem95]. While emerging
high-speed networks may provide high bandwidth at modest costs, the I/O system of a
video server becomes a bottleneck. We must always keep in mind that such systems are
meant to service several up to thousands of customers [Ber95a]. Thus, a video server
must be scalable with respect to the number of streams that can be serviced concurrently
and with respect to the amount of stored material. The scalability of a single powerful
video server is ultimately limited by its system bus bandwidth. The amount of storage
and the disk bandwidth can be easily extended just by introducing new disks that are
grouped in a RAID. Within a RAID, data is scattered equally across the set of disks and
retrieved in parallel. Nonetheless, if the bandwidth demand exceeds the bandwidth of the
system bus, adding new disk bandwidth yields no improvement in the possible number
of streams that can be serviced simultaneously. To overcome this limitation, additional
server nodes have to be added to the multimedia on-demand architecture. Applying mul-
tiple servers to the task of video delivery is often referred to as server-level parallelism
[Fed94].

Traditionally such a configuration consists of several autonomous video servers placed
on the network so as to improve the peak aggregate bandwidth. Since video material is
stored in its entirety onto the server nodes, it must be decided which streams are stored

on which server. If many people simultaneously request a video that is stored on only

one of the servers, the system suffers from load balancing problems, this is, one server is
overloaded while the others sit idle [Fed94]. Thus, the distribution of video material
across the nodes has to be constructed carefully so as to avoid so-called hot-spot servers
as indicated in figure 1. On the other hand, merely replicating popular videos across sev-
eral servers results in poor storage utilization. The problem is complicated due to the fact
that the popularity of a stream is not known a priori or might change over time. Conse-
quently, complex monitoring systems are needed to reorganize the distribution whenever
the popularity of the stored material changes [Ber95a]. We can conclude that the tradi-
tional design of video servers suffers from load balancing problems and/or poor storage

utilization.
s - Client
Server node | w
— A Y
—_
—
B Client
=N
Hot-spot
sarver node
...... Client
ATM network L
Servernode =] | 00 [Gl
— I A

Figure 1: Set of Single, Autonomous Video Servers.

2.2 Video Server Array

A novel architecture for a scalable video server called Video Server Array proposed by
Bernhardt et al. [Ber94] is also based on server-level parallelism but overcomes the prob-
lems of load balancing, scalability, and storage utilization. Server nodes are configured
into an array similar to a RAID. In contrast to the autonomous concept, video material is
not stored in its entirety on the nodes. A single video stream consisting of a sequence of
media units is distributed (striped) over several server nodes of the server array. During
retrieval of the video stream all server nodes involved are equally utilized. Each one of
the servers delivers an independent continuous media stream called substream. At client
site substreams are recombined. The load balancing is optimal if each stream is distrib-
uted over all existing server nodes of the array as indicated in figure 2 [Ber95a]. The load

during the retrieval of two substreams is equally distributed over the servers and the net-
work connections to the servers. In the traditional video server architecture the two vid-
eos might happen to be stored on the same server as demonstrated in figure 1. The server
and the network connections are hot spots in the overall server configuration. [Ber95b]

Client

Server node

Client

Server N0Ue | i x

ATM network £ |

Client

Server node Client

Figure 2: Striping in the Video Server Array.

In contrast to traditional video servers, scalability properties of the server array are better
because just another server node must be added. After adding a new node, the distribu-
tion of the substreams must be reorganized once in order take advantage of the added
bandwidth and capacity, i.e. the video ‘material must be striped onto to server nodes
again. The redistribution may be performed off-line or during periods of little demand

for multimedia services [Den95].

Further optimization of the architecture can be achieved by the choice of the striping
block size that defines the number of contiguous frames that is stored on a single server
node [Ber95b). If employing inter-frame striping, each frame is stored in its entirety onto
one of the server nodes. This technique is also called single frame striping. Usually digi-
tal material is stored in compressed form, resulting in different sizes of frames. So, load

balancing becomes sub optimal depending on the actual distribution of the data.

Load balancing can be improved by intra-frame striping, also known as subframe strip-
ing. Each frame is divided into n sub frames where n denotes the number of servers in
the server array. This assures that the total amount of video data is distributed equally
over the nodes of the server array. The choice of the striping block size determines the

synchronization requirements in the video server array as we show in section 4.

>

3 Multimedia Synchronization

3.1 Overview

Multimedia refers to the integration of different types of data streams including both con-
tinuous media streams (audio and video) and discrete media streams (text, data, images).
Between the information units conveyed by these streams a certain temporal relationship
exists. Multimedia systems must guarantee this relationship when storing, transmitting
and presenting the data. Commonly, the process of maintaining the temporal order of one

or several media streams is called multimedia synchronization [Eff93].

Synchronization can be distinguished on different levels of abstraction. Event-based syn-
chronization assures a proper orchestration of the presentation of distributed multimedia
objects. A multimedia object may be, for instance, a news cast consisting of several sub-
objects like audio and video. On a lower level continuous synchronization or stream syn-
chronization, respectively, copes with the problem of synchronizing the playout of data
streams [Rot95a]. The classical example of stream synchronization is the lip-synchro-
nized presentation of audio and video [Esc94].

Continuous media are characterized by a well-defined temporal relationship between
subsequent data units. Information is only conveyed when media quanta are presented
continuously in time. As for video/audio the temporal relationship is dictated by the sam-
pling rate. The problem of maintaining continuity within a single stream is referred to as
intra-stream synchronization.

Moreover, there exist temporal relationships between media units of related streams, for
instance, an audio and video stream. The preservation of these temporal constraints is
called inter-stream synchronization.

Thus, to solve the problem of stream synchronization we have to regard both issues
which are tightly coupled [Blu94].

3.1.1 Intra-Stream Synchronization

A continuous media stream consists of a sequence of (encoded)! samples which are
transferred between source and sink. The task of intra-stream synchronization often

10

referred to as serial synchronization [Bul91] is to maintain the inherent temporal proper-
ties given by the sampling rate. Hence, serial synchronization has to reproduce informa-
tion as originally captured. There exist exceptions, of course, when, for instance, the
playback rate is altered to achieve VCR functions like fast-forward. [Cor92]

The temporal relationship within a single stream is mainly disturbed for the following
reasons [Blu94], [Lit92], [Cor92]:

* Newwork jitter

* End-system jitter

* Clock drift

* Changing network conditions

Network jitter denotes the varying delay that stream packets experience on their way
from the sender to the receiver network I/O device. It is introduced by the buffering in
intermediate nodes. End-system jitter refers to the variable delays arising within the end-
systems, and is caused by varying system load and the packetising and depacketising of
frames with variable size, that are passed through the different protocol layers. Jitter is
commonly equalized by the use of an elastic buffer at the sink site [Blu94].

Capturing, reproduction and presentation of continuous media is driven by end-system
clocks. In general, clocks cannot be assumed to be synchronized. Due to temperature dif-
ferences or imperfections in the crystal clock the frequency of end-system clocks can dif-
fer over a long period of time. The result is an offset in frequency to real time and to
other clocks which causes a drift rate from 107 sec/sec up to 1073 sec/sec.? The problem
of clock drift can be coped with by using time synchronizing protocols within a network.
The network time protocol (NTP), for instance, offers a global (virtual) time to its service
users. Otherwise, if the problem of clock drift is neglected, buffer overflow or buffer
starvation on the client site will arise over a long period of time [Cor92], [Cor95]. The
effect of clock drift is also known as skew that is defined as an average jitter over a time
interval [Lit92].

Changing network conditions, not introduced by jitter, refers to a variation of connection
properties, for instance an alteration of the average delay or an increasing rate of lost
frames.? These effects strongly depend on the QoS the underlying network can provide.

I Commonly used digital compression techniques are, for instance, JPEG, MPEG, or H.261.

2 A drift of 10 sec/sec is a more common value for today’s systems. If the problem of synchro-
nization is restricted to the playback of a single video, for instance with a duration of 90 min, a
total asynchrony of 5.4 milliseconds will arise. This deviation can not be perceived by a user.
On the other hand, a drift of 107 sec/sec resulting in an asynchrony of 5.4 seconds will
strongly influence presentation quality. [Cor92]

4#4

e e i S i o s

==

i

o

11
However, synchronization mechanisms have to cope with this kind of problem.

3.1.2 Inter-Stream Synchronization

Inter-stream synchronization, also called parallel synchronization [Bul91], has to estab-
lish and maintain a certain temporal relationship between two or more related continuous
media streams. Little et al. [Lit91] present thirteen possible relationships between time
intervals of related streams. Common relations are interval a equals b or a before b.
Inter-stream synchronization has to ensure these relations to a certain accuracy deter-
mined by the end user. A set of streams to be synchronized is often called synchroniza-
tion group [Esc94]. All streams within the group are synchronized to each other
according to the predefined temporal relationship. Different priorities can be assigned to
streams within a group corresponding to their importance. The stream with the highest
priority is called master. It dictates the synchronization of the remaining streams of the
group called slaves. Again the classical example of lip-synchronization of audio and
video: as the human perception of audio is much more sensitive to asynchrony one

should assign the master role to the audio stream [Rot95b], [Ran93].

3.2 Requirements for Synchronization

In the previous section we already broached that accuracy of synchronization is or has to
be determined by user requirements. Thus, synchronization mechanisms have to take

these requirements into account.

The accuracy by which synchronization has to be done is mainly determined by the
human perception. Recent experiments conducted by Steinmetz et al. [Ste93b] show that
a mismatching in lip-synchronization as low as 120 ms between audio and video can be
already perceived by the application user. On the other hand, playing out text (e.g. subti-
tles) up to 200 ms before the audio, is still well tolerable. The major goal of synchroniza-
tion is to minimize this deviation or mismatching between related streams such that it is
kept within defined rolerance bounds. [Li94]

Another dimension of synchronization is given by the kind of source. Literature distin-
guishes between life synchronization and synthetic synchronization [Ste93a]. In the
former case capturing of samples and playback have to be performed almost at the same

3 Commonly unconfirmed datagram services are used for transmitting multimedia data. Retrans-
missions are not suitable as data is extremely time critical. A datagram service is unreliable
and frames are lost from time to time. The proposed synchronization scheme handles lost
frames such that the last frame is displayed again, this is, the last frame is doubled.

time while in the latter case, samples are recorded, stored and played back later. Hence,
for life synchronization, e.g. in teleconferencing, the delay must be kept as low as possi-
ble. Consequently, the size of the elastic buffer which is dictated of course to a certain
amount by the jitter has to be minimized. For recorded media, constraints are not so
restrictive; higher delays are tolerable, and the fact that sources can be influenced proves
to be very advantageous as shown later in the proposed synchronization model. It is for
instance possible to adjust playback speed or to schedule the start-up times of streams as
needed. However, as resources are limited, it is desirable for both kinds of synchroniza-
tion to keep the buffer level as low as possible. [Koe94]

3.3 Existing Synchronization Solutions

No common classification scheme for synchronization approaches exists. At present syn-
chronization mechanisms are either application specific or try to cover synchronization
on a higher level independent of the application at hand. We give a collection of criteria
that characterize various aspects of the generic synchronization problem. In the follow-
ing section we pick up three of the most important criteria and attempt to classify exist-
ing synchronization approaches. The classification scheme is adopted from [Koe94].

3.3.1 Classification Criteria

* Time
Schemes can be classified whether they assume a synchronized, global time within a
network or not. Global clocks allow to compensate for clock drift and to calculate
exact values for delay or jitter. On the other hand they are not available on every sys-
tem at present, and accuracy is not always as fine-grained as desired. A sophisticated,
complex protocol is required. NTP [Mil91] is an example for such a protocol in the
internet environment.

* Direction
The direction determines whether a mechanism is applicable for intra-stream syn-
chronization or inter-stream synchronization. The terms are explained in section 3.1.

* Location
Synchronization functionality may be located either on the source site or on the sink
site, depending on the assumptions taken about the efficiency of the sink [Koe94].

* Methods
Restoring synchronization can be done either by speeding up or slowing down pre-
sentation or production of media units, or by stuffing. The latter can be performed
either by duplicating/deleting media units or by pausing/skipping, respectively. The
effect of the methods is the same. By applying, a stream that is out of synchroniza-

tion may either catch up or slow down so to regain synchronization. Changing speed

e _‘_, m__ ___Hg, el et o

13

might not always be possible as resources, e.g. bandwidth, are limited. [Koe94]
* Participants
Depending on the number of participating sources or sinks, the following synchroni-
zation sets can be distinguished [Esc94]:
- one-to-one
- one-to-many
- many-to-one
- many-to-many
A similar classification taking into account whether synchronization is done locally
or distributed is given by [Bul91].
* Flexibility
Adaptive mechanisms react on changing network conditions. Static mechanisms

assume a constant end-to-end delay.

3.3.2 Classification of Synchronization Solutions

A survey of multimedia synchronization mechanisms can be found in [Ehl94] and
[Koe94]. Ehley distinguishes between distributed and local methods. Within these
dimensions she summarizes different criteria like protocol based solutions or the kind of
distribution among nodes. Each technique is described briefly. We adopt to Koehler as he
clearly distinguishes between different dimensions. Existing work is classified within a
3D-cube. Though one has to be aware that the dimensions are not completely indepen-
dent. The classification is shown in figure 3. For the dimensions we have chosen time,
method and location. Although direction is an important issue it has not been selected as
most of the synchronization schemes cover both intra-stream and inter-stream synchroni-
zation.

The work of Steinmetz [Ste90a] and Little et al. [Lit90] is not classified in the cube
because they present no concrete synchronization scheme but examine synchronization
issues from a more abstract level. Steinmetz discusses characteristics of multimedia sys-
tems and presents a set of constructs to express intermedia relationships. Little models

the intermedia timing based on timed Petri nets.

Method
A
[Ishi95]
[iarfsj] [Litt92]
stuffing _[_g —]_ ______ % [K-0eh94]
% ~ 7 [Li94]
- " | [This work]
A 7 I
7 v
= 7 |
P4 / |
< P
r _________ T [Ande91] : [Cen95]
| %, l |
| %, | |
’ |
| (Chako4] | Almeo1]
! : = » Location
/5
l I P .%
| | 2
| " i
b
[Esco94]
[Roth95b]

Time

Figure 3: Classification of Synchronization Mechanisms [Koe9%4].

Escobar et al. [Esc94] and Rothermel et al. [Rot95b] assume a global synchronized time.
The synchronization mechanism basically relies on determining the different kind of
delays each stream experiences, using time stamps. At the receiver different delays are
equalized to the maximum delay by buffering. Rothermel enhances this basic mechanism
with a buffer level control and a master-slave concept. The usage of a logical time sys-
tem (LTS) proposed by Anderson et al. [And91] is very similar to global clocks. He
describes techniques to recover from asynchrony within a single-site workstation.

Resynchronization is done by skipping and pausing, respectively.

Rangan et al. [Ran93] present a synchronization technique based on feedback mecha-
nisms. Synchronization is done on sender site because less powerful receiver stations are
assume that only have to send back the number of the currently displayed media unit.
Asynchrony can be discovered by the use of so-called relative time stamps (RTS). Syn-
chrony is restored by deleting or duplicating media units. Trigger packets are exchanged
periodically so to calculate the relative time deviation between sender and receiver.
Agarval et al. [Aga94] adopt to the idea of Rangan and enhance the scheme by dropping
the assumption of bounded jitter.

e’ ol e mew et ewe! = — - s 1 i _._4 _A

Chakrabiti et al. [Cha94] also apply a feedback mechanism. The sender production rate
is controlled by the used buffer space at the receiver site. A receiver clock determines a

constant consumption rate from the buffer.

The technique of phase locked loops is usually applied to restore synchronization of con-
tinuous data transmitted via an asynchronous network, e.g. ATM. The buffer level on
receiver site is compared to a nominal value. Basically, the read out clock is driven by
the fill level. A phase locked loop mechanism is described by Almeida et al. [AIm91].

A more pragmatical solution to synchronization is given by Cen et al. [Cen95]. They
describe the synchronization mechanism of a distributed MPEG player in the Internet
environment. It is based on software feedbacks to the sender. Synchronization is
regained either by influencing production speed or by skipping/pausing. To filter out jit-
ter effects Cen employs low pass filters.

The synchronization concept of Li et al. [Li94] is based on a B-ISDN network which can
give certain guarantees with respect to average delay and jitter. Based on these parame-
ters a stream delivery schedule is calculated. Within the schedule certain tolerance
parameters have to be fulfilled. If not, for instance due to statistical deviations, a fine
grain tuning is done on the receiver site by adjusting the schedule. Little’s skew control
system [Lit92] applies a kind of buffer level control. Within a certain nominal buffer
level inter-stream synchronization is maintained. When defined thresholds are reached,
synchronization is regained by duplicating or dropping frames. Little assumes a constant
playout rate and guaranteed network resources. The synchronization scheme of Koehler
et al. [Koe94] covers intra-stream synchronization exclusively. The mechanism is based
on a controlling the receiver buffer level. The fill level is filtered, compared to a nominal
value and evaluated by a control function. Correspondingly, intra-stream synchroniza-
tion is restored by duplicating or deleting media units in the local buffer.

Ishibashi et al. [Ish95] propose a time-stamp-based synchronization scheme suitable for
both intra-stream synchronization and inter-stream synchronization. Taking the assump-
tion of bounded jitter, synchronization is done similar to Escobar’s approach of equaliz-
ing the delay. Intra-Stream synchronization is based on the theorem of Santoso [San93].
In order to perform synchronization in case of unknown delay Ishibashi applies a con-
cept based on delay estimations. Once intra-stream synchronization is established, inter-
stream synchronization can be maintained with a certain probability. Corrective actions

are taken by skipping/pausing. The theory is based on the absence of clock drift.

We propose an application specific synchronization scheme for stored media suitable for

16

both intra- and inter-stream synchronization [This work]. The scheme is receiver based
and does not assume global clocks. Resynchronization is done by skipping/pausing, and
furthermore, we apply the concept of a buffer level control. A classification of our
approach can be seen in figure 3. Our work has been mainly influenced by the ideas of
Ishibashi [Ish95] with resect to intra- and inter-stream synchronization. Based on a theo-
rem of Santoso [San93] we derive buffer requirements and playout deadlines so to assure
inter- and intra-stream synchronization. For the technique of resynchronization we adopt
to a similar scheme as described by Koehler and Rothermel [Koe94], [Rot95¢]. To ini-
tiate the playback of a stream in a synchronized manner we developed a start-up proto-
col. The synchronization scheme that consists of three models is described in the

following chapter.

[- st] — [[mRasia — (— [— (o — - — — — — — —

| A

by ‘w—r-]

17

4 Synchronization in the Video Server Array

We present a synchronization mechanism that is based on three models. First, we intro-
duce the assumptions on which the scheme is based. Then we identify sources of asyn-
chrony in the Video Server Array, followed by a brief characterization of the
synchronization problem at hand. Section 4.4 describes each model of the scheme. We
close with some experimental results on the efficiency of the synchronization scheme.

4.1 Basic Concepts and Assumptions

The Video Server Array as described in section 2 is based on a distributed architecture
consisting of several servers and clients connected via an ATM switch.* For the proposed
synchronization scheme we replace the switch by an arbitrary ATM subnetwork. Figure

4 shows the underlying architecture for the synchronization problem.

Figure 4: Distributed Architecture for the Synchronization Scheme.

Each of the servers denoted by S delivers an independent substream of media units. The

4 For further consideration the terms server, source and sender are regarded equivalent as well as
client, sink and destination.

18

production rate is driven by the server clock. Media units are transmitted to the Destina-
tion D via an ATM subnetwork. Transfer service is offered to the source and client appli-
cation by a sort of datagram service (e.g. UDP/IP) layered on top of the ATM service.
Arriving units are buffered in FIFO queues at the destination D. The playout of the entire

stream composed out of the substreams is driven by the destination’s clock.

The synchronization scheme is developed on the assumption of inter-frame striping
(refer to section 2) with a striping block size identically to a frame. Frames are stored in
their entirety onto the server nodes. Enhancements due to intra-frame striping are dis-
cussed briefly in section 4.4.6. Let n be the number of server nodes in the array and r be
the frame rate of the entire stream. Frames are assumed to be distributed over the servers
in a round-robin manner where the first server stores the first frame, the second server

stores the second frame, etc. Each server contributes to the entire stream with a rate of

r/n.

We further apply the concept of a burst transfer mode: frames are sent in periodic bursts
according to the production rate. In contrast to the burst mode, in continuous mode the
sending of data is distributed uniformly over the scheduling interval defined by the pro-
duction rate [Ber95b].

The use of global, synchronized clocks within the network facilitates the problem of syn-

chronization. However, the synchronization scheme does not assume the presence of a

global time for several reasons: [Ran93]

* Network time protocols are not ubiquitous at present.

* Clock synchronization needs sophisticated, complex protocols.

* Heterogenous subnetworks hinder the presence of a global time because different
organizational domains do not wish to synchronize their time with other domains.

* Even when using synchronized clocks, errors are introduced by inaccuracies and
thus, mechanisms are needed in any case to cope with this problem.

The synchronization mechanism assumes the presence of some kind of admission con-
trol strategy on the server site. Deterministic admission control guarantees that the server
is not overloaded. That means that new clients are only admitted if the QoS granted to
other clients is not violated. Statistical admission control gives such guarantees only
with a certain probability [Den95]. Since we assume the presence of video server admis-

sion control we only have to regard of the problem of asynchrony from the time a frame
is scheduled.

E-—\:r~ L ‘-Av-: E g m G“J '\-i r‘f =] E f: E4 : E‘——*i == —‘—i ;

[

et

[

[7 s -]]

—J

19

4.2 Sources of Asynchrony in the Server Array

Several sources of asynchrony can be derived for the underlying configuration described

in the previous section. Corresponding to section 3.1.1, we can identify the following

causes of asynchrony a synchronization mechanism for the Video Server Array has to

deal with:

» packetizing |prot. iayersl network prot. layers |depacketizing(buffering -’

Different delays: the assumption of independent network connections imposes dif-
ferent delays. A synchronization scheme has to compensate for these differences in
order to display the continuous media stream in a timely order.

Beside the network delay, frames experience a delay for the reasons of packetizing/
depacketizing, the processing through the lower protocol layers, and the buffering on
the client site. Figure 5 shows the cumulative delay of two independent substreams
that are started at the same time. The variation of those delays is defined as jitter.
Network jitter: asynchronous transfer destroys synchrony. Jitter arises in intermedi-
ate nodes for the reason of buffering.

End-system jitter: packetizing and depacketizing of frames with different size due
to encoding introduces jitter as well as passing frames through the lower protocol
layers.

Clock drift is present because we do not assume global clocks.

_> packetizing | prot. layers network prot. layers | depacketizing | buffering P

'

time

Figure 5: Different Delays Experienced by Independent Substreams.

Alteration of the average delay: the synchronization scheme has to be adaptive
with respect to a change of the average delay.”

Server drop outs due to process scheduling are a realistic assumption when using
non-real-time operating systems. At the same time, the consideration of drop outs
covers the overload probability of statistical admission control strategies to a certain

amount.

5 Note that an alteration of the average delay belongs to changing network conditions as
described in section 3.1.1. We only consider an alteration of the average delay because it
strongly affects synchronization. The result is either buffer overflow or buffer starvation.

20

4.3 Characterization of the Synchronization Problem

Since we assume the video server to deliver only continuous media this clearly creates a
stream synchronization problem. In contrast to other architectures, a single continuous
media stream (e.g. a video stream) in the Video Server Array consists of an arbitrary
number of independent substreams. For each substream intra-stream synchronization
has to be provided. The temporal relationship within a substream is given by r/n. An
example for n=3 is depicted in figure 6.

A synchronization group is constituted by the number of substreams that contribute to a
stream. All members of the group have to be synchronized to each other. Thus, the prob-
lem of inter-stream synchronization has to be solved. Referring to [Lit90], the temporal
relation between the substreams can be characterized by a before or an after relationship,
respectively. Intervals are defined by the frame rate r at which the video/audio stream is
recorded. For instance, frame number i is expected at the client I/r seconds before frame
number i+1. We assume that the i-th frame is stored on the (i mod n)-th server. So, in
contrast to classical synchronization problems, we have first a shifted time order between
substreams to be synchronized. Second, the highly distributed architecture already
imposes the problem of inter-stream synchronization for the delivery of a single continu-
ous media stream.

Substream 2| . . l
Substream 1| ! :
Substream 0

3/r

time

Figure 6: Temporal Relationship for Inter-Frame Striping.

Furthermore, the problem of intra-stream synchronization arises when there exist several
synchronization groups to be synchronized to each other. Consider for instance the prob-
lem of synchronizing audio and video streams each one consisting of several indepen-
dent substreams. This kind of synchronization is not subject of the thesis but in section
4.4.7 we give an idea of how the proposed synchronization scheme could be easily
extended for the latter problem.

_— . , _f

7___4 i st o N i

- s s s

21

4.4 Synchronization Scheme

44.1 Overview

We develop a solution for the given synchronization problem step by step by presenting
three models, each one proposing a solution for certain synchronization issues that are
described in section 4.2. The models are based on each other and can be characterized by
the underlying assumptions. Each one extends its predecessor by dropping assumption
taken before. The whole of the models aims at an applicable solution for the considered

architecture.

Model 1 covers the problem of different delays on the network connections for each sub-
stream. We propose a synchronization protocol that compensates for these delays by
computing well-defined starting times for each server. The protocol allows to initiate the
playback of a media stream that is composed of several substreams in a synchronized

manner.

The following second model deals with jitter experienced by media units travelling from
the source to the sink system. To smoothen out jitter, elastic buffers are required. We
present a playout deadline which guarantees a smooth playback of the stream. Based on
the deadline buffer requirements are derived for certain scenarios. Model 2 covers intra-
stream synchronization as well as inter-stream synchronization. The start-up protocol of
model 1 is examined with respect to the effect of jitter. Jitter is assumed to be bounded in

this approach.

Model 3 solves the problems of clock drift, changing network conditions and server drop
outs by employing a buffer level control with a feedback loop to the servers so to regain
synchronization in the case of disturbances. Again, buffer requirements are regarded
with respect to the results of models 1 and 2. The behavior of a filtering function is
examined. Filters are necessary to identify whether a problem is of long-term or short-

term effect. The selection of model parameters is discussed.

4.4.2 General Assumptions

The synchronization mechanism is based on time stamps. Each time a media unit® is
scheduled by a server, it is provided with the present local time. This enables the client to
calculate statistics, e.g. for the roundtrip delay, jitter or inter-arrival times. Moreover, we

assume that each frame carries a sequence number determining its timely order.

% For further consideration we will use the terms media unit and frame as synonyms.

22

In contrast to other approaches buffer requirements or fill levels are always stated in
terms of frames or time, instead of the amount of allocated memory. This consideration
is preferred because synchronization is a problem of time and for continuous media, time
is represented implicitly by the frames of a stream. This seems reasonable because frame
sizes vary due to encoding algorithms like JPEG or MPEG [Koe94]. However, notice
that a mapping of frames to the allocation of bytes must be carried out for implementa-
tion reasons. Taking the largest frame of a stream as an estimate wastes a lot of memory,
especially when using MPEG compression. Sophisticated solutions of mapping are sub-
ject of future work. In the following considerations we will use the term buffer slot to
denote the buffer space for one frame.

Since processing time, e.g. for protocol actions does not concern the actual synchroniza-
tion problem we will neglect it whereas an implementation has to take it into account.

Finally, we assume that control messages are reliably transferred.

4.4.3 Model 1: Start-Up Synchronization

The major problem addressed by model 1 is the compensation for different delays due to
the independency of the different substreams. For instance, the geographical distance
from server to client may be different for each substream. Thus, starting transmission of
frames in a synchronized order would lead to different arrival times at the client with the
result of asynchrony. Usually, this is compensated by delaying frames at the client site
[Esc94]. Depending on the location of the sources enormous buffering is required.

In order to avoid buffering with regard to the equalization of different delays, we take
advantage of the fact that stored media offers more flexibility concerning the temporal
handling. The idea is to initiate playout at the servers such that frames arrive on sink site
in a synchronous manner. This is performed by shifting the starting times of the servers
on the time axis in correlation to the network delay of their connection to the client.
Thus, buffers are replaced by time.

The proposed start-up protocol consists of two phases. In the first phase, roundtrip delays
for each substream are calculated while in the second phase the starting time for each
server is calculated and propagated back to the servers.

The model is based on the assumption of a constant end-to-end delay without any jitter.
We further exclude changing network conditions, server drop-outs, and clock drift. In
such a scenario synchronization has to be done once at the beginning and is maintained
automatically.

The following section introduces a notation which is extended to the subsequent models;
interdependencies between the parameters of the model are defined. Afterwards we give
a description of the start-up protocol flow and prove its correctness. A generalization of

the results follows. We finally close with an example for the protocol.

L e ____ 4_#_

e e e Lt 1 e L el P e T

23
4.4.3.1 Model Parameters
n number of server nodes in the server array
N number of frames of a stream
i,j, frame index i, j: v=0. .., N-1
k server index k=0, .., n-l1
I index set of n subsequent frames starting with frame j
Sk denotes server node k providing substream k
D denotes the destination or client node
r requested display rate of the entire stream at client site [fps]
S; initial sending time of framei in server time [sec]
s? synchronized sending time of frame i in server time [sec]
a; arrival time of frame i in client time [sec]
d; roundtrip delay7 for frame i measured at client site [sec]
" ey maximum roundtrip delay [sec]
s maximum roundtrip delay for all j element of J; [sec]
brinss starting time of the synchronization protocol [sec]
Lref reference time for the start-up calculation [sec]
t rjef reference time regarding the set of frames given by /; [sec]
t; expected arrival of the frame i at the client site [sec]
o arrival time difference between frame i and j [sec]

We already mentioned in section 4.1 that a media stream is assumed to be distributed in a
round robin fashion across the involved server nodes. Hence, we can identify the storage

location of a frame by its frame number, i.e.

Server §; stores the frame i. (D

imodn

The starting time #,,, of the protocol equals the beginning of the first phase. Without

loss of generality let

t =0 (2)

start

The index set /;contains the sequence numbers of successive frames to be synchro-

7 The roundtrip delay comprises the delay for a control message that requests a frame and the
delay for delivering the frame.

24

nized by the start-up protocol.
L= {jj+1,..,j+n-1} V jSN-n (3)

To begin with we regard the first n frames of a stream given by /. The roundtrip delay d;
for the frame i is given by the difference between its arrival time a; and the starting time
of the synchronization protocol. Equation (5) states the maximum of the roundtrip delay
values.

dt: L -

Vie I, 4)
d = max {d,|ie I} (5)

The second phase of the protocol is launched at time #,,r which defines the beginning of
the second phase. 7,,ris determined by the last of the first n frames that arrives.

ter = max{a,ie I} (6)

The presentation rate r determines the arrival time f; of frame i. After the first frame

arrived at 7, frame i is expected at time ¢; given by
. ;
t, = ty+i-r Vi (7)

The difference between the arrival times of arbitrary frames i and j is needed to calculate
the starting times of the servers. We define the difference as follows.

5, = a,-a, Vi ®)

4.4.3.2 Start-Up Protocol

The synchronization protocol for starting playback on the server sites is launched after
all involved parties are ready for playback. It can be divided into two phases: evaluation
phase and synchronization phase. The goal of the first phase is to compute the roundtrip
delays d; Vie I, for each connection, while in the second phase starting times are cal-
culated and propagated back to the servers. During the protocol flow the client sends two
different kinds of control messages to the servers:

* Eval_Request(i): Client D requests frame i from Server S;.

* Sync_Request(i, sf): Client D transmits the starting time sf to server S;.

£

-

'

__‘____‘_ﬁ,

___u,

e e s L imam | {m e T

25

We now give an overview of the protocol flow while an algorithmic description can be

found in appendix A.

(a) Evaluation Phase

* At local time t,,, client D sends an Eval_Request(i) to Server S;, Vi€ 1.

» Server S; receives the Eval_Request(i) at local time s, Nie 1.

» Server S; sends frame i time-stamped with s; immediately back to client D, Vi€ I;.

* Atlocal time a;, client D receives frame i from Server S;, Yie 1.

* Atlocal time 7,,4 client D has received the last frame. The roundtrip delay
d=a,-t

o Yie Iy and the relative distance between frame arrivals

8, =a;-a; Vijel,are computed.

(b) Synchronization Phase

* Atlocal time 7,4 client D computes
to = max{t, +d;—i r |i € I,} and the index v that determines
v = {j€ Lot o+ d-i- r =t}

With these results the starting time of Server S; is calculated in server time
= sl B AN P, e

* Client D sends a Sync_Request(i, sf) to server §;, Vie 1.

* Atlocal time s; + d o (1. =4 ;) server §; receives the Sync_Request(i, sf s
Vie l,.

e Atlocal time sf , server S; starts scheduling of the substream by sending frame i,
Vie I,.

» Atlocal time #;, client D receives frame i, Vi.

At any time only one frame has to be buffered at the client; after the complete reception
the frame played out immediately. The buffer slot is now ready to receive the subsequent
frame. To show the correctness of our mechanism we cover the two following issues.

» Calculation of #;

* Calculation of sf
(a) Calculation of the Earliest Possible Playout Time ¢, for the First Frame

We need to choose 7, such that all frames i€ I, can be delivered and played out in
time, i.e they will arrive at their deadline f; given by (7). It is obvious that frame i€ [,

delivered by server S; can not be expected earlier than ¢, of T d;. Hence, the substream
with the largest delay has a significant influence on #;. In consideration of the distance of

1/r between subsequent frames we constitute the following theorem.

26

Theorem I Let t, = max{t +d£.—i-r_1|i€ Iy} .

ref
Then all frames can be delivered and played out in time. (9

Proof: Since the earliest possible arrival time for frame i€ I, is Lert d; we need to
ot d; Vie l,.

Letz, = max{tref+di—i-r_l|ie I}

show that £, > 1,

= ty2t, +d,—i-r Vie 1,

, =l — »
M=>1ty=t-i-r 2tr8f+di—t-r Vie I,
=12 Lot d, Vie 1,

= 1y does not violate the arrival times of other substreams

To show that 7, is minimal we assume that 3 7, <1,

] : ~ - |

= 7 ig€ Iywith ;< tort di[, —iy-r |
- 2 . | . —

M= t,= ’i(,_‘o"’ gt d —iy-r

0
=4 <t o+ d, in contradiction to the earliest possible arrival time. n
0 0

For the calculation of the future starting times sf, Vie I, we define the index determin-

ing £, as follows.

. . -1
v = {je I|tref+dj—j-r = 1y} (10)

(b) Calculation of the Synchronized Sending Time sf of Frame i for Server S;

Frame v can be considered critical since it determines the starting times of all other ini-
tial frames. It is considered as a reference point to which all other substreams are
adjusted. Clearly, the future starting time sf of substream i is composed of the initial
starting time s; plus the maximum roundtrip delay &™**. This sum is corrected by the rel-
ative arrival time distance &, between frame i and frame v . We now have calculated a
starting time that provides a simultaneous arrival of the frames of substream i and sub-
stream L . To provide the temporal relationship required by inter-frame striping a multi-
ple of 7! has to be added. The calculation based on (8), (7), (4) is stated in the following
theorem.

Theorem2: Lets; = s;+d" ™ +8,,+ (i-v) -r ,V iel,.

Then frame i€ I, will arrive at client time #;. (11)

— e e e e —

1) s i | i

—

4 ‘,_4 _‘_ r_u_

27

Proof. Foreach i€ [;: Atclient time 7,4 s? is sent back to server S; which receives it

at server time s; + d"" (see figure 7). If S; sent frame i immediately back to D it would

:) . . . =
arrive at client time fopt d;. The term st.+dmax is corrected by ﬁm.+ (i—V)p =

Thus, frame i will arrive at D at client time

; -1
tref+d‘.+6m+ (i=v)-r

. =1

=t t (8-t)@ —a)+(i=¥) r

. £
(2)= rref+au+ (i—V) -r
) i)
- tref+ e Al o 2 g

|

= t0+ > r
- .

4

4.4.3.3 Generalization

The described scheme can be generalized to any series of subsequent frames requested
by the client. One can easily imagine situations where synchronization is needed not
only at the beginning of a stream. A typical example is the VCR function pause. After
having paused it becomes necessary to resynchronize again, starting with the frame sub-
sequent to the last one displayed. We already defined I; in (3) as a set of subsequent
frames starting with j. With little modifications to (4), (5) and (6) we can generalize the
protocol. Let j be the first frame of a sequence to be synchronized defined by I;.

"™ = max{die I} (12)

tjef = max{a}ie I} (13)

Furthermore, the following modification have to be made to (9) and (10).8

tj - max{rif+dl.—i-r_llie Ij} (14)

; ' , =1
v = {iel|t+d—ir =t} (15)

With (14) and (15) we can compute the starting times sf , Vie Ij analogous to (11).9

8 The proof for (14) is analogous to (9).
9 The proof for (16) is analogous to (11).

28

sf — si+dmax’j+5w+ (i-V) "‘_l: Vie L (16)

4.4.3.4 Example of the Start-Up Protocol

Model 1 is explained by the following example so to gain a better understanding of the
protocol flow. Let n = 3 and r! = 2 time units. The calculated starting values are shown
in table 1. A time diagram in figure 7 illustrates the protocol flow for the first three

frames.
So S, D S,
[Lstart T
SH
So
d”"“\ 5y

dmax

dmax

8pp+ (2-0) -2= 3

3/r

Y Y \ Y

Figure 7: Example of the Start-Up Synchronization Protocol Flow.

|

- e e e —

29

For each server and for the client D a time axis is provided. Arrows indicate control mes-
sages or frames, respectively, that are transferred between client and servers. Servers
always transmit frames. The dotted arrows denote subsequent frames sent by the servers
after having been synchronized.

With t, = max{t +d,—i-r |ie I} = max{23,16,20}= 23 wegetv = 0.

ref

Server | g d; ref 8y; &

S, 11 1 12 0 S+ 12
s; 6 6 12 5 5719
5 12 12 12 3 sp+ 15

Table 1: Example for the Start-Up Calculations.

Substream 2 experiences the longest roundtrip delay @"“* and determines therefore 7,
Substream 0 shows to be critical because it cannot be started earlier than s + 12. As indi-
cated on the time axis for server 2, substreams 2 could be started earlier but is adjusted to

substream 0 as well as substream 1.

4.4.4 Model 2: Intra- and Inter-Stream Synchronization

Model 1 solves the problem of compensating for different delays for each substream.
However, synchronization is performed under the assumption that jitter does not exist.
Model 2 loosens this assumption and deals with the problem of end-system jitter and net-
work jitter. For our considerations we regard an accumulated value of all causes of jitter

described in section 4.2. Furthermore, we assume that the jitter is bounded.

For the reason of jitter, frames will not arrive in a synchronized manner although they
have been sent in a correct timely order. The temporal relationship within one substream
is destroyed and time gaps between arriving frames vary according to the occurred jitter.
Thus, an isochronous playback cannot be achieved when arriving frames of a substream
would be played out immediately. Furthermore, jitter effects lead to a shifting between
frames of related substreams in a synchronization group. Hence, intra-stream synchroni-
zation as well as inter-stream synchronization is disturbed. To smoothen out the effects
of jitter, frames have to be delayed at the sink such that a continuous playback can be
guaranteed. Consequently playout buffers corresponding to the amount of jitter are

required.

The main point addressed by model 2 is the calculation of the required buffer space.

30

First, we regard the synchronization of a single substream. Based on a rule of Santoso
[San93] we constitute a theorem that states a well defined playout time for a substream
such that intra-stream synchronization can be guaranteed. With this so-called playout
deadline we derive the required buffer space. Smooth playout cannot be guaranteed if
starting earlier. Starting at a later time would require more buffer space.

Afterwards, we will extend our considerations to the synchronization of multiple sub-
streams. The main idea in order to achieve inter-stream synchronization is to maintain
intra-stream synchronization for each substream [Ish95]. Each one of the substreams is
assumed to have a different jitter bound. In this case, buffer reservation according to a
single substream is not sufficient anymore as inter-stream synchronization will be dis-
turbed for the reason of differences in the jitter bounds. Additional buffering is required
to compensate for this. Furthermore, the playout deadline is modified with respect to
multiple substreams.

Finally, we examine the effects of the start-up protocol (model 1) on buffer requirements
in the case of jitter. The application of model 1 to initiate playback of the servers in a
synchronized manner can introduce an error for the reason of jitter. We give a worst case
estimate for the error and additional buffer requirements are computed accordingly.

We begin with an extension of the model parameters used so far.

4.4.4.1 Model Parameters

m substream/server index, m=20, ..., n-1
d:mx maximum delay for substream k [sec]

d’: i minimum delay for substream k [sec]

d average delay for substream k [sec]

A, jitter for substream k [sec]
AR maximum jitter of all substreams [sec]

A; maximum upper deviation from d;, due to jitter for substream k [sec]

A;{ maximum lower deviation from d, due to jitter for substream k [sec]
A" maximum upper deviation of all substreams [sec]

b, buffer requirement for substream k on sink site [frames]
bf buffer requirement for substream k on sink site with shifting [frames]
bf’ buffer requirement for substream k on sink site with max. jitter [frames]
B total buffer requirement for a synchronization group [frames]
B’ total buffer requirement for a synchronization groupwith shifting[frames]
B total buffer requirement for a synchronization group with max. jitter[frames]

“ L —

i

R

[

)

ik

T

—

___,_

31

Jitter is usually defined as the variation of network delay. Throughout this section we
only regard bounded jitter and we therefore adopt to the definition of jitter given by Ran-
gan et al. [Ran92] who describe jitter as the difference between the maximum delay and
the minimum delay.

A S d el Ok (17)

max

A" = max{Ake {0..N-1}} (18)

In addition to this, we need a jitter bounds defined as the deviation from the average
delay d, . Jitter is in general not distributed symmetrically. Thus, A: and A, must not be

equal. For further considerations, we assume interdependencies as follows.

A, = A +A, Yk (19)
4= & +4A, Yk (20)
dy"= Atk @1
A" = max{A;|ke {0...N-1}} (22)

4.4.4.2 Synchronized Playout for a Single Substream

To guarantee the timely presentation of a single stream subject to jitter, it is necessary to
delay arriving frames at the sink. The buffer compensates for the variable delays. In gen-
eral, the buffer is emptied at a constant rate for displaying the frames. This strategy is
similar to the “leaky bucket” concept employed for instance in ATM networks for the

reason of source policing.

Santoso [San93] has already shown that the temporal relationship within one continuous
media stream can be preserved by delaying the output of the first frame for d:.(" g d’: 74
seconds. Based on this theorem, both the playout deadline and the buffer requirements
can be derived.

The deadline given by the theorem can be lowered in some cases. In the following theo-

rem we state a composed rule for the playout deadline for a single substream.

32

Theorem 3: Smooth playout for a substream denoted by & can be guaranteed in case of
bounded jitter whenever one of the following starting conditions holds
true.

(a) d';{" o d': e A seconds elapsed after the arrival of the first frame
(b) The ([‘AJ,c . r—| + 1)-th frame arrived (23)

Proof. A proof for (a) can be found in [San93]. Rule (b) improves (a) in some cases,
i.e. playout can start earlier without violating timeliness. Such a situation is shown in fig-
ure 9: the first frame experiences the maximum delay, subsequent frames arrive in a burst
(marked gray in figure 9) such that after the arrival of the (|_Ak . r_| + 1)-th frame the
elapsed time is less than d;(" e dzl . The average delay of frames is denoted by dotted

lines.

S_1+ (A, r]+1) 4
- Theorem 3 (b)
S_14 ([a,-r]+2)

Theorem 3 (a)

Figure 8: Worst Case Scenario for a Single Substream.

Assuming that the (|'Ak . r'| + 1)-th frame just has arrived, we start the playout of the
buffered frames immediately. A number of I_Ak . r'| + 1 frames is at least sufficient for a
presentation period of (|'Ak . r'| +1) - s A, + ¥ seconds. In the worst case, the

([A r-l + 1)-th frame experiences its minimum delay and the subsequent frame its

———

woen

,A_LVA_,M_A_A

33

maximum delay. Then the maximum period without any arrival is given by is
., =l -1 - ;

A+r +AZ= A, +r seconds. (|’Ak - r-[-!- 1) -r : gives an upper bound for

A+ i Consequently, the next frame arrives just in time. Following frames will not

arrive later because the last one has already experienced the largest delay. L

Theorem 3 enables us to calculate the required minimum buffer space for the synchroni-
zation of a single substream.

v

Theorem 4: To guarantee intra-stream synchronization for a single substream while
applying theorem 3, a minimum buffer space of |-2Ak . r_| frames is
required. (24)

Proof: To begin with we regard the rule of Santoso stated in theorem 3 (a). We derive

the required buffer space based on a worst case scenario outlined in figure 9.

e Theorem 3 (a)

Figure 9: Worst Case Scenario for a Burst Arrival.

Let the first frame of substream k arrive with his maximum delay while all subsequent
frames experience their minimum delay. Assuming that no frame can overtake another,
in this worst case a burst of frames occurs before the deadline of A, given by theorem 3
(a) is reached. The situation is marked grey in figure 9. The time #, elapsed between the

first frame of the burst and the last one that just arrives at the beginning of the playout

34

computes as follows:

t.=d, + AZ +A,+ A, —d, = 2A, . Thus, in worst case the client has to buffer 2A, sec-
onds of playback time, corresponding to |_2Ak : r'| frames. Further buffering is not
needed because subsequent frames can no arrive earlier.

Theorem 3 (b) improves the rule of Santoso as indicated in the proof for theorem 3.
Clearly, playout can start before A, seconds have elapsed as shown in figure 9. But in
such a situation the rule of Santoso is equally applicable resulting in a later beginning of
the playout, i.e. the consumption from the buffer would start later. We already covered
the worst case for theorem 3 (a) and therefore we conclude that by employing theorem 3

(b) no further buffering beyond 2A, seconds of playback time is required. *

4.4.4.3 Synchronized Playout for Multiple Substreams

The basic idea of the synchronization scheme in model 2 is to achieve inter-stream syn-
chronization between multiple substreams by intra-stream synchronization. Once the lat-
ter has been established by satisfying (23) and (24) for each substream, inter-stream
synchronization is attained [Ish95], [San93]. This holds true if each substream experi-
ences the same jitter. In the following, each substream may have its own, individually
sized buffer. We examine the impact of different jitter bounds for each substream on
buffer requirements. This reflects the assumption of the video server array that the paths
from sources to the destination are independent. To facilitate the following consider-

]0, i.e. refer-

ations, we assume the same playout time for media units of each substream
ring to Little et al. [Lit91] we apply the temporal relationship equality (e.g. the lip-
synchronization of audio and video). Furthermore, we assume that frames experience an
equal average delay d on all substream connections. The following proofs can also car-
ried out with different delays; an example for (27) can be found in the appendix B.

We present two methods to compute the buffer requirements for multiple substreams.
The first approach estimates the jitter for all substreams with the maximum jitter value.
The second strategy attempts to refine this coarse-grain estimation by shifting the start-
ing times of each substream in correlation to their jitter values in order to save buffer
space. We close this section by considering theorem 3 with respect to the temporal rela-

tionship between substreams given by inter-frame striping.

(a) Maximum Jitter Strategy

Obviously, playout can only start if theorem 3 is satisfied for all substreams. Thus, the
playout deadline for a stream given by a synchronization group is defined by the latest

¥ This is in contrast to model 1 where a difference of r/ is required between successive frames.

35

substream that satisfies (23). The situation is complicated by different Jitter bounds for
the corresponding substreams which lead to different playout deadlines and buffer
requirements. We must avoid a situation where substreams with large jitter bounds still |
wait for their deadlines while the buffer of other substreams with small jitter bounds
already overflows. To cope with this problem in a straight forward manner, Ishibashi et

al. [Ish95] propose to allocate the buffer according to the substream with the largest jitter

— e e

bound. Hence, the buffer requirement b:l for each substream of the group and B for the

complete group are given as follows.

M
by'=[24™ . /] 25)
n
M M max
BY = 3 b¥=n-[2am 1] (26)
k=1
So D S fo D 3;18
W= s 2 - .. 15y
il KN e | /1
5 Ts rs
Ky T [1 i
I\ \\ dar)! #3
L ol // 192 i i 1%
N % /1 /1
\\ sk B / / p
St l & | L
AR e by | 2 7]
/
R SR S // 154 SoT 1, 154
INARRNE A ol
\ \ / /)'S S K T / TS
| 5
S o e I\ ' /]
7
\ \ 1 / / / T 5'6 Sz'K \ il F T 56
\ /1 I\ %o i)
e E 7 / L
e N .
A e
\ /
/ L B
ti Ldry taz T

Figure 10: Multiple Substreams without and with Shifting.

36

(b) Shifting Strategy

Depending on the jitter differences, the maximum jitter strategy might lead to a buffer
waste. A more sophisticated way to handle this problem is to synchronize the different
substreams such that they reach their playout deadline on average at the same time. This
is done by shifting the starting points of all substreams according to the deadline of the
substream, with the largest jitter bound. Figure 10 depicts such a scenario for two
sources'! where d = 3.5, Ay =2and A = 6.

With (24) we get buffer requirements of four frames for substream 1 and twelve frames
for substream 2. Substream 1 reaches its playout deadline on average at f,; and sub-
stream 2 at t5,. Without shifting a buffer overflow occurs when receiving the 5th frame
of substream 1 while substream 2 still has to wait two time units until playout can com-
mence. With shifting both substreams are due at the same time on average. The amount
of the forward shift can be easily derived from (23). The k-th substream has to be shifted
forward on time axis with the difference of its jitter to the maximum jitter, i.e. AT A,
seconds. Clearly, substream k has to be started ' Ak seconds later than the sub-
stream with the highest jitter. When applying that shift one might conclude that no fur-
ther buffering is needed except for the buffer given by (24). In fact, there exists a worst
case that requires additional buffer space for each substream. The amount of additional
buffering is stated in theorem 5.

Theorem 5: Applying a shift of AT i to the k-th substream, Yk, and having
bounded jitter for each substream, inter-stream synchronization for multi-
ple dependent substreams can be guaranteed if in addition to theorem 4,
HAmaﬁ - A:J . r—| buffer slots are allocated. 27

Proof: We assume that all substreams have been shifted according to the substream
with the highest jitter. Let m be the substream with the highest jitter A™" and let k be
any other substream that has been shifted Amax—Ak seconds. The proof is based on
worst case considerations described in figure 12 and 12.

Regard two substreams which reach their playout deadline'? at the same time on average
due to the application of a shifting. The worst case that can happen is that one substream
waits still for its playout deadline while the buffer of the other substream overflows. This

becomes true if all frames of one substream experience their minimum delay and all

1" In contrast to the definitions for model 1, each one of the depicted substreams delivers equal
frame numbers.

12 We refer to the playout deadline given in theorem 3 (a).

- - e s - ...

- s - s e e e - e e - e - - ...

37

frames of the other substream experience their maximum delay. We aligned the playout
deadlines of the substreams on average. So, the latest possible playout deadline is given
by the substream with the largest positive jitter bound A" if all frames of this substream
experience their largest delay. We can therefore distinguish two cases.

1. A; = Az and the first frame of substream m experiences dmm “* while all frames of sub-
stream k arrive with their minimum delay d;" o

2 A; < AZ and the first frame of substream k experiences d’;{" “* while all frames of sub-

stream m arrive with their minimum delay dmm it

*_S_'k
max
AVELA 5
A,
t
X |
A
L m
d
Ay

Y Y \J
Figure 11: Worst Case Scenario 1 for Multiple Substreams with Shifting

Case 1:

According to theorem 3 the playout deadline for substream m is reached latest
d+ A; + A seconds after the first frame of m has been sent. We are interested in the
maximum number of frames of the k-th substream that may arrive before the playout
deadline is reached. We consider the period ¢, between the first frame of the k-th sub-
stream and that frame of the k-th substream that arrives just at the playout deadline of the
m-th substream.

tx=a+A;+Am+A;-(a+A"’”—AkJ

38

= 3+A;+A;+A;n+A;—(8+A;+A;—AZ—A;C)

= A +2A +A;

Applying theorem 3, we already allocated 2A, buffer space in terms of time. From this
we conclude an additional buffering of ’_(A; + 2A; + AZ - 2AkJr-|

= |_L A; - AIJr-| frames for the k-th substream.

11
A" Ay |
d
tx
+
Ak
Ak
=71
7
: / a
A »
{7
| 4 I
\ \ \

Figure 12: Worst Case Scenario 2 for Multiple Substreams with Shifting.

Case 2:

Case 2 can be shown analogous to casel. The period ¢, is computed as follows.

r.E (A’"‘”-AkJ +d+ A +A+A —d

= LA;+A;H—AZ—A;}+A;+AZ+A;‘+A;”

= A: + A; +2A

We already allocated 2A, buffer space for substream m. Thus, we get additional buffer-
ing of ’-(A: + A; + ZA;n - 2Am)rﬁ’= H AZ - A;Jr‘I frames for the m-th substream.

We can conclude that the additional required buffer space does not depend on the sub-
stream with the highest jitter but on that one with the highest upper jitter bound A"
defined in (22). We can therefore derive an additional buffering of H i A:J . r—‘

frames for an arbitrary substream k. L}

= =

- - - -

39

In contrast to (25) and (26) the total buffer requirements can be computed by applying
theorem 3 and 4 as follows.

b, = ((2 : Akm’”“"*—AZ) r] (28)

B = z"“ bf: i |—(2-Ak+Amm+—A:J : r-‘ (29)

Theorem 6: Applying the shifting strategy for the synchronization of multiple sub-

streams saves buffer space independentof valuesfor A, , A: and A;(, Vk .(30)

Proof: To prove theorem 6 we have to show that bi < bkM. For the following consider-
ations we will express the buffer requirements in terms of time. Let

z:ajfw: 28+ ~A', Vkand

by = 2:-A v vk,

Then, BkM - Bi

= 2-A’”"x—L2-Ak+A -AU

=2 AT = 2(AZ + A;CJ SN

22 AT R AR = AT

=72 ATeX _ foio Aax+

=2-A" (A (A +4™)20

because A, <A™ with (18) and A} + A" <A™ with (19), (22).

A5 M
::’kabk o]

max+

max+

To demonstrate the buffer savings, we computed BY _B® for two substreams. For sub-
stream 0 we have chosen a fixed jitter value of Ay= 40 ms while A, is varied with
respect to A, in steps of 20 ms, taking the values 60, 80, ..., 200 ms. For each substream
we admitted three values for A: :

e High: A;=3/4-A,

* Medium: A:= 172- A,

o Tows S0 AsilATA

We calculated the shift of A; — A, accordingly to theorem 5 and for each of the shift val-
ues, we regarded all possible combinations of the A; values between the two sub-

streams.

40
40
304
&
&
%20\
£
2104
0
160
140
H/H
wm HL
60 . L MM
20 L
shift [ms] jitter combination
Figure 13: Buffer Saving for Different Shifts and Jitter Combinations.
jitter combination
Ag | Ay |shiftf /L T/M | L/H | ML [M/M][L/H [HL [HM | H/H
a0 60 20 6 [[6 6 G 6 [[BT
6 6 6 6 6 6 6 5 6 B®
0 0 0 0 0 0 0 16.7 0 %
40 80 40 8 3 3 g [8 8 8 8 BY |
7 7 8 6 7 il 7 7 7 B
12.5 125 0 25 125 125 12.5 12,5 12.5 %
40 100 |60 10 10 10 10 10 10 10 10 10 B
8 8 9 8 8 9 8 8 9 B’
20 20 10 20 20 10 20 20 10 %
40 120 |80 12 12 12 12 12 12 12 12 12 BM_J
9 10 10 9 9 10 8 9 10 B®
25 16.7 16.7 25 25 16.7 33 25 16.7 %
40 140 [100 |14 14 14 14 14 14 14 14 14 BT |
10 11 12 10 11 12 10 11 12 B®
2857 |21.43 |1429 |2857 2143 |1429 [2857 [28.57 (2143 [%
40 160 [120 |16 16 16 16 16 16 16 16 16 BY
11 12 13 11 12 13 11 12 13 B®
3125 |25 1875 (3125 |25 1875 [3125 |25 1875 |%
40 180 140 |18 18 18 18 18 18 18 18 18 B |
12 13 15 12 13 14 12 13 14 B®
3333 (2778 [1667 3333 2778 (2222 (3333 (2778 (2222 (%
40 200 [160 |20 20 20 20 20 20 20 20 20 BY
13 15 16 13 14 16 13 14 15 B®
35 25 20 35 30 20 35 30 25 %

Table 2: Computed Buffer Savings.

e =

-— s ew e

- s .

—

41

Combinations are denoted by a pair A;/ AT, were Ag and AT can take the values H, M,
and L for High, Medium, and Low. e.g. (h/m). The values for BM and BS shown in table
2 are rounded up based on a frame rate of 25 fps. Figure 13 depicts the buffer savings for
the different values and jitter combinations.

For an arbitrary combination of jitter values, buffer savings increase when the shift
between the two substreams becomes large, this is, the larger the difference in jitter val-
ues between substreams the more buffer is saved due to theorem 5. For a shift of 160 ms
for instance, buffer savings up to 35% compared to the maximum jitter strategy are pos-
sible. If the difference in jitter between two substreams equals zero, both the maximum

jitter strategy and the shifting strategy require an equal buffering.

For the combinations of jitter values, a wave form can be observed in figure 13. The
lower the maximum value A”“*" the more buffers are saved (compare proof for (30)).
Since AO is always smaller than Al g o gets minimal for low AT values. Thus, we
obtain the highest buffer savings with the combinations L/L, M/L, and H/L.

(c) Playout Deadline for Inter-frame Striping

So far, we have only regarded the simultaneousness of playout of the different sub-
streams to facilitate our considerations. We will extend this to inter-frame striping where
frames of different substreams are played out subsequently. Hence, we have a temporal
relationship like substream O before substream 1, or substream 1 after substream O,
respectively. The relationship within one substream is defined by r/n, while the complete
stream at the sink site is played out with the rate r, i.e. subsequent frame numbers are
expected to arrive with a distance of r1. These temporal needs have already been

broached by model 1 and are now examined with respect to the playout deadline.

Applying theorem 3, playout is started when each of the substream satisfies the starting
conditions. This guarantees a simultaneous playout for each one of the substreams
though it is not needed. Subsequent frames are required to be played out ! seconds
later, relative to their predecessors. Thus, the idea is simply to lower the playout dead-

lines for subsequent substreams according to their distance to substream 0.

Lemma I: Smooth playout of a synchronization group in the case of bounded jitter
can be guaranteed whenever one of the following starting conditions

holds true for each substream k.
(a) d:‘ g d;f e (k-1) r_] seconds elapsed after the arrival of the first

frame of substream k.

42

(b) The ([Ay - r/n’|)-th frame of substream k arrived and since then

(n-k+1)- r~ seconds have elapsed. (31)

Proof: The first frame of the first substream is expected to be played out first. Obvi-
ously, to guarantee smooth playout substream 0 has to satisfy theorem 3. Let k be an arbi-
trary substream of a synchronization group. The first frame of & is expected (k- 1) -
seconds after the first frame of substream 0. We assume that theorem 3 is satisfied for the
first substream and that at least d:' . d;? . (k-1) »' seconds have elapsed since the
first frame of the substream k has arrived. When the playout of the first frame is started
immediately we know exactly that the k-th frame is needed to be played out in
(k-1) " seconds. The time passed till this moment amounts at least up to
J:ax—d;("["— (k-1) r (k-1) F = d:'ax —d’k"m seconds.

With this we can conclude that theorem 3 is fulfilled for any substream k when applying

lemma 1 (a).

To prove lemma 1 (b), we argue analogous to the proof of theorem 3. Again, we assume
that theorem 3 is satisfied for the first substream. Further, the (|—Ak » P n-|)-th frame of
substream k has arrived and (n —k+1) - ' seconds have elapsed since the arrival.
Playout of the first frame is started instantaneously. An amount of |'Ak w L n] frames is
at least sufficient for a presentation of |'Ak : r/n'l- (r/ n)_l >A, seconds. In the
worst case (see (23)) the maximum period between the arrival of the (|_Ak 3 74 n-|)-th
frame and the ([A.-r/n)| +1)-th frame is A +n/r seconds. An period of
(n—-k+1)- r_l seconds has already elapsed and further, frames of the substream k are
expected (k—1) ¥~ seconds later than the first frame of substream 0. We can therefore
compute the total elapsed time by

L (n —k+1) - r_l)+L § l)r_1) =nr —kr ar kr = =

Thus, the worst case is covered and frame (|_A g 1 n-| +1) will arrive in time. We can

conclude that theorem 3 is fulfilled for any substream k& when applying lemma 1 (b). W

4.4.4.4 Start-up Protocol Influence

Until now, we have assumed that substreams are synchronized with respect to their aver-
age delay by some kind of mechanism, i.e. frames arrive on average in a synchronized
manner (see dotted lines in the previous figures). Model 1 is based on jitter-free network
connections. Employing the scheme in the case of bounded jitter cannot guarantee the

synchronization of the substreams with respect to their average delay. The start-up calcu-

;: R ey ; S _‘—’_i SR 5 | i E . _“'—'i 2 AT s T i\ i'_-_"_ i’_*' = _‘7‘ i‘_ o i_"“ __’_ _' S

43

lation is based on the roundtrip delay values experienced by the first n frames. Only if the
observed delay corresponds to the average delay, the start-up protocol proves correct.
However, the delay can be altered due to jitter, hence the calculation introduces an error.
The worst case must be covered by bﬁffering.

The start-up protocol computation is based on a roundtrip delay for a request packet and
one or several packets carrying a frame. Actually, jitter arises for transmitting the request
packet from sink to source and for sending the frame back to the client.In general, the
request message is a small packet made up of several bytes. Hence, in the following con-
siderations we will neglect the jitter experienced by the request packet, supposing that
the jitter bounds for the buffer calculations stated in (24) and (27) have been chosen suf-
ficiently large.

Theorem 7: When applying a shift of A™*" - A, to the k-th substream, Vk in the case
of bounded jitter, and when using the start-up protocol given by model 1,
intra-stream and inter-stream synchronization for multiple dependent sub-

max+

max{A +A, —A mzkam= 1..n} v/
m k

treams can be guaranteed if additionally to theorem 4 and 5
T :L’
frames are buffered. (32)

Proof: The proof is analogous to (27) except that an additional shift introduced by the
start-up calculation is taken into account. Consider two substreams k and m where m>k
and A, > A, . The worst case that can happen during the start-up protocol is that the cal-
culation for substream k is based on its maximum delay but subsequent frames arrive
with their minimum delay, and for the other substream m we calculate with its minimum
delay but subsequent frames arrive with their maximum delay.13 The scenario is depicted
in 12. The dotted lines denote the delay assumed by the start-up protocol. The occurred

error is indicated gray.

Consider now a shift of (m — k) r' seconds that has been introduced by the start-up pro-
tocol. Further, we employ lemma 1. Consequently, the playout deadline for substream m
is reached latest d + B+ A ~m- k) r_l seconds after frame m is sent. We are inter-
ested in the maximum number of frames of substream k that can arrive before the playout
deadline is reached. The period 7, between the first frame of substream k and a frame that

arrives just at the playout deadline of substream m computes as follows.

13 Tis corresponds to the worst case scenario described in the proof for theorem 5.

44

t= (m=K)r 434D +A — (m=K)r +A,— (A, -0, +3)
=20, +A,
We already considered 2A, + (Ama” - AZJ seconds in terms of buffering by employing
theorem 4 and 5 for substream k. Thus, an additional buffering of

max+ +
2Ak+Am—L2Ak+LA —AkJJ
=A + AZ — A" seconds of playback time corresponding to
R A+ A: - Amax+J - (r/n) -l frames is required for substream k. We extend this con-
sideration to the whole synchronization group by simply comparing each substream k
with all others of the group. We calculate the additional buffer requirements as indicated

in the proof and we then take the maximum of these values as the actual additional buffer

for substream k, Vk. |
Sk D Sm
| (m-k) r!
Am . Ak
d
Ix
A
m
A, - (m-k) r_l
d
Ak

Figure 14: Worst Case Scenario for Start-Up Protocol Influence.

4.4.4.5 Optimization

Model 2 gives us a framework to compute buffer requirements for multiple substreams
with different jitter bounds to attain inter-stream synchronization by maintaining intra-

stream synchronization. Buffer requirements are given by theorem 4 and 5. The error

e e —— e

i) |) it

45

introduced by the start-up protocol is corrected by theorem 7, and we have a well-defined
playout deadline for all substreams as defined in lemma 1. Throughout all theorems, we
expressed the time to buffer in terms of frames. The required buffer space can be opti-
mized by adding the time to buffer given by theorem 4, 5 and 6 and by transforming the
resulting sum into buffer slots. Hence, we can summarize the overall buffer requirements
by, for a substream k and B for a synchronization group consisting of n substreams as fol-
lows.

b, = HZA,(+(AMI+—AZ)+ (33)

max+

max{Am+A:—A ’m;tk/\mz 1...n})-(r/n)—‘

n
B=Zbk=

k=1
n
y [(ZAk+Amax+—A:+max{Am+AZ—A
k=1

max+

lm#k Am= l...n})- (r/n)—|(34)

4.4.5 Model 3: Resynchronization

Under the assumption of bounded jitter we can guarantee both intra-stream synchroniza-
tion and inter-stream synchronization by applying model 1 and 2. Using ATM based net-
works, this assumptions holds true at least for the network because we can express the
acceptable QoS in parameters like throughput, delay, jitter or cell losses [Cor92]. Since
we regard accumulated jitter that includes the end-system jitter, we cannot assume to
have any boundaries; especially non-real-time operating systems cannot provide any

guarantees.

However, in case of unbounded jitter an application is forced to make certain assump-
tions on jitter as either resources, respectively buffer space, are restricted or the increase
in end-to-end delay by buffering is unacceptable [Cor92]. If the statistical distribution of
the end-to-end delay is known a priori, jitter bounds can be chosen according to the
desired QoS of synchronization. With a given probability o of an error we can state that
with a probability 1 — o the delay of transmitted frames stays within the chosen bounds.
Exceeding the bounds results in buffer starvation or overflow; related frames are dis-
carded. Throughout the following considerations we assume that jitter bounds are
selected according to an acceptable quality of synchronization.

Model 3 can be characterized as a scheme for resynchronization. We apply the concept

46

of a buffer level control to detect asynchrony, and to recover from asynchrony we use
feedback messages to the servers. According to the description of the actual synchroni-

zation problem in section 4.2 model 3 has to cope with

e Alteration of the average delay
» Clock drift

e Server drop outs

An alteration of the average delay might leads to a gap or a concentration in the contin-
uous media stream. A gap occurs when the average delay gets longer, a concentration
can be observed when it shortens. The situation is illustrated in figure 15.1% The playout
intervals at the client site are marked on the time axis. Arriving frames are represented
by arrows. Notice that an alteration of the average delay is assumed to be of long-term
effect, otherwise a disturbance is already covered by the normal buffering for the reason
of jitter. A gap or a concentration leads to a shifting of the average buffer level obtained
after the substream has been started by employing model 1. Hence, intra-stream synchro-
nization and consequently inter-stream synchronization is disturbed if we assume the jit-
ter bounds to stay constant. Depending on the extent of the shifting a rising number of

lost frames up to total buffer starvation/overflow may be observed.

LA NI ' Y
SMPSAN Y Y A\ W N
AT WAVAVA YR e
PAAARA LA W

Figure 15: Different Types of Disturbances.

\

The result of Clock drift is very similar to the result of a change in delay but arises much
more slowly. Clock drift introduces a skew as defined in section 3.2. If a server clock is

14 Note that the frames in the gap are not lost and frames in a concentration are not doubled.

o o e e o e pamel) e et e S ——

47

faster than the client clock (determining the consumption rate), the scheduling frequency
will be higher on the server site than on the client site. Thus, regarding an arbitrary time
interval, the arrival rate is higher than the consumption rate, i.e. the utilization ratio
becomes less than 1. This process accumulates and leads to a buffer overflow. In con-
trast, if the server clock is slower than the clock on the client site, the scheduling fre-
quency will be lower on the server site than on the client site, i.e. the utilization ratio

becomes greater than 1, resulting in buffer starvation.

We assume to have some kind of admission control in the underlying server which either
stochastically or deterministically guarantees that the server is not overloaded. Nonethe-
less, it might be possible for reasons specific to the used operating system that a drop out
occurs during the scheduling of a video, e.g. when a new process or a daemon is

launched. The consequence is a gap in the continuous media stream.

A mechanism is needed to adapt to changing conditions in order to preserve synchroni-
zation without allocating additional buffer space. Solving the problem by additional
buffering based on worst case estimates might turn out to be a difficult task because
changing conditions are unpredictable. Even if we succeed to get worst case estimates,
we have to be aware that, first, resources are limited and that, second, large playout buff-
ers increase the overall end-to-end delay which is not desired. Furthermore, uncontrolled
buffering compensates the problems to a certain amount but will not resolve them over a

long period of time.

We have shown that all the described disturbing factors affect the buffer level. Thus, the
buffer level can be regarded as an indicator for upcoming synchronization troubles. Once
a sink has discovered a problem it has to take measures, accordingly, in order to restore
synchronization. As the reason for asynchrony is basically a shifting in the media stream
we only have to correct this shifting. Referring to section 3.3 we already know that
resynchronization can be done either by adapting the production or presentation rate, or
by skipping/pausing. Corrective actions have to be feed back either to the source or to
the sink in order to restore synchrony. The idea of taking the buffer level as an indicator
is often referred to buffer level control. Basic wo;k in this area can be found in [Rot95b],
[Koe94] and [Lit92]. Our model will pick up some of their basic ideas and extend them
to an applicable solution for the synchronization problem. In contrast to their work we
take model 1 and 2 as a basis for synchronization and extend them with a buffer level

control. We focus mainly on buffer requirements and parameter tuning.

The next section gives an overview of the used parameters, afterwards models 1 and 2

are examined with respect to a buffer level control, this is we present a buffer model suit-

48

able to realize a buffer level control. Finally, we discuss the degree of resynchronization

action and duration issues.

4.4.5.1 Model Parameters

uw, upper buffer watermark for substream k [frames]
LW, lower buffer watermark for substream k [frames]
b;:' additional buffer slots for substream k [frames]
B, total buffer size for substream k [frames]
ik queue size for substream k at time ¢ [frames]
by smoothed buffer level substream k at time ¢ [frames]
O computed resynchronization offset [frames]
S(qu) smoothing/filtering function [frames]
C(b,) control function [frames]
a}j”’ new average roundtrip delay [sec]

R length of resynchronization phase [sec]

o smoothing factor

4.4.5.2 Buffer Level Control

(a) System Model

The scheme of buffer level control is often referred to as a control loop [Koe94]. Sources
transfer frames over the network that arrive at the sink site where they are buffered
before playout. The current buffer level is periodically measured, and if an ill buffer
level is found the appropriate steps are taken. Actions may affect either the buffer itself
or the server. In the former case the loop is placed in the client, in the latter case it
includes the client, the server and the network. Koehler et. al and Rothermel et al.
[Koe94], [Rot95b] propose a synchronization scheme that does not adapt the playout
behavior of the server. Actions are taken exclusively at the sink whether by changing the
consumption rate or by skipping/pausing. This kind of control loop compensates for dis-
turbances to a certain amount depending on the allocated, available buffer space but sac-

rifices the real-time stream continuity.

We adopt to a concept where all components of the video server architecture are included
in the control loop. A similar approach is proposed by Cen et al. [Cen95] who describe
the feedback mechanism in a distributed MPEG player. As shown in figure 16, the archi-

- ey e b e e aw e TEE e Saw e e e T Tem

49

tecture applies feedback actions to the sources via control messages in order to maintain
synchronization at the sink.

The buffer level for substream k at time ¢ is denoted by g,. This value is periodically
passed to a filtering function S(g,) so to filter short-term fluctuations caused by jitter.
Examples for filtering functions are the geometric weighting smoothing function
[Rot95b], [Cen95], [Mas90]:

S(q,) =o-b_1+ (1-0) - g,= by withoe [0,1], (35)

or the finite impulse response filter used by Koehler et al. [Koe94]. The main goal of fil-
tering is to distinguish between buffer level changes caused by jitter and long-term dis-
turbances. If the filter is too sensitive, or no filter is used at all, jitter causes actions for
resynchronization although no exceptional situation has occurred. On the other hand, a
filter that reacts to slowly to changing conditions takes actions too late with the result of
a longer period of buffer starvation or overflow. Thus, presentation quality suffers. The

tuning of a filter is discussed with (35) in the next section.

System under control

|

Frames |
T (o) |

|

Control
messag

Control Function b tk | Feedback Filter
C(b tk) S(qu)

Figure 16: System Model for the Buffer Level Control [Cen95].

The smoothed buffer level b, is passed to a control function C (b,;) which takes appro-
priate actions. For each substream buffer, a lower water mark LW, and an upper water
mark UW, are defined. When b, falls below LW, or exceeds UW,, there arises the risk
of starvation or overflow, respectively, producing an asynchrony. If this happens, a resyn-
chronization or adaptation phase is entered whose purpose is to move b, back into
between LW, and UW,. Depending on the extent of asynchrony, the control function
sends an offset o, to the source. The source either skips the number of frames specified
in the offset or pauses for a duration of o, frames. We prefer this technique over an alter-

ation of scheduling speed, respectively production rate, at the source because we think

50

the latter is too resource demanding. The QoS of other clients serviced by the video
server might suffer.

The sink stays in its resynchronization phase for a time R in order to let the smoothed
buffer level react on the taken measures. At the end of the resynchronization phase
C (b,;,) controls again whether or not the buffer level has moved back in the normal area

into between LW, and UW,. If not, a new resynchronization phase is started. [Rot95b]

(b) Buffer Requirements and Filter Tuning

With the estimation or choice of jitter bounds according to a certain QoS for synchroni-
zation we can compute the buffer requirements by employing models 1 and 2. The result-
ing buffer space by can be regarded as a so-called kernel buffer. Applying a buffer level
control only to this buffer is vain since each buffer level within the range of b, must be
regarded as normal due to jitter effects or starting conditions. Especially starting condi-
tions given by theorem 3 and by lemma 1 have a strong impact on the subsequent fill
level of the buffer: assume a buffer corresponding to 4A, seconds of playback time, then
a substream may be started already with a fill level of one frame if the first frame experi-
ences its minimum delay and the subsequent one its maximum delay. The average buffer
level will tend to a quarter of by, in this situation. Vice versa, we obtain an average fill
level of three quarters of by if the first frames all arrive with their maximum delay and
after the starting condition holds true, subsequent frames experience the shortest delay
(for the starting condition refer to (31)). Thus, depending on the starting situation the
average buffer level will even out somewhere between %bk and %bk. Buffer levels gy
below or above those values arise due to the assumed jitter. Hence, all fill levels within

the range of by can not be taken as an indicator for an exceptional situation.
Consequently, we fix LW, and UW,, to 1 and b,, respectively. To realize a buffer level

control we of course have to admit buffer levels below and above the watermarks. Other-
wise it is impossible to get the smoothed buffer level below or above the watermarks.

virtual buffer range

real buffer range

—» B by Y, -
f LW, f UW,
latency
itk B th

Figure 17: Buffer Model with Virtual and Real Buffer.

N . _._ﬁ‘_g_,y_._h e e T

—

1

Y

51

We suggest the scheme of a so-called virtual buffer as indicated in figure 15 by dotted
lines. The virtual buffer includes at least the real buffer given by the kernel buffer b;, and
by an additional buffer b}j . As shown later, the additional buffer b': above and below the
kernel buffer determines the policy of resynchronization. The virtual buffer is exclu-
sively used for the calculation of buffer levels below and above the real buffer. This
allows for a faster reaction of the smoothing function S(g,;). The mapping between the
real buffer level and the virtual buffer level g, is performed as follows.

1. If neither buffer starvation nor buffer overflow occurs, the real buffer level equals
the virtual buffer level.

2. If a buffer overflow occurs, then the virtual buffer is increased for each discarded

frame while the real buffer levels resides unchanged.

3. If a buffer starvation occurs, then the virtual buffer is decreased each time when
the client scheduling finds an empty buffer while the real buffer level resides
unchanged.

4. If the normal state of the real buffer is restored by resynchronization measures, the

virtual buffer level is reset to the real buffer level.

The size of bf strongly influences the gracefulness of the resynchronization. The
smoothened buffer level b,, always has a latency (see figure 17) compared with the vir-
tual buffer level gy, i.e. g, might be below LW, while b,, still needs some time to fall
below. Let b}: = 0, for instance. Then a buffer starvation occurs before it is recognized
by the control function. Hence, presentation quality suffers depending on the value of
b:' . We consider the following three cases for the size of bf ;

1. Selecting b: = 0 yields no gracefulness at all. Asynchrony immediately affects

presentation quality and is soon discovered by a viewer.

A ; g : .
2. b, can be dimensioned such that a least the period between the rise of asynchrony

and the discovery by the control function is covered.

3. For full gracefulness b': has to be chosen such that asynchrony does not affect pre-
sentation at all. The buffer space has to cover the period between rise, discovery
and removal of asynchrony.

It is evident that the latency of reaction to an asynchrony problem depends strongly on
the behavior of S(g,). The more indolently S(q,) reacts, the later a resynchronization
phase is entered, the more buffer space b;: may be desired to compensate for asynchrony
as much as possible. On the other hand, the more sensitively S(g;) reacts, the more often

52

resynchronization is done unnecessarily (due to the effect of jitter), the less buffer space

A
bk

between stability and reactivity. The choice or the tuning of S(qy), respectively, helps to

is needed to provide sufficient gracefulness. Hence, the tuning of S(q,;) is a trade-off
determine the additional buffer space b: '

For further consideration we examine the filtering function given by (35) with respect to
second case described above, i.e. the size of b: must cover the period between rise and
discovery of an asynchrony. This case is most interesting because it is influenced by
S(q4)- The behavior of the filter is determined by the parameter o:

* A large value of o yields strong smoothing, a stronger consideration of the past, and
a more indolent reaction.
* A small value of o yields weak smoothing, a stronger consideration of the present,

and a more sensitive reaction.

Figure 18 shows the results of a simulation' for o values between 0.1 and 0.9. The ker-
nel buffer space by, is varied between 1 and 25 frames, depicted on the x-axis. The plots
show the additionally required buffer space b}: for covering case 2. For o tending to 0.9,
bi' increases strongly as the reaction becomes very indolent. Remember that b': is
needed twice, above and below the kernel buffer. Thus, e.g. for a kernel buffer of 10 and
using o = 0.9, 36 extra buffer slots are required on the whole. This corresponds to
360% of the kernel buffer space.

Therefore, an upper bound for o is given by the provided memory. A lower bound
should be chosen such that starvation/overflow events due to jitter can be distinguished
from long term disturbances. Accordingly, o should be set as high as possible while

considering reasonable buffering.

To show the impact of low values of o, we simulated the buffer fill level over a period of
135,000 frames, corresponding to a video with a duration of 90 minutes. In dependency
of o, we counted the resynchronization actions due to jitter effects. The computation
was made with a buffer space of 25 frames with quarter fill level, initially. We applied a
gaussian distribution for the jitter with a confidence of 95% for frames being within their
jitter bounds. The assumption of a gaussian distribution has been taken merely to show
the effect of different values of o and does not claim to be the real distribution of the jit-
ter. In fact, this distribution is general unknown and highly dependent on the system
architecture. Figure 19 shows the simulation results. A number of 1350 resynchroniza-

15 The simulations throughout this section have been carried out with the Matlab tool [Mat92].

=

53

_ 20 _ 20 _20

@D (] QD

= = =

2 0.1 2 0.2 2 0.3

© 10) © 10 ; © 10 ;

= = =<

w w w

0 0 0

§ 10 18 20 5 10 15 20 5 10 15 20
Allocated buffer Allocated buffer Allocated buffer

_ 20 _ 20 o0

£ & £

3 0.4 a 05 3 0.6

© 10 g © 10 ¥ © 10 -

= = =

w w i

0 0=

5 10 15 20 5 10 15 20 5 10 15 20
Allocated buffer Allocated buffer Allocated buffer

_ 20 _ 20 _ 20

D [1}] [

t = = =

a3 0.7 a 0.8 3 0.9

@ 10 ' © 10 ' © 10 -

= = =

i w w

0 0 0

5 10 15 20 5 10 15 20 5 10 A5 20
Allocated buffer Allocated buffer Allocated buffer

A
Figure 18: Additional Buffering b, for different values of ..

tion actions over 135,000 frames, for instance, equals 1%.

Values of o between 0.1 and 0.5 lead to a relative high number of unrequired resynchro-
nization actions. From 0.6 up to 0.9, values drop drastically while for 0.8 and 0.9 they
become zero. Comparing these results with the buffer requirements computed above, a
value of 0.6 or 0.7 for o is a good compromise with respect to the buffer requirements
and the number of unnecessary resynchronization actions for the described example.

5000 —— : : . ety ,
L]
4500 seit]
4000+ :
3 - B
3500+ 1 =
@ R
rarodl o 1
S 3000} 1 a
2 s
c S
S 2500 . 2 2} .
5 =
= (=}
2 2000} £
o 8 1.5F 1
(15
1500} -
5 |
1000 1

Figure 19: Resynchronization Actions Due to Jitter Effects.

In order to get full gracefulness (case three) we need to cover case two and, moreover,

54

additional buffering is needed to cover the period until the asynchrony is removed. This
strongly depends on the extent of the disturbance. In the easiest case, one resynchroniza-
tion phase is sufficient. Let o, be both the extent of asynchrony and the offset sent to the
server. When applying the concept of skipping/pausing the server needs o, - r/n sec-
onds to perform the resynchronization action. Thus, for full gracefulness, the additional
buffering beyond case 2 and b, can be stated in worst case as follows.

Q.Maffﬂakwm-’;j-ﬂ (36)

(¢) Degree oy of Resynchronization

Resynchronization is performed by sending an offset to the servers where the goal is to
move the buffer pointer b,; back into the area between UW; and LW, such that the situa-
tion before the occurrence of the disturbance is restored. The size of the offset oy, can be
determined by two different strategies: fixed offset or variable offset.

Employing the fixed offset strategy, oy is set to a constant value. Resynchronization is
done slowly by undergoing in subsequent resynchronization phases until synchroniza-
tion is restored. The value should not be chosen too high because resynchronization, e.g.
due to clock drift, is in the range of one or several frames. High values could lead to

oscillation because the extent of asynchrony is always overestimated.

When applying the variable offset strategy, o, is varied depending on the extent of the
occurred asynchrony. A benefit of the video server array architecture is that we have sev-
eral substreams building one continuous media stream. This enables us to compare the
state of a substream that is out-of-synchronization with a substream in-synchronization.
Considering the arrival times of the frames, for instance, the offset can be computed by
comparing the occurred distance with the distance required by the frame rate. Another
way to determine the offset is to take the difference between the current buffer level and
the related watermark. This strategy can even be applied for a single substream.

Remember that when applying the variable offset strategy several resynchronization
phases could be needed as well because the time when the offset is calculated (deter-
mined by the filtering function) often reflects only a fraction of the extent of asynchrony.
Nonetheless, synchronization is in general restored faster with a variable offset. In sec-

tion 4.5 we presents some experimental results that compare both strategies.

55

(d) Duration R of Resynchronization

The duration of a resynchronization phase is defined by R. After R seconds the control
function once more compares the smoothed buffer level to the watermarks. Again, resyn-
chronization actions may be taken.

R must be chosen sufficiently large that the server can perform the resynchronization,
this is, the action must already have taken effect on the client. Selecting R too low leads
to numerous unnecessary resynchronization phases where during each phase the extent
of asynchrony is overestimated. Take for instance a buffer overflow. Appropriate resyn-
chronization actions are injected which can result in a buffer starvation because of over-
estimating the asynchrony. Again, resynchronization is started. Thus, low values of R
can result in oscillation.

For large values of R values several resynchronization phases are needed as well but the
total time of resynchronization becomes unacceptable long. So, in both cases presenta-
tion quality might be strongly influenced.

The reaction time on resynchronization measures depends on the extent of asynchrony
and the transmission time. Derived from (36), a lower bound for R is given by (37).

R23, +A+0," 37)

e B~

4.4.6 Intra-frame Striping

The distributed architecture of the Video Server Array offers two possibilities of distrib-
uting or striping frames onto the servers: inter-frame striping and intra-frame striping.
The proposed synchronization scheme is developed under the assumption of inter-frame
striping. With little modifications it is equally applicable for intra-frame striping.
Employing this striping technique, each frame is divided into n subframes. Each of these
subframes is stored on one of the n server nodes. The server nodes transfer the subframes
such that each piece is received at the client at the same time. The client recombines the
pieces to a complete frame and displays it. In contrast to inter-frame striping the tempo-
ral relationship between the striping blocks is equality, i.e. each piece is expected at the
same time on the sink site. In contrast to inter-frame striping, each server schedules the

frames with the same rate as the client. [Ber95b]

Suppose all introduced variables refer to subframes. To start playout in a synchronized
manner, the shifting of ! between the substreams imposed by the frame rate must be
dropped. So, equations (9), (10) and (11) given by the start-up protocol have to be modi-

fied as follows.

56

to = max{t,+djie I} (38)
v = {jellt, +d= 1} (39)
s;=s;4d+8,, Viel (40)

The derived buffer requirements to attain intra- and inter-stream synchronization in
model 2 can be applied without any modification, except for the frame rate. For the play-
out deadline, theorem 3 is to be applied instead of lemma 1. The scheme of buffer level

control remains unaffected by the used striping technique.

4.4.7 Synchronization of Multiple Streams

The problem of synchronizing multiple streams occurs if several related synchronization
groups are to be synchronized, e.g. an audio group and a video group. Each group con-
sists of an arbitrary number of substreams. We assume the groups to be presented simul-
taneously, i.e. frame O of one group refers to frame 0 of another group. To solve this
synchronization problem with the proposed scheme we suggest to sum up all synchroni-
zation groups in a super group. The calculations of model 2 can be applied to this super
group without any modifications.

The start-up protocol has to be modified little. It must be take into account that there
exists a starting points #, for each synchronization group. Taking the maximum of these
to values as earliest starting time for all groups allows to initiate start-up of the servers in
a synchronized fashion. The problem is complicated if the substreams of each group are
sampled at a different rate. In this case, we can get started once in a synchronized manner
but further synchronizations due to VCR functions can not be performed with the gener-
alized start-up protocol because sequence numbers are not related. We propose two tech-
niques to cope with this problem. First, the greatest common divisor (GCD) of the frame
rates of all synchronization groups can be taken as a basis for determining the sequence
numbers [Ran93]. This mostly implies a modification of the sequence numbers after hav-
ing captured a media stream. Second, a mapping of sequence numbers can be employed.
The synchronization group with the highest frame rate serves as a reference. For
instance, frame number 6 of a group with a rate of 12 fps is mapped to frame number 12
of a group with a rate of 24 fps. Depending on the frame rates this technique introduces
inaccuracies by rounding. The detailed examination of the synchronization of multiple

streams within the Video Server Array is subject of future work.

-

oy

37

4.5 Experimental Results

Based on the prototype implementation of the video server array we have implemented
the proposed synchronization scheme for evaluation purposes. For implementation
details refer to chapter 5.

The following experiments have been performed on a dedicated SUN Sparc 10 worksta-

tion as a client. We used two videos, each one striped onto two servers:

* A “Bitburger” commercial, sampled at a rate of 16 fps with a total length of 462
frames.

* A scene from the production “Seaquest”, sampled at a rate of 16 fps with a total
length of 6710 frames.

For the first experiment, we measured the inter-arrival times of frames for the video “Bit-
burger” and plotted the cumulative values along with the consumption rate as shown in
figure 20.

14 | © Substream 0
+ Substream 1
12F | Cumulative consumption
—— Cumulative arrival

101

Frame number

0 100 200 300 400 500 600 700 800 900 1000
Time [ms]

Figure 20: Cumulative Arrival and Consumption for two Substreams.

The experiment was conducted with two substreams. For substream 0 and substream 1
we measured jitter values of 26 ms and 24 ms, respectively (see table 3). According to

theorem 4, 5 and 6, 2 buffer slots are allocated for each substream, including a buffer slot

58
Number of | jitter buffers start-up | roundtrip
substream [ms] [frames] | latency® | delay
[ms] [ms]
0 26 % 252 33
| 24 2 314.5 52

Table 3: Experimental Results for Intra- and Inter-Stream Synchronization.

a The start-up latency is usually defined as the delay between
user interaction and visible feedback [Den95].
to read a frame from the network. The shifting of two milliseconds between the two sub-
streams is almost neglectable. The start-up protocol leads to a start-up latency of 252 ms
for the first substream and 314.5 ms for the second substream. These times include an
additional, overall charge of 200 ms for processing time. Thus, we can see clearly that
the maximum roundtrip delay of 52 ms determines the starting time of the first server.
The second server starts exactly 62.5 ms later, according to the frame rate of 16 fps.
These results prove that the start-up protocol is performed with a high accuracy.

Consider now figure 20, showing the cumulative arrival times of the first 1000 ms of the
“Bitburger” commercial. The x-axis displays the elapsed time while the y-axis shows the
frame number. The cumulative arrivals of frames of both substreams never cross the
cumulative consumption, i.e. the cumulative arrival stays always above the consumption,
indicating that at no time buffer starvation occurred. Thus, the stream is played out
smoothly. Further, we can see that at each time only one frame is buffered for each sub-
stream at most. This is indicated by the so-called backlog function, that states the differ-
ence between the cumulative arrival and consumption [Kni94]. In the example the
backlog function takes the value one at all time. Consequently, no buffer overflow
occurred. The playout deadline given by lemma 1 is indicated by the beginning of the
cumulative consumption. The results show that intra- and inter-stream synchronization is

performed well by employing the synchronization scheme given by models 1 and 2.

In the second experiment, we evaluated the efficiency of the buffer level control mecha-
nism. The prototype of the video server array is implemented in an ATM-LAN environ-
ment. So, we faced the problem that events like gaps or concentrations within a stream
are rather unlikely. Thus, we simulated these events in the servers. The amount of asyn-
chrony can be specified by the user upon starting a server. The server then periodically
introduces drop outs in scheduling or sends several frames at once. The client attempts to
resynchronize the server by sending back offsets. We conducted this experiment again
with the “Bitburger” commercial striped only onto a single server. The following param-
eters have been used:

- e s e e e e e e ey e e e e b e e e

59

* Smoothing factor for the geometric weighting function: o = 0.7
* Amount of injected asynchronylé: -8, -4, +4, +8
* Resynchronization strategy: fixed offset and variable offset

The variable offset was calculated by taking the difference between g, and the water-
marks. The fixed offset was set constantly to 1. According to the previous experiment we
allocated two buffer slots for the substream. This corresponds to the kernel buffer b
defined in section 4.4.5.2. Further, for the additional buffering b': , we were using three
buffer slots twice, above and below b;. Consider now figure 21, showing the virtual
buffer level and the filtered buffer level over time for the resynchronization of a concen-
tration of eight frames. The x-axis shows the virtual buffer level while the y-axis denotes
the consumption period. The upper bound of the real buffer level is denoted by b while
the lower bound is not shown in the figure. Thus, b;: equals b— UW and by, is given by
UW — LW. The virtual buffer level ranges from 1 to 108 because we arbitrarily selected
a number of 50 frames above and below the real buffer so to calculate the virtual buffer.

Figure 21 shows the course of resynchronization if the fixed offset strategy is employed.

Resynchronization of an asynchrony of 8 frames

[}
N
T

1

— — Unfiltered buffer level
[—— Filtered buffer level

=]
fard
T
|
J
I

(4] (%] m (o))
~ =] o o

Virtual buffer level [frames]
L4
(=]

Uw

[44]
o

1 L 1 1 L 1 1 1 1
110 120 130 140 150 160 170 180 190 200 210
Consumption period [frame]

Figure 21: Resynchronization with the Fixed Offset Strategy.

The first resynchronization phase is entered exactly during consumption period 142
when the filtered buffer level crosses the upper watermark. The virtual buffer level rises

16 Negative values denote a drop out while positive values denote a concentration.

60

up to 61, that is, four frames are discarded. The lost of four frames could be perceived
during playback. The client then sends an offset of -1 to the server. After the end of the
first resynchronization phase the filtered buffer level is reset to the virtual buffer level as
indicated by the abrupt decrease of the filtered buffer level depicted in figure 21. The cli-
ent undergoes 7 subsequent resynchronization phases at the whole. These phases are
indicated by the peaks. Synchronization is restored exactly during consumption period
180 when the filtered buffer level falls below UW. We can therefore conclude a total
duration of 38 consumption periods for the resynchronization of an asynchrony of eight
frames with the fixed offset strategy. This corresponds to 2375 ms.

In contrast, we now consider the same situation with the variable offset strategy. The
course of the filtered and unfiltered buffer level is depicted in figure 22. Resynchroniza-
tion starts during consumption period 130. Again, a number of four frames is discarded.
The client first sends an offset of -3 frames to the server. The buffer level falls already
below UW for a short period of time. Now, two additional resynchronization phases are
undergone until synchrony is restored. In each phase an offset of -2 is sent to the server.
Again, phases can be observed by the peaks of the filtered buffer level shown in 22. Syn-
chronization is exactly restored during consumption period 149. In contrast to the fixed
offset strategy, only 19 consumption periods are needed to regain synchrony. This corre-

sponds to 1187.5 ms.

Resynchronization of an asynchrony of 8 frames

T T T T T T T T T

=]

N
T
1

[}
-

— — Unfiltered buffer level
— Filtered buffer level b

[22]
o

Virtual buffer level [frames]
(4] [5] 14 (4]
(=] ~ =] ©o

[4)]
(5]

o
b

Lo LW

[4,]
(]

1 1 1 1 1 1 1 1 1
110 120 130 140 150 160 170 180 190 200 210
Consumption period [frame]

Figure 22: Resynchronization with the Variable Offset Strategy.

To obtain more representative values about the total duration of resynchronization in
dependency of the applied strategy, we performed a third experiment. This time, we took

Wf i i,

T e T Ol e L _4 __

61

a video of longer duration. During the playback of “Seaquest” 50 resynchronizations are
undergone. We estimated the duration by taking the mean value of the duration sum.

Table 4 presents the experimental results for different sizes of asynchrony.

Fixed offset Variable offset
Asynchrony _ [%0]?
Mean Variance | Mean Variance
[ms] [ms] [ms] [ms]
-4 1:143.80 [223.13 TI3.15 78.95 67.6
4 1,327.50 [250.50 707.50 139.72 33.3
-8 1,223.80 | 310.60 665.00 123.56 54.3
8 2515.00 789.21 1,081.20 | 202.95 43.0

Table 4: Mean and Variance of the Resynchronization Duration.

a The percentage values compare the two strategies and are calculated with
respect to the fixed offset strategy results.

If applying the variable offset strategy, the duration of synchronization can be more than
halved compared to the fixed offset strategy, indicated by the 43% for an asynchrony of 8
frames. The results also show clearly that resynchronization with a variable offset
becomes even more efficient for larger asynchronies because adoption is performed
faster. For negative asynchronies or gaps, respectively, we can see that the gain with the
variable offset is not as high as for positive asynchronies. This can be explained by how
the asynchony is produced. While concentrations are introduced by sending a specified
amount of data at once, gaps are produced by just skipping a number of frames at the
server. So, a concentration arises immediately and can therefore be removed faster. Gaps
arise slowly because the buffer at the client has is emptied only every presentation cycle.

Thus, resynchronization for gaps is done slower when comparing the two strategies.

The conducted experiments prove the efficiency of the buffer level control mechanism.
Further, they indicate that a variable offset strategy restores synchrony much more faster
than a fixed offset strategy. Further plots for different sizes of asynchrony can be found

in appendix C.

62

N G G S GaE G e e e e e Eee e Dew e ee e e e e —

63

5 Design of a Video Server Array Prototype

5.1 General System Architecture

We have implemented a prototypical video server based on the Video Server Array as
described in chapter 2 [Den94]. Our system configuration consists of a set of server
nodes, to which a number of clients is connected via an ATM switch. Each time a client
is requesting the playback of a video, point-to-point connections are established between
the involved server nodes and the client. To facilitate the request mechanism we addi-
tionally introduced a meta server in the architecture. The meta server has complete
knowledge of the location of the video material and it provides a directory service to the

clients. Figure 23 demonstrates the system architecture.

L
Client

Server node

X

Server node ATM network

ST Client
Server node Meta server

Ethernet IEEE 802.3

I

Figure 23: Configuration of the Prototypical Video Server Array.

The system was developed on SUN Sparc 2 and Sparc 10 workstations for the server
nodes, the meta server, and the client. All stations are connected via a 10 Mbit Ethernet,
server and client nodes are additionally connected via an ASX-200 Fore Systems ATM
switch. Stations are equipped either with Fore Systems SBA-200 or SBA-100 ATM

64

SBus adapters. Client nodes are supplied with Parallax XVideo boards that provide real-
time motion JPEG codec!” [Lai94]. As secondary storage, each server nodes is equipped
with a dedicated Micropolis 4110 AV hard disks that is accessed directly by a raw disk
interface so to avoid the UNIX file system’s overhead.

The communication with the meta server is based on the TCP/IP protocol over low band-
width Ethernet because only low amounts of non time-critical data are transferred. The
continuous media data that is consumed at very high rates is transferred via the ATM
protocol. The ATM network is accessed by a UNIX UDP socket interface [Ste90b] that
is mapped to the ATM adaptation layers (AAL). Clients are provided with a user inter-
face that has been implemented with the Tcl/Tk toolkit [Ous94] whereas all other com-
ponents of the prototype have been implemented in the C++ programming language
[Sch94], [Ker90].

The following sections describe design issues and the implementation of each compo-
nent of the prototype system. To begin with, we explain the protocol flow between all

involved components during the establishment of a playback session.

5.2 Application Protocol

We distinguish between two different protocols. First, the meta server control protocol
that is handled via connection-oriented TCP/IP over Ethernet. The protocol offers a
directory service to the client nodes and realizes session establishment between client
and server nodes, acting as a negotiator. Second, the video transmission protocol based
on connectionless UDP over ATM provides the transmission of the continuous media
data as well as the exchange of control messages, e.g. for initiating playout in a synchro-
nized manner. The different protocol flows are outlined in figure 23.

5.2.1 Meta Server Control Protocol

Whenever a client desires the playback of a video, it contacts the meta server by issuing
a META_INFO_REQ'® 50 to obtain information about the available videos. The meta
server delivers the requested information, e.g. title, abstract, or duration, by sending a
META_INFO_RSP. Once the user has selected a video, the client requests the playback by
sending a META_PLAY_REQ to the meta server. The meta server either refuses the request

by sending a negative META_PLAY_RSP back the client, e.g. if no servers are connected

17 The quality provided by the XVideo adapter corresponds to true color “Quarter PAL” which is
comparable to VHS quality. Frame sizes typically vary between 10 and 14 Kbytes.

'8 The names of the service primitives correspond to the names used in the implementation.

——— A_A_M

e e e e .

S

aroa

p— S i G e .h_mg,-_

65

Meta server

<A

il
I
inil

Server node Server node Server node

«e—p Video transmission protocol A: Directory service and session handling
i i) iy B: Session handling
eta server control protocol - c: video transmission and stream control

Figure 24: Protocol Model in the Prototype Video Server Array.

to the metaserver, or invokes a complex rwo phase commit protocol. This protocol is
needed since we can not guarantee a priori that all server nodes accept the request. Ini-
tially, the meta server notifies the involved server nodes as well as the client by sending a
TWO_P_PREPARE. Each server and the client then allocate the resources for the play-
back and servers additionally prefetche data from the disk. If successful, the nodes reply
with a TWO_P_READY. Otherwise, they issue a TWO_ P_ABORT. These messages also

carry information about the location of the servers and the port numbers.

The meta server collects all replies, and on success, the second phase is started by send-
ing a TWO_P_COMMIT to all involved nodes so to notify server nodes and client of the
location and port number of each other. Otherwise the protocol is terminated by issuing a
TWO_P_ABORT.

When receiving the commit message, the client has complete knowledge of all video
servers that will deliver the video and vice versa. The commit message is acknowledged
by sending a TWO_P_READY back to the meta server. All involved nodes are now ready
for playback.

5.2.2 Video Transmission Protocol

The video transmission protocol is employed for both the transmission of frames and the

exchange of control messages concerning the playback of the video stream.'® Control

19 This can be thought of as a kind of inband signaling because we use the same network I/O
device for the transmission of frames as well as for controlling the server nodes.

66

messages are used, for instance, to get the server nodes started in a synchronized manner,

or to pause or stop playback.

After a successfully completed two phase commit, the client may at any time (i.e. before
the servers trigger a timeout) tell the server nodes?’, to start the sending of the video
data.

Prior to the beginning of the playout the servers have to be synchronized. For this pur-
pose, we have implemented the start-up protocol as described in section 4.4.3. We there-

fore use the following control message:m:

* CONTROL_ADJUST corresponds to the Eval_Request message of the start-up proto-
col. The transmitted PDU requests the first frame of the substream delivered by each
server. Its purpose is to calculate the roundtrip delay on each server connection.

* CONTROL_START corresponds to the Sync_Request message of the start-up protocol.
After having received all the first frames from each server, the client calculates the
future starting times of the servers and propagates them back by sending a
CONTROL_START message.

Our implementation further allows for the VCR functions pause, stop, fast forward, and

replay which are implemented by the following control messagcszz:

* CONTROL_STOP issued by the client terminates the playback of the current video.
The video is removed out of the service queue in the server nodes.

* CONTROL_PAUSE causes the server nodes to immediately pause the scheduling of
the substream.

* CONTROL_CONTINUE: After having paused, the playout of the servers has to syn-
chronized again by employing the start-up protocol (see section 4.4.3.3). The
CONTROL_CONTINUE corresponds to the CONTROL_START message.

* CONTROL_FFORWARD: This control messages also issued by the client causes the
server nodes to skip multiples of frames during scheduling in order to achieve the
VCR function fast forward.

The calculation of elastic buffers on the client site is based on the assumed jitter. We pro-

vided our architecture with a possibility to experimentally measure the overall delay jit-

20 This process is initiated by pressing the play button in the user interface.
21 For the detailed protocol flow refer to section 4.4.3.2.

22 Notice that each control message is sent to all involved server nodes.

— __

Aﬁ_‘,gg..

P e e e s e beew e eees e e

67

ter as defined in section 4.4.4 prior to the beginning of the start-up protocol. For this

purpose we use the following control message:

* CONTROL_TRIGGER issued by the client to all involved server nodes starts a so-
called trigger phase. On receiving the message, server nodes start the scheduling of

substreams with the maximum frame rate until they receive a control stop mcssage.23

We also implemented the buffer level control described in section 4.4.5. A substream
that eventually falls out-of-synchronization during the playback of the video can be re-

synchronized by sending a

+ CONTROL_OFFSET message to the respective server node. The related PDU carries
either a positive or negative offset value enforcing the server to skip media data or to

pause for a period of time, respectively.
We further use the following two messages:

« CONTROL_ABORT equals a CONTROL_STOP except that it is issued in case of an
error.
» CONTROL_END is issued by the server nodes, indicating the end of the current sub-

stream.

Media data is transmitted straightforwardly in fixed size UDP datagrams. The data struc-
ture of the transmitted PDU for both control messages and frames is described in appen-

dix E. Furthermore, an example for a complete protocol flow in presented in appendix D.

5.3 Server

5.3.1 Design Parameters

Our video server consists of an array of server nodes as described in section 2.2. Frames
are striped across all server nodes and each server contributes to the playback with its
share of video information. Notice that the number of servers n, across which a video is
distributed, is not restricted in our approach. Several design parameters have to be
decided.

1. The disk block size determines the retrieval units from secondary storage. The
block size must be chosen by trading off buffer requirements against available disk

23 Note that in a trigger phase the server do not advance in reading video data from disk. They
schedule repeatedly the current contents of the prefetched data out of the buffer.

68

bandwidth or achievable throughput, respectively. The retrieval time of a disk
block comprises a variable seek time, the rotational latency, and the time to trans-
fer the block [Ber95a]. Since the variable seek time and the rotational latency are
independent of the amount of transferred data, we have to chose a block size such

that this overhead is minimized.

2. The disk scheduling algorithm determines how and in which order data for concur-
rent read request are read from a hard disk. An algorithm has to be chosen such that

the real-time requirements introduced by video and audio streams can be satisfied.

3. The striping block size defines the number of contiguous frames that is stored in its
entirety on a single server node. In section 2.2, we already mentioned the two dis-
tinctive strategies. First, it is conceivable to store entire frames on server nodes in a
round-robin fashion. This method is called single-frame striping or inter-frame
striping, respectively. Second, only parts of each frame, called subframes, can be
stored on server nodes, what is called subframe striping or intra-frame striping.
The method of distributing a video across the server nodes determines the temporal

relationship that is required for the synchronization (see sections 4.3 and 4.4.6).

4. The network transfer mode defines whether the video server sends the video data
in bursts or continuously in time. In hurst mode, the data are sent in periodic bursts,
with the burst transmission rate being higher than the average consumption rate.
On the other hand, in continuous mode, transmission of media data is uniformly
distributed over an interval determined by the playback rate.[Ber95b]

In the prototype implementation of the Video Server Array we chose a disk block size of
450 kilobyte because for the Micropolis AV 4110, this block size corresponds to the data
contained in one disk cylinder. Thus, multiple track-to-track seeks are avoided during
read operation. The disk scheduling is based on the first come first served scheme that is
actually less suited for meeting real-time constraints. Disk scheduling has to be
improved by future work. For the striping technique, we chose inter-frame striping, that
is, entire frames are distributed across the server nodes in a round robin manner as
described in 4.4.4.1. The synchronization scheme proposed in chapter 4 is suitable for
inter-frame striping and intra-frame striping as well. Finally, we employ the burst net-

work transfer mode where a network block size corresponds to one frame.

5.3.2 Implementation

A video server node has to satisfy two main tasks. First, the retrieval of media data from
the storage devices. Second, the transmission of the retrieved data to the client. While the
scheduling of the data transfer to the network is determined by the frame rate of the

requested video material, the retrieval of media data from a storage device is usually

. e men e e e e e e e e e

P.A

69

scheduled much less frequently. Both tasks are subject to stringent real-time constraints

and must be therefore logically uncoupled.

Consequently, each one of the two tasks has been implemented by a separate process, as
depicted in figure 25. The first process, called stream manager, transmits the video data
to the client and handles the control communication with the meta server and the client.
The network communication facility is provided by a stream manager object. The stream
manger process also includes a real-time, rate-monotonic scheduler so to provide timely
delivery of the continuous media data. The disk manager which is the second process, is
forked out from the stream manager process and operates under its parent control. The

disk manager is responsible for the retrieval of media data from the hard disk.

Shared memory

Stream manager process Disk manager process
Scheduler Disk manager
[uigeo | [video | [video] ... [video] P [Video] [video] [video] ... [video]
Scheduled videos Message queues Serviced videos
l T IvideoJ I—videollvidaol "'I'idml
Stream manager Stored videos
Isln!ﬂmt [slreaml Iﬂfearn] i [straaml DiSk IIAO {

Substreams

i

>< ATM Ethernet

Figure 25: Architecture of the Video Server Node.

The communication between the two processes is realized by a shared memory pool for
the media data, and a message queue for the commands. Shared memory of the size of
two disk blocks is allocated for each serviced substream. The two shared memory buffers
are used in a cyclic manner, i.e the data from one buffer, which was previously filled by
the disk manager, is read out and transferred to the client while the other buffer is refilled

by the disk manager.

70

5.3.2.1 Real-time Scheduler

Each video server node contains a real-time scheduler that assures the continuous play-
out of the video. The scheduler operates in fixed scheduling cycles of 40 ms. Despite of
the fixed cycle duration, it can still support arbitrary frame rates up to 25 fp524. During
each cycle, the scheduler computes for all serviced substreams the amount of media data
that has to be sent to the respective client, i.e. it computes whether or not the next video
frame becomes due during the current cycle. If the deadline of the frame is met during
the current cycle, the scheduler notifies the stream manager to deliver the frame to the
client. Hence, the scheduler introduces gaps of multiples of 40 ms for substreams with a
frame rate below 25 fps, so to wait until the next frame again falls into a scheduling
cycle. Obviously, this technique injects some end-system jitter that must be smoothed
out by buffering at the client. Jitter affects intra-stream synchronization as well as inter-
stream synchronization. Therefore, we have to consider this jitter when calculating
buffer requirements for synchronization (see section 4.4.4). Nonetheless, we favored the
rate-monotonic scheduling over an earliest-deadline-first scheduling because EDF does
not offer real-time guarantees and possibly introduces a significant computational over-
head [Ste95].

The processing of a server node is essentially determined by the scheduler. During each

cycle of the scheduler, the following tasks are executed:

1. The scheduler handles messages from the disk manager process. The disk manager
notifies the scheduler about completed read requests and disk failures. Whenever
the disk manager has completed a read request for a substream, the scheduler
updates the buffer fill level of the respective substream.

2. Next, the scheduler processes messages from video clients so to immediately react

to client interaction, such as play, pause, etc.

3. The scheduler now inspects all serviced videos in a round-robin manner. If the
frame of a substream is due during the current cycle the respective video data is
sent to the client. Each frame is provided with a time stamp needed for the start-up
protocol at the client site and for the calculation of jitter. If a buffer segment runs
empty, the scheduler immediately passes a new read request to the disk manager in
order to stimulate the refill of the respective segment.

4. Finally, messages from the meta server are handled to allow for the admission of

new clients.

24 Notice that if videos are distributed across several nodes in a server array, a substream frame
rate of 25 fps will be rather unlikely since substreams need only be played back at a fraction of
the video’s original frame rate.

o i,)| i

71

5.3.2.2 Stream Manager

Each server node is equipped with a stream manager object that handles all network I/O.
The object includes a TCP socket for the connection to the meta server, and a UDP
socket for each client connection. Further, it offers methods to send frames to video cli-
ents and to exchange control messages with clients and the meta server. Since the size of
UDP datagrams is restricted, the stream manager further packetizes video frames that are

to be sent to the clients.

5.3.2.3 Disk Manager

The disk manager is located in another process that also attaches to the shared memory
pool allocated by the stream manager process. The disk manager accesses the dedicated
4110 AV hard disk via a raw I/O device so to retrieve media data that is requested by the
scheduler. The media data is retrieved into the shared memory buffer space for the ser-
viced videos using FCFS. Additionally, the disk manager stores all information regarding
the videos’ storage location on the device, as indicated by the list of stored videos in fig-
ure 23.

5.4 Client

5.4.1 Architectural Requirements

The video client is the element in our architecture that allows for accessing the video on-
demand service offered by the server array. It has to coordinate the playback of a video
stream. The design parameters that have been chosen for the Video Server Array also
affect the design of the client. In particular, we can identify the following main tasks that

must be accomplished by a client:

1. The video client has to provide a graphical user interface (GUI) that enables the
viewer to select a video, to retrieve further information, and to execute VCR func-

tions such as play, pause, stop, and fast forward.

2. The communication between meta server, server nodes, and the user must be man-
aged. Specifically, the client has to provide a mechanism for the depacketization of

UDP packets back to complete frames.

3. The timely presentation of the video data must be guaranteed by a real-time sched-

uling mechanism.

4. Tightly coupled with the presentation of a video is the synchronization of the dif-
ferent substreams that constitute the entire media stream. Both intra-stream syn-

chronization for each substream and inter-stream synchronization between the

72

substreams must be carried out by the client during the playback of the video. Fur-
thermore, the client must provide mechanisms to start-up the server nodes in a syn-
chronized manner and to allow for resynchronization during playback if a

substream gets out of synchronization.

54.2 Implementation

The user interaction with the GUI is an activity that must be provided independent of the
currently displayed video stream. We consequently split up the video client in two sepa-
rate processes to allow for full asynchronous interaction. The video client consists of a
GUI process and a client process as demonstrated in figure 25. The client process is com-
pletely event-driven and communicates with the GUI via message queues. Further, it is
designed to play several videos simultaneously which are administrated in the serviced

videos list.

Graphical user interface

F

Message queues

Y
Client process

Scheduler

Ivideol [vidaol Ividaol Ivh:laul

Serviced videos

BRI

Substream handler Substream handler

[stream] lsmml [s"mml lSIreamI [stream] [stream] fstream| .. - [stream]

Substreams

Substreams

X | ATM Ethernet

Figure 26: Architecture of the Video Client.

5.4.2.1 Client Process

The client process consists of a stream manager that handles all the network communi-
cation, i.e. control messages from the video server and the meta server, and video data
from the server nodes. The client also includes a real-time scheduler in order to ensure

the timely presentation of the streams. The processing in the client is determined by a

i 5

I O D TN e e e e e e e s e Seae eesd mae e e

3

main dispatch loop that provides the handling of events from the server nodes, the meta
server, and the GUI and by a scheduling function that is controlled by the system interval

timer. During each dispatch loop the client process carries out several activities:

1. The client browses through the list of serviced videos and checks the server node
connections for incoming traffic. Arriving frames are depacketized and inserted
into the respective buffer queue. Control messages from server nodes and X events
are handled. Furthermore, the state of each video is checked and eventually state
transitions are performed.

2. User interface input is checked and handled.

3. Input from the meta server is checked and handled.

(a) Stream Manager

The client is designed to support multiple video streams simultaneously. For this pur-
pose, the stream manager creates a substream handler for each video stream. The sub-
stream handler encloses the UDP sockets required for the substreams. Furthermore, each
substream handler provides the facilities and mechanisms for the synchronization of the

substreams.

Each substream handler allocates buffer space according to the jitter bounds that have
been specified either by the user or by undergoing a jitter phase prior to the beginning of
playout. Corresponding to model 2 (see section 4.4.4), a separate buffer queue is allo-
cated for each substream. The substream buffer queues are enclosed within a class called
StreamBuffer that masks the existence of several buffer queues, i.e. whenever the sched-
uler retrieves a frame from the buffer, the StreamBuffer performs a mapping to the
respective substream buffer by delivering the next frame. For each substream buffer, we
also implemented the concept of the virtual buffer as proposed in section 4.4.5, this is,
we defined a virtual buffer range as well as lower and upper watermarks. Additionally,
the substream handler offers functions to perform the start-up calculation and the resyn-
chronization during playback. For the detailed structure of the buffer queues, refer to

appendix F.

During each dispatch loop the client checks whether or not the playout deadline given by
lemma 1 in section 4.4.4 is reached. For this purpose a respective function has been
implemented in the substream handler. Once the playout deadline is reached, smooth
playout can be ensured, i.e. the consumption of frames from the buffer can be started by

the scheduler.

74

(b) Scheduler

The scheduler assures the real-time playout of the video stream. It operates at a constant
rate driven by the system interval timer. The rate corresponds to the video’s frame rate.
Each cycle a certain frame number is expected to be played out. The scheduler inspects
the buffer and compares the frame number of the first frame in the buffer to the frame
number that is currently due. If numbers are equal, the respective frame is removed from

the buffer queue and displayed. Otherwise, we have to distinguish two cases:

1. If the number of the first frame in the buffer queue is lower than the current frame

number, the related frame arrived too late and is discarded.?

2. If the number of the first frame in the buffer queue is larger than the current frame
number, frame losses occurred or the respective frame will arrive too late. To

maintain continuity of playback, the last frame is displayed again.26

5.4.2.2 Graphical User Interface

The graphical user interface vplayer has been developed by using the Tcl/Tk scripting
language. The GUI launches the client process and communicates with the client via the
standard I/O command pipeline. The communication between GUI and the client is com-

pletely asynchronous and triggered by user-defined signals.

The interface enables a user to query video information such as the subject, title, the
playback duration, etc., from the meta server. During playback of the video, a viewer can
operate the VCR functions play, pause, stop, fast forward, and replay. The look of the

user interface is demonstrated in figure 27.

The Video menu allows for querying informations from the meta server. A Select win-
dow is popped up and the user may now chose a video to be played back. Note that the
embraced numbers behind the video titles in the select window refer to the number of
video server nodes across which the video is distributed. Within the Audio menu, the
user can select an audio device. The Options menu allows to specify values for the jitter
bounds on each network connection. Corresponding to these values, buffers are allocated
for each substream. Instead of user-provided jitter bounds, a user may also leave it to the

client to evaluate jitter values prior to the beginning of playback. Note that the playout of

23 Notice that within one cycle all frame numbers lower than the current number are discarded.

26 Frame losses may occur sporadically due to transmission errors but also periodically due to a
server shutdown, i.e. every n-th frame is missing. The more server nodes are involved in the
playback of one stream the less a viewer will notice missing frames. This kind of fault toler-
ance is a benefit of the Video Server Array.

75

famm - — -

Graphical User Interface.

Figure 27

76

the video stream is additionally delayed for the duration of the triggering phase. Further-
more, the user has the option to enable or disable the display of specific substreams
denoted by the server node’s name so to demonstrate the effect of a server shutdown.
Statistical values concerning the currently played video stream can be displayed in a sep-
arate window as shown in figure 27. A slider shows the current fill level of each sub-

stream’s buffer quaue.27

5.5 Metaserver

Most database systems employ a metadata mechanism in order to simplify the request
mechanism [Row94], [Lit94]. Metadata contain information about data, e.g. location or
structure of the data. Employing this scheme within a video server architecture allows
for uncoupling the data delivery function of a video server from the database manage-
ment functions provided by a meta server. So, with respect to the Video Server Array,
this means that metadata contain information about the location as well as characteristics

of the video data stored in the server array.

In our architecture we adopt to a hierarchical metadata approach where a dedicated, cen-
tralized meta server keeps all attributes associated with a complete video Attributes are,
for instance, the name, the subject, the frame rate, the resolution, etc., but also informa-
tion about location, i.e. which nodes of the server array store parts of the video. The data
structure of the meta information kept by the meta server is shown in appendix G. Each
server nodes in the array only keeps information concerning the management of sub-
streams, such as their location on storage devices associated with the node. The meta

server provides two services:

1. A directory service allows a client to retrieve information about the stored mate-

rial.

2. If a client desires the playback of a video, the meta server offers the service of a
session establishment between client and involved server nodes by coordinating a

two phase commit protocol.
Acting as a negotiator during session establishment provides additional transparency
during admission and liberates the client from knowing about the location of a video

among the nodes of the server array.

The meta server is the leanest process in our architecture. It could be implemented in a

27 Note that the displayed buffer level refers to the real buffer level.

-

e — ‘A -‘__,

— e -

ﬁ——"‘ ﬁ i" i*"-*'i i“"'i i sacitivrsl i—'h i--“i E SR |

T

Meta server process

[vldec I I vidEBJ | video l R I video l

Video entries

Ividaa] Ivideol deeol : deaol

Negotiated videos

i

Ethernet

Figure 28: Architecture of the Meta Server.

straight forward manner as indicated figure 28. TCP connections via Ethernet are main-
tained to all nodes of the Video Server Array as well as to all clients. Meta information is
hold in objects called VideoEntry derived from Videolnfo (see appendix G). Finally, since
the main function of the meta server is to negotiate between the Video Server Array and
the client for the reason of session establishment, it keeps track of the progress of the two

phase commit protocol in a list (Negotiated videos) of the currently executed jobs.

==

=

Appendix
A Start-Up Protocol Algorithm

(a) Client D

Ip={0,..,n-1}
Complete = FALSE;
a;=0, Vie Iys
WHLE (t < t,,,) DO WAIT,; /* t returns the local time */
SEND Eval_Request(i) TO S;, Vie I,;
WHILE NOT Complete DO BEGIN
IF RECEIVED frame(i) FROM S; THEN q; = 1,
IF (a>0, Vie I,) THEN Complete = TRUE;

END;
tmf = max{ailie IO} :
d:: By tsrarl Vie IO;

at,j = a;-q, Vi,je ly; :
ty = max{t, +d;—i-r|iel};

’ e
v={jel, tref+dj-1-r = 1o} s

DEER RS L i s S S
SEND Sync_Request(i, sf JTOS, Vie l,;
StartReceivingFrames(); /* Frames are received and displayed */

(b) Server S;

IF RECEIVED Eval_Request(i) FROM D THEN BEGIN
s;=1 /* t returns the local time */
SEND frame(i, s) TO D;
WHILE NOT RECEIVED Sync_Request(i, s;) DO WAIT;
StartSchedulingFrames(sf % /* server enters the regular scheduling loop */
END;

80

B Shifting Strategy with Different Delay Values

a,-,
Amax _ Ak am
A-I-
t, "
Afﬂ
d;
Ak

\j Y \

Figure 29: Worst Case Scenario for Different Jitter Values

In order to compensate for different delays when applying the start-up protocol substream k is
assumed to be shifted d,, — d; seconds forward on time axis. According to the proof in theo-
rem 5 £, is calculated as follows.
1 =+3m +A, +_Am ;ank ~ [ak +A
= AT+A{”+A,€—A +A,

= A’i‘ +A, + A, .
=4A,+2A,+A,

max

—Ak+am~EkJ

N O G SN BN G SN SN SE S S ean oan omm S Gan s e e ewm e

C

Buffer Level Plots

Resynchronization of an asynchrony of 8 frames with fixed offset

851

o 4] (43 9] o
o — nN w R

Virtual buffer level [frames]
-
©

47

46

— — Unfiltered buffer level e
—— Filtered buffer level

330

1 1 1 1 1
340 350 360 370 380 390 400 410 420 430
Consumption period [frame]

Figure 30: Gap of -8 Frames Resynchronized with Fixed Offset.

Resynchronization of an asynchrony of 8 frames

] SRR

54

Virtual buffer level [frames]
Fy [4)] o (8]
w0 o - n

T T

B
@
T

47

461

1
s3p-tto b

..................... - UW

- — Unfiltered buffer level o
Ll —— Filtered buffer level
|

110

1 1 1 L 1 1 1
120 130 140 150 160 170 180 190 200 210
Consumption period [frame]

Figure 31: Gap of -8 Frames Resynchronized with Variable Offset.

81

82

Virtual buffer level [frames]

Virtual buffer level [frames]

Resynchronization of an asynchrony of 4 frames with fixed offset

T T T T T T T T T

51 i — — Unfiltered buffer level 4
| — Filtered buffer level

10 20 30 40 50 60 70 80 90 100 110
Consumption period [frame]

Figure 32: Gap of -4 Frames Resynchronized with Fixed Offset.

Resynchronization of an asynchrony of 4 frames with variable offset

T T T T T T T T T
- = Unfiltered buffer level
—— Filtered buffer level
511 ', =
'
|
1,'

1 1 I 1 l 1
90 100 110 120 130 140 150 160 170 180 190
Consumption period [frame]

Figure 33: Gap of -4 Frames Resynchronized with Variable Offset.

r—u,,_. ——eie §

Virtual buffer level [frames]

Resynchronization of an asynchrony of 4 frames with fixed offset

53

T T T T T T T T T

= = Unfiltered buffer level
—— Filtered buffer level

-1 LW

Virtual buffer level [frames]

Figure 35: Concentration of +4 Frames Resynchronized with Variable Offset.

1 L 1 1 1 1
230 240 250 260 270 280 290 300 310 320 330

Consumption period [frame]

Figure 34: Concentration of +4 Frames Resynchronized with Fixed Offset.
Resynchronization of an asynchrony of 4 frames with variable offset
T T T T T T T T T
i B B B e s A RN e AT e T e e e s w0 4 b
- - Unfiltered buffer level i
—— Filtered buffer level
ry A
hY
'l,‘ll I
i \ !
14 e S e i e o e e 1 uw
\
]
l
‘ — -_— —— —— — —
S ‘nl**r by Lol ! b
' Yoo i]
i |'“|'I iy |'|”' S S T
i ; I I 0y Nl
ll|1l \‘l' ,,,,, b Wivovoponunrene Follvinan vl LW
1 1 s 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100 110

Consumption period [frame]

83

84

D

Example for the Protocol Flow for the Retrieval of a Video

Server node Server node
Client

Meta server
e

——
—

g neractiol

Y am——
‘\/

\neraction

V

Directory service

, Prepare phase of 2PC |

Commit phase of 2PC

Evaluation phase

Synchronization phase

Figure 36: Protocol Flow for the Retrieval of a Video

s

i—' "'i e o -*i —‘*;

e e

-

— -

-

E

Structure of the Video Transmission Protocol Data Units

struct DataHeader {

int id; // PDU identifier
int SID; // unigue Stream identifier
int FrameNum; // unique frame number
int FrameSize; // frame size in bytes
int PDUNum; // number of PDU
int Offset; // absolut distance (bytes) to begining of frame
int Length; // amount of data included in Datal]
long stime; // time stamp for sending time
unsigned long speriod; // scheduling period
}i
struct DataPDU {
DataHeader Header;
char Data[4000];

¥

struct ControlPDU {

int id; // PDU identifier

int code; // feedback command from client or server
long timestamp; // synchronisation time, general purpose
unsigned long speriod; // scheduling period

int data; // command related data eg. a frame number

¥

F

Structure of the Buffer Queues

class Buffer {

pubilic:
int FrameNum;
int FrameLength; // absolut length in bytes
P s o status; // reserved, free,
long rTime; // remote time, means send time
long 1Time; // local time, means receive time
long buffertime; // time, when inserted in buffer
char* data; // frame data
Buffer ();
~Buffer();

int operator<(Buffer&);
int operator==(Buffer&);

ko

class FrameQueue : public SORTLIST<Buffer> ({
public:
Buffer* Find(int);

}:

86

class FrameBuffer({
public:

FrameBuffer () ;
~FrameBuffer() ;

SetBufferSize(int);

GetFreeBuffer();
Buffer* GetBuffer(int);
BufferSize();

// playable frame list sorted by framenumber
FrameQueue PList;

AddFrame (Buffer*) ;
RemoveFrame (int = 0);
QueueSize() ;
QueueEmpty () ;

// specifys the amont of playable frames in the buffer
int PlayableFrames;
int buffer size;

// buffer array provides elements to be inserted in PList
Buffer* BList;

//‘ hhkkhkhkdkhkhkdhkhkdhhhhdkhhdbhhdbhrhhhhhkhbdhhhhhhhkhrhhhrhhhbhdhhhdbrhhbhhhrhrhhrhdhdhdhkk

// realization of virtual buffer management
// LRSS S SRS RS RS SRR R R R R R R R R R e R R R R R R R R R R R R R R R R R E R E E R E R E

int v_buffsize;

int v_bufflevel;
float v_filtered;

int v_LW;

int v_UW;

v_InitBuffer(int);
v_Reset () ;
v_AddFrame () ;
v_RemoveFrame () ;
v_QueueSize() ;
v_QueueLevel () ;
v_CheckLevel () ;
float v_Filter();
}i

class StreamBuffer{

public:
FrameBuffer* substreambuffer;
int servers;
int buffersize;

StreamBuffer (int) ;
~StreamBuffer() ;

Initialize(int);

SetBufferSizes(int, int*);
#iff

BufferIndex (int) ;

£
GetFreeBuffer(int) ;
Buffer* GetBuffer (int, int);
Buffer* First{int = -1);
Buffer* Next (int);

//
AddFrame (int, Buffer*);
RemoveFrame (int = -1, int = -1);
QueueSize(int = -1);
QueueEmpty (int = -1);
BufferSize(int = -1);

};

G Structure of the Meta Data

class VideoInfo {

public:
ing vid;
char name [64] ;
char subject [64];
char abstract[255];
inE fps;
int width;
int hoehe;
int bandwidth;
int gfactor;
int nbitspixel;
int number_frames;
int greatest_frame;
int smallest_frame;
int number_server;
HostInfo source [MAX SERVER] ;
Ing audio_encoding;
6

struct HostInfo {
char hostname[32];
}:

87

xi

Bibliography

[Aga94]

[Alm91]

[And91]

[Ber94]

[Ber95a]

[Ber95b]

[Blu94]

[Bul91]

[Cen95]

[Cha94]

[Cor92]

N. Agarwal and S. Son. “Synchronization of Distributed Multimedia Data in an
Application-specific Manner.” In 2nd ACM International Conference on Multi-
media, pages 141-148, San Francisco, USA, October 1994.

N. Almeida, J. Cabral, and A. Alves. “End-to-end Synchronization in Packet
Switched Networks.” In Second International Workshop on Network and Operat-
ing System Support for Digital Audio and Video, volume 614 of Lecture Notes in
Computer Science, pages 84-93, Heidelberg, Germany, 1991. Springer.

D. Anderson and G. Homsy. “A Continuous Media I/O Server and Its Synchroni-
zation Mechanism.” IEEE Computer, 24(10):51-57, 1991.

C. Bernhardt and E. Biersack. “Video Server Architectures: Performance and
Scalability.” In Proceedings of the 4th Open Workshop on High Speed Networks,
pages 220-227, Brest, France, September 1994.

C. Bernhardt and E. Biersack. “A Scalable Video Server: Architecture, Design
and Implementation.” In Proceedings of the Realtime Systems Conference, pages
63-72, Paris, France, January 1995.

C. Bernhardt and E. Biersack. “The Server Array: A Novel Architecture for a
Scalable Video Server.” In Proceedings of the Distributed Multimedia Confer-
ence, pages 63-72, Stanford, USA, August 1995.

C. Blum. “Synchronization of Live Continuous Media Streams.” In Proceedings
of the 4th Open Workshop on High-Speed Networks, Brest, September 1994.

D. C. Bultermann and R. Van Liere. “Multimedia Synchronization and UNIX.”
In Network and Operating System Support for Digital Audio and Video, Lecture
Notes in Computer Science, pages 108119, Germany, November 1991. Springer.

S. Cen, C. Pu, R. Staehli, C. Cowan, and J. Walpole. “A Distributed real-Time
MPEG Video Audio Player.” In Proceedings of the 5th International Workshop
on Network and Operating System Support for Digitial Audio and Video (NOSS-
DAV’95), Durham, NH, April 1995.

A. Chakrabati and R. Wang. “Adaptive Control for Packet Video.” In Proceed-
ings of the International Conference on Multimedia Computing, pages 56-62,
May 1994.

J. S. Cormac. “Synchronisation Services for Digital Continuous Media.” Master’s
thesis, University of Camebridge, Camebridge, England, October 1992. Good
overview.

xii

[Cor95]

[Del94]

[Den94]

[Den95]

[Eff93]

[Ehl194]

[Esc94]

[Fed94]

[Fur94]

[Gem95]

[Ish95]

[Ker90]

[Kni94]

[Koe94]

[Lai94]

J. S. Cormac. “Position Statement: To Use or Avoid Global Clocks.” IEEE Work-
shop on Multimedia Synchronization (Sync’95), Mai 1995.

D. Deloddere, W. Verbiest, and H. Verhille. “Interactive Video On Demand.”
IEEE Communications Magazine, 32(5):82-88, May 1994.

J. Dengler and W. Geyer. “A Video Server Architecture Based on Server Arrays.”
Technical report, Institut Eurecom, Sophia-Antipolis, France, October 1994,

J. Dengler. “Admission Control Strategies and Design Issues for Video Servers.”
Master’s thesis, University of Mannheim, Mannheim, November 1995.

W. Effelsberg, T. Meyer, and R. Steinmetz. “A Taxonomy on Multimedia-Syn-
chronization.” In Proceedings of the Fourth Workshop on Future Trends of Dis-
tributed Computing Systems, Lisbon, Portugal, Sep. 1993, pages 97-103.
Eyrolles, 1993.

L. Ehley, B. Furht, and M. Ilyas. “Evaluation of Multimedia Synchronization
Techniques.” In International Conference on Multimedia Computing and Sys-
tems, pages 514-519, Boston, Massachusetts, Mai 1994. IEEE.

J. Escobar, C. Patridge, and D. Deutsch. “Flow Synchronization Protocol.” In
ACM Transactions on Networking, volume 2, pages 111-121. IEEE, April 1994.

C. Federighi and L. A. Rowe. “A Distributed Hierarchical Storage Manager for a
Video-on-Demand System.” In Proceedings of IS&T/SPIE Symposium on Elec-
tronical Imaging Science & Technology, Storage and Retrieval for Image and
Video Databases 11, San Jose, CA, February 1994.

B. Furht. “Multimedia Systems: An Overview.” IEEE Multimedia, pages 47-59,
Spring 1994.

D. J. Gemmell, H. M. Vin, D. D. Kandlur, P. V. Rangan, and L. A. Rowe. “Mul-
timedia Storage Servers: A Tutorial and Survey.” IEEE Computer, 28(5):40-49,
May 1995.

Y. Ishibashi and S. Tasaka. “A Synchronization Mechanism for Continuous Me-
dia in Multimedia Communications.” In IEEE Infocom’95, volume 3, pages
1010-1019, Boston, Massachusetts, April 1995.

B. W. Kernighan and D. M. Ritchie. Programmieren in C. Carl Hanser Verlag,
Munich, second edition edition, 1990.

E. W. Knightly, R. Mines, and H. Zhang. “Determinstic Characterization and
Network Utilizations for Several Distributed Real-time Applications.” In Pro-
ceedings of IEEE WORDS’94, Dana Point, CA, October 1994.

D. Koehler and H. Mueller. “Multimedia Playout Synchronization Using Buffer
Level Control.” In 2nd International Workshop on Advanced Teleservices and
High-Speed Communication Architectures, Heidelberg, Germany, September
1994,

S. Laird and J. Youngman. Video Development Environment - Reference Guide.
Parallax Graphics Inc., Santa Clara, CA, 1994.

()

A

i

[Li94]

[Lit90]

[Lit91]

[Lit92]

[Lit94]

[Mas90]

[Mat92]

[Mil91]

[Ous94]
[Ran92]

[Ran93]

[Rot95a]

[Rot95b]

[Rot95¢]

[Row94]

xiii

L. Li and D. Georganas. “MPEG-2 Coded- and Uncoded- Stream Synchroniza-
tion Control for Real-time Multimedia Transmission and Presentation over B-IS-
DN.” In 2nd ACM International Conference on Multimedia, pages 239-245, San
Francisco, USA, October 1994.

T. Little and A. Ghafoor. “Synchronization and Storage Models for Multimedia
Objects.” IEEE Journal on Selected Areas in Communications, 8(3):413-427,
April 1990.

T. Little, A. Ghafoor, C. Chang, and P. Berra. “Multimedia Synchronization.”
IEEE Data Engineering Bulletin, 14(3):26-35, September 1991.

T. D. C. Little and F. Kao. “An Intermediate Skew Control System for Multime-
dia Data Presentation.” In Proceedings of the 3rd International Workshop on Net-
work and Operating System Support for Digital Audio and Video, pages 121-132,
San Diego, CA, November 1992.

T. D. C. Little and D. Venkatesh. “Client-Server Metadata Management for the
Delivery of Movies in a Video-On-Demand System.” Technical Report 12-14-
1994, Multimedia Communications Laboratory, Department of Electrical, Com-
puter and Systems Engineering, Boston University, Boston, MA, 1994.

H. Massalin and C.Pu. “Fine-Grain Adaptive Scheduling Using Feedback.”
Computing System, 3(1):139-173, 1990.

The MathWorks, Inc., Natick, MA. Matlab User’s Guide, student edition edition,
1992. Published by Prentice-Hall, Inc.

D. Mills. “Internet Time Synchronization: The Network Protocol.” IEEE Trans-
actions on Communications, 39(10):1482—-1493, October 1991.

J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, Massachusetts, 1994.

P. V. Rangan, H. M. Vin, and S. Ramanathan. “Designing an On-Demand Multi-
media Service.” IEEE Communications Magazine, 30(7):56-65, July 1992.

P. Rangan, S. Ramanathan, H. M. Vin, and T. Kaepppner. “Techniques for Mul-
timedia Synchronization in Network File Systems.” Computer Communications,
16(3):168-176, March 1993.

K. Rothermel. “Position Statement: State-of-the-Art and Future Research in
Stream Synchronization.” IEEE Workshop on Multimedia Synchronization
(Sync’95), Mai 1995.

K. Rothermel and T. Helbig. “An Adaptive Stream Synchronization Protocol.” In
Sth International Workshop on Network and Operating System Support for Digi-
tal Audio and Video, Durham, New Hampshire, USA, April 1995.

K. Rothermel, T. Helbig, and S. Noureddine. “Activation Set: An Abstraction for
Accessing Periodic Data Streams.” In Multimedia Computing and Networking,
volume 2417, San Jose, California, February 1995. IS&T/SPIE.

L. A. Rowe, J. S. Boreczky, and C. A. Eads. “Indexes for User Access tp Large
Video Databases.” In Proc. of IS&T/SPIE 1994 International Symposium on Elec-
tronic Imaging: Science and Technology, San Jose, CA, February 1994.

Xiv

[San93]

[Sch94]

[Ste90a]

[Ste90b]

[Ste93a]

[Ste93b]

[Ste95]

H. Santoso, L. Dairaine, S. Fdida, and E. Horlait. “Preserving Temporal Signa-
ture: A Way to Convey Time Constrained Flows.” In IEEE Globecom, pages 872
- 876, December 1993.

M. Schader and S. Kuhlins. Programmieren in C++. Springer-Verlag, Heidel-
berg, second edition edition, 1994.

R. Steinmetz. “Synchronization Properties in Multimedia Systems.” IEEE Jour-
nal On Selected Areas in Communications, 8(3):408—412, April 1990.

W. R. Stevens. UNIX Network Programming. Prentice Hall, Englewood Cliffs,
New Jersey, 1990.

R. Steinmetz. Multimedia-Technologie. Springer Verlag, Heidelberg, Germany,
1993.

R. Steinmetz and C. Engler. “Human Perception of Media Synchronization.”
Technical Report 43.9310, IBM European Networking Center, Vangerowstrasse
18, 69020 Heidelberg, Germany, 1993.

R. Steinmetz. “Analyzing the Multimedia Operating System.” IEEE Multimedia,
2(1):68-84, Spring 1995.

	Scan 49
	Scan 50

