-

= i S s W i () it W i N i (M

i ‘I L — —

A Video Server Architecture
Based on Server Arrays

Johannes Dengler and Werner Geyer

Development of a client-server video-on-demand-architecture
based on server arrays.
Technical report October 1994.

Johannes Dengler, Werner Geyer
Institut Eurecom

2229, Route des Cretes

Sophia Antipolis

F-06560 Valbonne
{dengler,geyer }@ecurecom.fr

Supervision: Christoph Bernhardt and
Prof. Ernst Biersack.




- s ew e e e e e e e e e e —

Table of contents

Introduction

Installation and Package Contents

2:1 How to Get Started
22 Makefile Switches
2.3 File Contents

Network Protocol Reference

3.1 Meta Control Protocol
3.2 Video Transmission Protocol
3.3 Finite State Machines

Implementation

4.1 Video Server

4.1.1  General Architecture

4.1.2  Scheduler and Stream Manager Process
4.1.3  Disk Manager Process

4.2 Video Client

4.2.1  General Architecture

4.2.2  Class Description

4.3 Graphical User Interface

4.4 Meta Server

4.4.1 Control Flow

4.42  Class Description

4.5 Stripetool

45.1 Retrieving Storage Information
4.5.2  Storing a Video

Appendix

oW N

10
12

1¢

)
17
18
25
27
37
31
38
40
41
41
43
43
44

47




— e w— e b — e e e e b e e e e e

Introduction

We describe the prototypical implementation of a distributed video-on-
demand (VOD) client-server architecture in a computer network. Our
approach is focused on striping (distributing) each video over several
servers. Our system consists of one or more video servers which each
deliver an isochronous stream of video data, further of one or more clients
with graphical user interface, and exactly one meta server.

The meta server is assumed to have complete knowledge of the location
of video data, video servers and video clients. Hence the meta server may
act as a negotiator between video clients and video servers. Both video
servers and video clients must inform the meta server of their existence at
start-up time. The location of the meta server is assumed to be well-
known in advance.

Each video is assumed to be striped in a well-defined order over a discrete
number of servers which each will contribute to the video service with
their share of video information. Our approach does not restrict the num-
ber of servers on which a video may be distributed but we make the

assumption that only one video server is run on each machine at a time.

A video client gives the user access to video on demand. It may request
the meta server to negotiate the play of a video between all involved par-
ties. It performs the synchronization of video data streams, the reassembly
of the video and the display of the video at play time.

The system was developed on three Sparc 2 and two Sparc 10 worksta-
tions which are connected by Ethernet and an ATM network developed at
Fore, Inc. Three of the workstations are equipped with Parallax video
boards that allow real-time JPEG decoding and encoding. Each server is
attached to a gigabyte disk and accesses it directly through a raw disk

interface.




i ___Yh____. | — = .4-

How to Get Started

2

Installation and Package Contents

2.1

How to Get Started

The package is delivered within a packed tar file vop. tar.gz . First step
is to uncompress the file by typing

gunzip VOD.tar.gz
afterwards extract the included files by typing

tar -xfv VvOD.tar

Now a VOD directory with the following subdirectories and files is cre-
ated:

e C(Client contains source files for the VOD client and

user interface

* Makefile global Makefile

* MetaServer contains source files for the VOD meta server
* Server contains source files for the VOD server

* include contains shared include files

* 1lib contains linkable library

Before starting the installation make sure that the system fulfills the fol-
lowing requirements, for otherwise your installation will fail:

» Parallax board + installed software,

e Fore ATM board + installed software,

» Tcl/Tk toolkit.

+  We used the GNU g++ compiler.

» Eurecom’s libtools.g tools library and the appropriate include files

The global Makefile is a kind of meta Makefile which calls the specific
Makefiles for each module. It offers the following functionality:




—

-

]

=

[P

Makefile Switches

el

2.2

'+ make clean cleans the subdirectories (removing *.o files
ete.J,

* make subdirs calls the Makefiles in the subdirectories,

* make install does both of the above things,

* make wc performs a word count on the source files in

each subdirectory.

After typing make install the executable files are generated in each
subdirectory. Before being able to use the system one has to distribute
video data on the AV disks. The process of striping is described in chapter
four. Once you have striped video data on your disks you have to launch
first of all the metaserver by typing

metaserver

on a machine of your choice. The metaserver is connected via Ethernet
and needs thus no ATM network. Afterwards one has to launch the servers
on each machine with an AV disk.

server [meta_server_hostname]

If you don’t specify a hostname a default is taken. To perform a playback
of your videos the graphical user interface which is located in the C11i -
ent subdirectory has to be called by typing:

vplayer [meta_server_hostname]

For the usage of the GUI refer to section “Graphical user interface™ on
page 30.

Makefile Switches

In all Makefile compiler paths have to be specified. The following
switches can be set in the client Makefile:




—

—_—

=

Makefile Switches

* -D__DEBUG Enable the debugging protocol; during run-
time debug information is written to a debug
file in the /tmp directory (default setting is dis-
abled).

* -D__CONTROL Enable the display of the buffer size in the user
interface (default setting is disabled that means
the actual position in the video is displayed).

* -D__STATISTICS Enable the protocol of statistical results (queue
size, frame delay, parallax display time) to files
in the /tmp directory (default setting is dis-
abled).

* -D__DISPLAY Enable the display of arrived frames (default
setting is enabled). If the display is disabled the
client simulates the time for display. The delay
can be specified by a define in client.h.

The server Makefile allows to set

« -D_ _DEBUG Refer above.

¢ -D__NOAUDIO Disable transmission of audio information
(default setting is enabled). Currently the client
does not support audio. With __NoAUDIO set
the server will transmit ONLY the video infor-
mation contained in each video frame whereas
with the switch cleared it will leave the duty of
having to parse through video frames up to the
video client.

* -D__STATISTICS Enable logging of statistical information
regarding the service time during scheduling
periods, i.e. the amount of time needing to
serve all videos during each alarm function
call, and the time needed to serve read requests
at the disk interface level.

The Makefile of the meta server knows only the -p__DEBUG switch.

All Makefiles can be called with a specific module as argument or nothing
which means make all. Calling make with the argument depend provokes
make to browse through all source files and to append the discovered
dependences to the actual Makefile.




— 3 OO O B B o O B tO =] it

File Contents

n

2.3

File Contents

The following describes the file contents in each subdirectory:

Subdirectory client/

COPYRIGHT
Makefile
README
bitmaps
buffer.C
buffer.h

client.C

client.h

scheduler.C

scheduler.h
streammanager.C
streammanager.h

vplayer

Copyright note for the user interface

Makefile for the VOD client

user info displayed in the user interface
contains icons for the user interface

source file for the frame buffer class

header file for the frame buffer class

main program for the VOD client, protocol
machine

header file for the VOD client

source file containing a video class and list for
scheduling

header file for the video class and list

source file for several network interface classes
header file for network classes

user interface source script for the Tcl/Tk inter-
preter

Subdirectory Metaserver/

Makefile

MetaServer.Data

jobmanager.C

jobmanager.h

metaserver.C

metaserver.h
streammandger.C
streammanager.h

videodata.C

videodata.h

Makefile for the VOD meta server

contains the video data e.g. location, frame
rate, size, etc.

defines a job class for the handling of the two
phase commit

header file for job classes

main program for the VOD meta server, proto-
col machine

header file for the VOD meta server

source file for several network interface classes
header file for network classes

source file containing a class for video data
storage

header file for video data storage class




- e e e e e e e e e — —

File Contents

Subdirectory Server/

L]

Makefile

cleanipc

cleanps
diskmanager.C
diskmanager.h
scheduler.C
scheduler.h
server.C
server.h
streammanager.C
streammanager.h
stripetoocl.C
stripetocl.h

vstorage.h

VODServer. [host]

Makefile for the VOD server

Macro for deleting all shared memory seg-
ments

Macro for deleting orphan server processes
source file containing disk access classes
header file for disk access classes

source file containing scheduling class

header file for scheduling class

main program for the VOD server

header file for the VOD server

source file for several network interface classes
header file for network classes

source file for the frame distributing software
header file for the stripetool

contains file format for video data stored on the
disks

generated by the stripetool, contains all video
storage info.




4_ &_- __A

e g 4 __

File Contents

Subdirectory include/

architecture.h

basenet.h

list.C

list.h

pdud.h

pduB.h

pduC.h

PE1X:h

socket.h

systeme.h

toolserror.h

two_p_protocol.h

kil .k

Subdirectory 1ib/

.

libtools.a

contains general defines valid for all modules
network interface classes (delivered by 1ib-
tools.a)

definition of C++ list templates

header file for list templates

pdu definitions for connection between client
and meta server

pdu definitions for connection between meta
server and server

pdu definitions for connection between server
and client

parallax interface classes (delivered by lib-
tools.a)

socket network interface classes (delivered by
libtools.a)

system interface classes (delivered by lib-
tools.a)

error handling class for the all tools (delivered
by libtools.a)

pdu definitions for the two phase commit pro-
tocol

some useful macros and functions

collection of useful tools for network and par-
allax access




— — — — — b — —

e ﬁ_ﬁ y___,_y._ 4____

Meta Control Protocol

3

Network Protocol Reference

3.1

Meta Control Protocol

Since the meta server has complete knowledge of the location of video
data and video servers it can act as both an information server for video
clients and negotiator between video clients and video servers. While the
exchange of video meta information concerns video clients and the meta
server, the latter involves all parts of our architecture, i.e. the video client,
the meta server and all video servers at which video data resides.

The meta control protocol is handled via connection-oriented TCP over
Ethernet. At start-up time both video servers and video clients establish
TCP connections to the meta server. If not specified in their command line
video clients and video servers assume the meta server to be run on the
internet address that corresponds to DEFAULT_META_HOSTNAME in architec-
ture.h. We assume that the TCP ports are also well-known in advance.

tdefine DEFAULT_META_HOSTNAME "fuschia.cica.fxr\0"
#define META_SERVER_PORT 6353
#tdefine META_CLIENT_PORT 5463

These connections remain persistent for the video server’s or video cli-
ent’s lifetime. The meta server therefore knows at any time which servers
and clients are presently running.

The first word of each meta control pdu contains its type. In all other
fields, meta control pdus may differ. A video clients issues a
META_INFO_REQ by sending a MetaInfoppu, filling only the field id:

struct MetaInfoPDU {

int
int
int
int
VideoInfo

i85

sid;
vid;
sequence;
infe;

It is responded by the meta server with one or more alike structs, each
completely filled with meta information about one video. The field
sequence contains YES for all meta information response pdus except the
very last one. The field info contains the video information, a struct
defined as this:




— e e

Meta Control Protocol

class VideoInfo {

public:

int vid;

char name [64];

char subject[64];
char abstract([255];
int fps;

int width;

int hoehe;

int bandwidth;

int gfactor;

int nbitspixel;

int number_frames;
int greatest_frame;
int smallest_frame;
int number_server;
HostInfo source [MAX_SERVER];

A META_PLAY_REQ issued by a video client invokes a two phase com-
mit. The meta play request is carried in a meta play pdu, defined as below.

struct MetaPlayPDU {

int id:
int sid;
1fE vid;
int data;

A TWO_P_PREPARE is carried in a meta prepare pdu. The field sid
contains the unique stream identifier for this video request.
initial_frame contains the initial frame or video segment number

unique to each video server. All other fields contain meta information. !

struct MetaPreparePDU (

int id;

int sid;

1% vid;

int fps;

int number_server;
int initial_frame;
int hoehe;

int width;

int gfactor;

The prepare is responded by each party with either TWO_P_ABORT or
TWOQO_P_READY in the field id of a MetacommitReadyAbortPDU. Each
party informs the meta server about its ATM socket addresses in the fields
pinfo and hinfo.

If all turns out well, the meta server issues another MetaCommitReady -

! The field name hoehe was used deliberately for we could not compile our code with its English

meaning height!




__ __ _‘_ _

o wee o e mes s e e e e e e e wee e e e

Video Transmission Protocol 10

3.2

abortppu with TWO_P_COMMIT in the field id. The pdu addressed at
the video servers contain the client’s ATM socket addresses while the pdu
addressed at the video client contains all server’s ATM socket addresses,

Please refer also to section “Finite state machines™ on page 9 for further
information on the complete protocol machines of video client, video
server and meta server.

Video Transmission Protocol

After a successful two phase commit between a video client, video servers
and the meta server a video client has knowledge of all video servers that
will deliver the video. The video transmission protocol deals with all cli-
ent-server communication regarding the sub-video streams that will even-
tually make up a video stream at the video client site. Please note that this
does not at any time involve the meta server.

The video transmission protocol is based upon UDP on ATM. Transmitted
control pdus normally occupy only one datagram while video data (i.e.
frames as of now) may occupy more than one datagram.

Since we assume video client and video server system clocks unsynchro-
nized a mechanism for synchronization the video start time is needed. We

present such a mechanism in section “General architecture™ on page 22.

The video client may at any time (i.e. before the servers trigger a time-
out) tell the servers to start sending video data. It does so by sending a
CONTROL_ADJUST to each video server which will immediately
respond by sending its initial video frame with a time stamp enclosed. The
video client may then set each server’s initial start time in each server’s
own time. It then issues a CONTROL_START to each server and
encloses the calculated deadline for transmission of each server’s initial

frame.

In fact, the video client may at any time repeat this procedure in order to
resynchronize the video servers or recover from a lost control packet.

During play each video server sends video frames contained in UDP data-
grams with a constant frame rate to the video client. They are reassembled

at the client site. As for now, we use no retransmission of control pdus.




— e e —

= __

_, __‘,_ﬁ, A_,U

- e ew s s e mer e e

}/_{deo Transmission Protocol I1

struct DataPDU

DataHeader
char

The video client may issue a CONTROL_PAUSE which will cause the
video server to at once stop sending frames. In order to continue playing
the video the video client will have to undertake the same steps for resyn-
chronization as for initially starting the video with CONTROL_START,
only that this time it issues a CONTROL_CONTINUE to determine the
difference, if any.

A CONTROL_STORP causes the video servers to immediately stop dis-
playing and abandon the video. A CONTROL_ABORT does the same,
only with a taste of an underlying error condition.

Immediately after the last frame has been sent to the video client the video
server sends a CONTROL_END to signal the end of the video. The video
client may then assume that no more data will arrive on the socket dedi-
cated to this server.

All control traffic is sent in a common struct ControlPDU with its field
code (e.g. CONTROL_START) containing the control command type
and the field id containing ppu_conTrOL. The optional field data cur-
rently remains unused. Data traffic (e.g. frames) is sent in pdus of struct
DataPDU. Its field Header of type struct DataHeader contains various
information needed for reassembly of video frames and a time stamp. Its
field pata contains up to 4,000 byte of video data.

{

Header;
Data[4000];

struct ControlPDU {

int
IHE
long
unsigned long
int

id; // PDU identifier
code; // feedback command from client or server
timestamp; // synchronisation time, general purpose

speriod; // scheduling period
data; // command related data eg. a frame number

struct DataHeader (

int

int

int

int

int

int

int

long

unsigned long

id; // PDU identifier

51D // unique Stream identifier
FrameNum; // unique frame number
FrameSize; // frame size in bytes

PDUNum; // number of PDU

Cffset; // absolut distance (bytes) to begining of frame
Length; // amount of data included in Datal]

stime; // time stamp for sending time

speriod; // scheduling period




e T w.,__

e

_ﬁA

- e s e e

Finite State Machines

3.3

Finite State Machines

\
. to | outgoing

| . .
| From mcoming ‘ comment
IDLE | META_INFO_REQ IDLE ‘ META_INFO_RSP Meta server responds to a meta info
| } request issued by a video client by send-
3 | ing all availuble meta data to the video
client.
IDLE | META_PLAY_REQ | PREPARE | TWO_P_PREPARE I The meta server received a play request
| | 1o video server and by a video client. It invokes a two phase
‘ ‘ video clients commit between all parties.
PREPARE | TWO_P_ABORT IDLE TWO_P_ABORTto | Receiving an abort PDU from either one
from either one party all other parties | party the meta server issues aborts to the
| | | | | other parties.
| i
PREPARE | TWO_P_READY | PREPARE : It received ready from one party but has
| L | | yet other responds pending.
| |
PREPARE } TWQO_P_READY IDLE TWO_P_COMMIT to All parties agreed to play the requested
j video client and video. Meta server issues a commit.
i video servers
| META_SERVER_ | A video server disconnects. It will be
| DISCONNECT removed from the server list.
| META_CLIENT_ A video client disconnects. It will be
f DISCONNECT removed from the client list.
Table 1: Meta server finite state machine
| 1
| From incoming = to outgoing comment
| IDLE | VIDEOLIST from | IDLE META_INFO_REQ Send meta info request to meta server.
| | vplayer | Such data are passed through to the GUI.
| IDLE i META_INFO_RSP IDLE BEGIN to GUI, fol- Client received meta info data from meta
| lowed by all meta server. Data is passed through to GUIL
! data.

IDLE VIDEOREQUEST IDLE META_PLAY_REQ An VOD request from the user interface
| ‘ is passed through as a play request to the
| meld server.

[ I

| IDLE | META_PLAY_RSP IDLE FAILURE to GUI Meta server decided to send abort before
! 2 p commit,

IDLE ‘ TWO_P_PREPARE NEGOTI- ‘ TWO_P_READY Client is ready.

| ATE |

IDLE TWO_P_PREPARE NEGOTI- | TWO_P_ABORT ‘ Client could not allocate requested
[ \ ATE ‘ resources.

| !

NEGOTI- TWO_P_COMMIT | NEGOTI- COMMIT to GUI | The phase commit was successful. The
| ATE ATE | video can be played.
| NEGOTI- TWO_P_ABORT ABORT- FAILURE to GUI Two phase commit aborted by one party
| ATE ‘ ED other than client.

; NEGOTI- ‘ VIDEOPLAY from NEGOTI- .| CONTROL_ADJUST Client invokes synchronization mecha-
| ATE vplayer ATE | toeuch server nism.

l NEGOTI- Data | READY | CONTROL_STARTto | Start sending video frames.

| ATE | ! each server

| NEGOTI- Data (incomplete) NEGOTI- | CONTROL_ADJUST Incomplete data received.

| ATE ATE

NEGOTI- | NEGOTI- CONTROL_ADJUST | Time-out.
| ATE | ATE

NEGOTI- | ABORT- | Time-out after several retransmissions

ATE | ED

ok

| of CONTROL_ADJUST

Table 2: Client finite state machine




e e e e e e e B e e B S

Finite State Machines

13

| From | incoming to outgoing comment
: READY PLAYING ‘ ‘When client has received a sufficient
‘ number of valid frames it starts display- |
[ i ing the video. |
| READY  Daa | READY Client receives a video frame.
! PLAYING Data | PLAYING Client receives a video frame.
| PLAYING i VIDEQPAUSE PAUSE CONTROL_PAUSE Pressed pause button in user interface is
| from user interface to each server | passed through.
PLAYING | VIDEOSTOP STOPPED | CONTROL_STOP Pressed stop button in user interface is
passed through.
PLAYING | CONTROL_END | PLAYING Video is finished. One server sends it's
| ‘done’.
PLAYING | CONTROL_END | DONE Last server has sent its ‘done’ and frame |
| ‘ queue is empty. |
I
PLAYING | CONTROL_STOP \ STOPPED | CONTROL_STOP to | Client receives a *stop’ from one server. ‘
from one server. | all other servers.
I
PLAYING READY | Frame queue is empty.
L Il
PLAYING ABORT- | Time-out.
ED |
PAUSE VIDEOPLAY NEGOTI- CONTROL_ADJUST ‘ Client invokes synchronization mecha-
ATE nism
STOPPED | DELETE Remove video out of service queue and |
| unmap window. Clean up resources.
|
| DONE DELETE ‘ Remove video out of service queue and
| unmap window.
| | Clean up resources.
T T 7
ABORT- | | DELETE ; | Remove video out of service queue and
ED | | | unmap window. |
| | | Clean up resources. i
|
DELETE IDLE i |
Table 2: Client finite state machine
. . | | . |
From  incoming to  outgoing comment
| |
IDLE | Listinfo menu \ IDLE ‘ LISTMETAINFO User selected *Listinfo’ in menu *Video®
| ; - toclient
IDLE | BEGIN followed by i IDLE ; Open selection window and enable user |
| meta data from cli- ‘ ‘ to select a video. |
ent 1 ‘ ‘
IDLE | Selection button / ! PEND- VIDEOREQUEST User double-clicked on a video or
double-click | ING ‘ pressed the ‘Open’ button. The selection
; | window is being removed.
PEND- FAILURE i IDLE | The client issued a ‘Failure’ to the user |
ING ‘ interface. 1
—— | |
PEND- COMMIT | READY The 2 phase commit was successful. The |
ING | user may now start the video. The play |
| button is enabled. i
————p - }
READY FAILURE IDLE | | The client 1ssued a ‘Failure' to the user
| interface. |
READY Play button PLAYING = VIDEOPLAY | The user hits the play button. Pause and ‘
! stop are enabled while play is disabled.
I 1 i
PLAY | STOP DONE | | The video has been fully played. Disable i
all buttons but rewind. |
| PLAY Pause button PAUSE ‘ VIDEOPAUSE E The user hits the pause button.

Table 3: Vplayer finite state machine




— — —— e e e

“_M .

m— ey

Finite State Machines

14

From incoming to outgoing comment
| pLAY ‘ FAILURE IDLE The video client reports some error con-
| dition,
PAUSE | Play button PLAY VIDEOPLAY The user hits the play button.
PAUSE . Stop button DONE VIDEOSTOP | The user hits the stop button.
|
I
PAUSE | FAILURE IDLE | The video client reports some error con-
| | dition.
DONE I Listinfo menu DONE LISTMETAINFO ‘ User selected "Listinfo’ in menu *Video’
| to client ‘
DONE i BEGIN followed by | DONE ‘ Open selection window and enable user
meta data from cli- ‘ to select a video.
ent
DONE Selection button / PEND- VIDEOREQUEST User double-clicked on a video or
double-click ING pressed the ‘Open’ button. The selection
| | | window is being removed.
L A
Table 3: Vplayer finite state machine
From  incoming | to outgoing comment
IDLE TWO_P_PREPARE RESERV OPEN + Server received a prepare from the meta
| ED READ_BUFFER 10 server. A new scheduled video is created.
‘ disk manager.
IDLE | TWO_P_PREPARE IDLE | TWO_P_ABORT | Server could not allocate resources for
| | the video - probably UDP sockets.
RESERV REMOVE TWO_P_ABORT Server triggered time-out for disk read
ED responses,
RESERV DISK_CORRUPT, IDLE | TWO_P_ABORT Server could not allocate resources for
ED SHM_CORRUPT, the video - the video was not found or no
shared memory could be allocated.
RESERV BUFFER_READY READY TWO_P_READY A buffer has been read. all resources are
ED allocated - the video can be played.
READY TWO_P_ABORT REMOVE Server received abort from meta server -
| remove video.
READY TWO_P_COMMIT COMMIT All parties are ready for this video,
READY REMOVE Server triggered time-out for commit,
READY BUFFER_READY READY A buffer has been read by the disk man-
| ager.
READY l DISK_CORRUPT REMOVE | | Some read error occurred after the server
| | | issued its ready to the meta server.
| |
COMMIT CONTROL_ADJUST ADJUST | Data+time stamp | Receiving an ADJUST control message
‘ the server responds by sending its next
frame for the video to the video client.
COMMIT REMOVE CONTROL_ABORT The server triggered a time-out for the
‘ 1o video client first adjust control message.
ADJUST | CONTROL_ADJUST | ADJUST Data + time stamp Receiving an ADJUST control message
3 | the server responds
3 : | by sending its next frame for the video to
: ‘ | the video client. The first adjust frame
| was probably lost.
ADJUST CONTROL_START | PLAY The server starts playing the video.
|
| {
ADIJUST CONTROL_ABORT ‘ REMOVE The client issued an abort before playing
‘ | the video.
\ i -
ADJUST BUFFER_READY | ADIUST A buffer has been read by the disk man-

‘ ager.

Table 4: Server finite state machine (scheduler)




o

Finite State Machines 15
| . . —
From | mcoming to OU[gOll’lg comment
f
| ADJUST : REMOVE CONTROL_ABORT The server triggered a time-out for the :
! * ‘ Lo start control message. ’
| | | video client
ADJUST | DISK_CORRUPT ‘ REMOVE ‘ CONTROL_ABORT | Some read error occurred while plaving '
| ‘ to | the video. It can no
} 1 video client | longer be played be the server.
[ \ s
PLAY | | PLAY Data + time stamp | The server plays the frames at a constant
| ‘ | frame rate.
|
| PLAY CONTROL_PAUSE PAUSE | | The client issued u pause. The server
i | stops sending frames on the net.
| PLAY CONTROL_ABORT | REMOVE | | The client issued an abort while playing
‘ the video.
| PLAY | CONTROL_STOP | REMOVE | The client issued a stop. The server
i j removes the video from the service
| | | | queue and frees all resources by entering
i | | state REMOVE.
I |
I T — 1 :
| PLAY I PLAY | READ_BUFFER to A butfer has been completely sent to the |
| disk manager client. It should now be refilled by the ]
disk manager.
i PLAY BUFFER_READY PLAY A buffer has been read by the disk man- -
| | ager. |
| PLAY DISK_CORRUPT REMOVE CONTROL_ABORT | Some read error occurred while playing ]
I | to video client the video. It can no longer be played be |
‘ l the server. !
I
. PLAY CONTROL_ADJUST ADJUST Data + time stamp | Receiving an ADJUST control messuge
| i the server responds
| by sending its next frame for the video to
the video client.
‘ t T
| PAUSE I CONTROL_ADJUST ADJUST | Data + time stamp Receiving an ADJUST control message
| | the server responds
| by sending its next frame for the video to
: the video client.
PAUSE CONTROL_ABCRT REMOVE The client issued an abort during the
pausing.
PAUSE REMOVE CONTROL_ABORT | The server triggered a time-out for the i
[ to video client adjust control message. I
| B = K H
PAUSE BUFFER_READY | PAUSE A buffer has been read by the disk man-
| | ager.
PAUSE DISK_CORRUPT | REMOVE CONTROL_ABORT Some read error occurred while playing
{ 10 video client the video. It can no
| longer be played be the server.
| REMOVE | IDLE CLOSE to disk man- 1
[ ager 1
Table 4: Server finite state machine (scheduler)
| P el
| From | incoming | to outgoing comment
| IDLE | OPEN | RESERV | OPEN_OK The request for a new video stream was i
ED | passed through to the disk manuger. It
| gets new shared memory and searches
| for the video on its disk. If all goes well.
| | OPEN_OK is returned.
IDLE OPEN IDLE OPEN_FAILED | Either no shured memory could be allo-
| cated or the video was not found on the
| disk.
. RESERV : READ_BUFFER READY | BUFFER_READY | The first read request changes the videos
| ED | | state.
L I e ==
Table 5: Server finite state machine (disk manager)




—

———— e

——

— e e by e e

]

Finite State Machines

16

down request, indicating that the disk

From  incoming to | outgoing | comment
| RESERV READ_BUFFER IDLE | DISK_CORRUPT An error was encountered while reading
ED ‘ the first block of the video from the disk.
I ‘ it
RESERV | SHM_CORRUPT IDLE | The other process could apparently not
ED | attach to the shared memory. We drop the
| video and clear shared memory.
== | I
RESERV CLOSE | IDLE I CLOSE_OK The video is requested to be closed at
ED | this eurly state. Probably never really
| | | used.
| !
I |
READY i READ_BUFFER READY BUFFER_READY | A disk request was successfully com-
| | pleted.
READY READ_BUFFER IDLE | DISK_CORRUPT | An error was encountered while reading
‘ the next block of the video from the disk.
READY I SHM_CORRUPT ' IDLE The other process has a problem with
| shared memory other than attaching 1o it.
We drop the video and cleur shared mem-
ory.
| -
READY ! CLOSE | IDLE CLOSE_OK The video is requested to be closed.
PING ; | PING_BACK The other (parent) process pings the disk
| manager. Disk manager responds by
pinging back.
| |
SHUT_DOWN ‘ The other (parent) process issues a shut
|
[

manager should close all open videos,
clear shared memory and exit. Never
used because we preferred to use a sig-

nalling mechanism for terminating the

processes instead.

Table 5: Server finite state machine (disk manager)




—

Video Server

4

Implementation

4.1

4.1.1

Video Server

General Architecture

Our video server is designed to serve multiple isochronous data streams,
in our case video streams, from a SCSI hard disk to multiple clients
attached to an ATM network. We made use of the transparent UDP inter-
face to ATM supplied by Fore, Inc. and a C++ class library for further
transparency of different network addressing schemes developed by Lau-
rent Gautier at Eurecom.

One video server consists of two discrete processes: the scheduler and
stream manager process (parent) and a forked-out child as the disk man-
ager process. While the disk manager process handles all disk all opera-
tions related to disk i/o its parent serves the video data to video clients and
manages all communication with the meta server and video clients. The
two processes are both completely event-driven and communicate by
pipes, shared memory and signalling.

Pipes are uses to pass messages like requests, responses, events and errors
to the other process. A read request for example is carried over a pipe and
may eventually be responded by a read response.

Shared memory is used to share video data buffer space between the two
processes. Shared memory space is allocated from the system dynami-
cally as the demand for served videos grows. For each video a shared
memory segment twice the size of one read block size (defined in
server.h) is allocated and logically divided in half. Each half makes one
shared memory buffer that may be handed over to the other process for
writing or reading. Thus, our video server needs buffer of size two for
each video. We put the allocation and deletion of shared memory space
into the disk manager process because it may occupy a process for a sub-
stantial amount of time. Hence the allocation of shared memory space is
confirmed between the two processes in the process of a two phase com-
mit with the meta server.

We also make explicit use of signalling for gracefully terminating parent
and child processes at one time when either one encounters and error con-
dition or a signal that will lead to program termination. Such a termination




e i e i

o e e e e e e e —

Video Server

/8

4.1.2

4.1.2.1

mechanism is needing to avoid orphan shared memory segments. When
either one process finds itself in such a condition it send a SIGTERM to
the other process. Before terminating the disk manager will clear all
shared memory space while its parent will detach from them.

The video servers main () function establishes the pipes and forks out the
disk manager. The parent and child processes are described in detail in the
sections below.

Scheduler and Stream Manager Process

The parent’s main() function resembles an event dispatch loop with
incoming signals triggering events. Before entering the dispatch loop the
objects scheduler (class Scheduler) and stream_manager (class Stream-
Manager) are created.

Scheduler Class Description

The class Scheduler is vital to the video server. It handles all control traf-
fic with the meta server, all control traffic with video clients, exchanges
messages and handles event and errors from the disk manager and sched-
ules video streams. It makes use of the class StreamManager which is
described in the following section. In fact, Scheduler is instantiated with
an object of class StreamManager as parameter. The other two parameters
are file descriptors for the pipes to and from the other process.

When instantiated, class scheduler enables alarm signalling with the
alarm function alarm(). Later the interval timer gets enabled in Sched-
uler’s method switchon( ). The timer is to 1 / PERIODS_PER_SECOND S€cC-
ond, currently 1/ 25 second. When a SIGALRM signal is triggered the
alarm function calls Scheduler’s method schedule().

Scheduler contains a sorted list of video streams currently negotiated or in
service. The video streams are of class ScheduledVideo (described below)
and are sorted ascending to their unique stream identifier issued by the
meta server. Scheduler has two methods for adding videos to the list and
for removing them: addvideo() and Removevideo(). The Load()
method currently remains unimplemented but will eventually compute
Scheduler’s work-load, thus making way for admission control.

As mentioned above Scheduler is event-driven. The primary event Sched-
uler can handle is a SIGALRM signal. During each call of Scheduler’s
alarm function each video in the service list is inspected. All (secondary)
events for a video will be handled by passing them to their respective

event handlers of name BandleEvent (). Such events are:




===,

- e e mee s ey e e e e e

Video Server

19

+ Messages arrived on the pipe from the child process.
» Packets arrived from the meta server on respective TCP socket.
» Control packets arrived from video clients on UDP sockets.

The events are processed according to the Scheduler’s finite state
machine. Please refer to table “Server finite state machine (scheduler)” on
page 11.

Schedule () serves isochronous streams statistically at any real frame rate
between 0 and 25 frames per second. In order to do so, it inspects each
video during each scheduling cycle and decides whether a frame becomes
due during the cycle. Thus frames may be scheduled early but never late.
The duty to send the next frame to a video client is then passed to the
respective object of class ScheduledVideo.

Schedule() uses Scheduler’s methods sendpiskManMsg() and Send-
ServerMetaPDU to communicate with the disk manager and the meta
Server.




— — — - —

—

1

— — — —

|

Video Server

class Scheduler
public:

char

int

unsigned long
float

float

20

{

* name;
runs;
time_slice;
workload; // 0 <= workload <= 1
freetime; // 0 <= freetime <= 1

ScheduledVideoList video_list;

int
int
StreamManager

number_videos;
max_=fps;
* stream_manager;

#ifdef __ STATISTICS

TallyVariance
FILE
#endif

service_time;
* gcheduler_stat_file;

Scheduler (StreamManager*, int, int);

~Scheduler();
void
void
void
float
int
int
void
void
void
void
void
void

protected:
long

Schedule();

AddVideo (ScheduledVideo *);
RemoveVideo (ScheduledVidec *);

Load();

SwitchOn();

SwitchOff();

ReSchedule(int);

HandleEvent (PipeBuffer *);
HandleEvent(ScheduledVideo *, int, unsigned long);
HandleEvent (MetaPreparePDU *);
HandleEvent (MetaCommitReadyAbortPDU *);
SendDiskManMsg(PipeBuffer *);

checkpoint([3];

struct itimerval itimer;

int
SELECT
TIMEVAL
void

4.1.2.2

Listen, Speak;
* pipe select;
* gelect_timer;
SendServerMetaPDU (char*, int);

ScheduledVideo Class Description

Upon request from the meta server the server creates an instance of class
ScheduledVideo. The class contains all vital information regarding one
video service. Such information are:

« the associated shared memory buffer identifier, shared memory
address, and state

« the associated instance of class SubStream

+ play-back information such as the initial frame number, the current
frame number, the skip factor for fast forwarding, the deadline for
starting play and various audio information currently unused.




e o e e b e e e e e e e bew e e e e

Video Server

class Scheduledvideo : public Video [

public:

class SubStream * sub_stream; // interface to object sub_stream

int shmid;

int active_segment;

int frame_number;

int initial_frame;

int fforward;

int timeout;

long time_stamp;

SHMBufferInfo buffer(2)

int volbase; // Baseline for volume control

int audioslice; // Number of audio bytes per frame

Audio_hdr audio; // Budio header from input file
Scheduledvideo (};
~Scheduledvideo();

int Due();

void SendFrame(long, int = 1});

class Video {
public:

int

int

int

int

int

int

unsigned long

The class is inherited from class Video (in server.h) like disk manager’s
class ServicedVideo. The parent class Video contains common fields like

+ the video identifier unique to every stored video

» the unique stream identifier issued by the meta server

+ the video’s default frame rate

* how many servers the video is stored on

« the video’s state (refer to table “Server finite state machine (sched-
uler)” on page 11).

vid; // VID from disk manager

sid; // Stream ID from meta server

fps; // play speed [fps]

n_frames; // contains n frames

n_server; // number of servers

status; // reserved, playing, on hold, done
position;

int operator<(video&);
int operator==(Videos&);

Besides its constuctor and its destructor which detaches from shared
memory, class ScheduledVideo contains two methods. The method pue ()
decides whether a frame becomes due during the current scheduling
cycle, using the field time_slice in class Scheduler.

Method sendrrame () is used to send one frame to a video client using. It
is called with a time-stamp and an optional flag indicating whether the
video should be advanced by one frame after sending (default is true). The
method inspects the shared memory buffers and calls SubStream’s
method sendFrame () if it finds the next frame. Eventually finds a shared
memory buffer empty and requests the disk manager to refill it by issuing




e e e s i s e s

——y e

o

Video Server

4.1.2.3

22

a READ_BUFFER request and declares the other shared memory buffer
as active. The condition of no more frames being buffered in either one
buffer as a result of severe disk manager overload can be triggered in
SendFrame () as well.

If -p__NoaupIo is specified as compile option SendFrame() explicitly
extracts all audio information from the video data before sending to the
video client. Only raw parallax JPEG data contained in a parallax movie
frame is sent. However, with the option not set all the complete parallax
movie frame as stored in a parallax movie file is sent to the video client. It
is therefore left up to the client to parse through the video frame extrac-
tion of video and audio data.

cI -
- 6
= 2 | 5 S
= = | 2 2
< o) c [
Q,! < = -
< C = Z.
) ! 3
-
u_!
2| - S
B 2 ;é
Q‘ !—: LL‘
< k= e
Q - Z
[ (84

Figure 1: Video frame format with audio data contained (top)
and without audio data ( borrom).z

ScheduledVideo’s method sendFrame () treats video frames regardless of
whether audio data is originally contained. If not, the extraction by the
switch __~oaupio makes a difference of six bytes (LOAD_JPEG +
sizeof(int) + END_FRaME). Otherwise the extraction will cause the
dropping of six + audioslice bytes.

StreamManager Class Description

In general, class StreamManager is responsible for all network i/o. This
includes reading and writing on the TCP socket to the meta server, read-
ing at writing on all UDP sockets to video clients, and frame fragmenta-
tion and reassembly.

2. Please note that the movie frame format described in Parallax’s “Software Developer’s Guide” is
incorrect. It does not correspond to the format of movie files written by Parallax’s *videotool’.




e

,_m B | *W W# AW .f - _,

— e s - —

Video Server

23

The class makes explicit use of class SubStream which will be described
below. It also uses the C++ network API developed at Eurecom for
addressing transparency. The member Metastream of class SOCKINET-
STREAM provides the TCP stream to the meta server.

Class StreamManager is initialized with the meta server port number, its
hostname and the maximum number of UDP datagrams per frame
(defaults to 20). In the constructor it establishes a TCP connection with
the meta server. The connection is closed in the constructor, thus remain-
ing persistent for the video server’s lifetime.

StreamManager’s method for sending frames to video clients, send-
Frame ( ), fragments a video frame into pieces of PDUDATASIZE (defined in
pduC.h) bytes or less each and sends them as UDP datagrams. Its counter-
part ReceiveFrame () reads video data contained in a datagrams and can

be used to receive a video stream for storage.

SendControlMsg() and ReceiveControlMsg() are used to issue control
pdus like an END to the video client. They are also carried in UDP data-
grams. SendMetaMsqg () and ReceiveMetaMsg () communicates with the
meta server via TCP.

CreateSubStream() creates a new instance of class SubStream. Its coun-
terpart DeletesubStream() deletes it. Since the video client’s address
and port number are unknown at the point of time of creation of individ-
ual instance of class SubStream (during the two phase commit with the
meta server), this information has to be carried into the object later on. To
do so one has to call the method InitRemoteaddr() with the video cli-
ent’s hostname and its port number.




= e T s

e ) e A T e —

e

— e e —

—

Video Server

24

class StreamManager |

public:
// network connection stuff for Meta Server communication
SOCKADDRINET MetaLocalAddr;

MetaRemoteAddr;

SOCKINETSTREAM* MetaStream;

char HostName[32];

// select object neccessary for listening on several file descriptors
SELECT* SelectStream;

TIMEVAL* Timing;
// time stamp information
long sendtime;
// segmentation buffer
DataPDU* SegBuf;
LAE MaxSize;

StreamManager(int, char*, int);

~StreamManager();

SendFrame (SubStream*, char*, int, int, unsigned long);

ReceiveFrame (SubStream*, char*, int);

SendControlMsg(SubStream#*, int, unsigned long = 0, long = 0, int = 0);

ReceiveControlMsg(SubStream*, int*, unsigned long* = NULL, long* NULL,
int* = NULL);

SendMetaMsg(char*, int);

ReceiveMetaMsg(char*, int);

SubStream* CreateSubstream();

DeleteSubstream(SubStream*);

InitRemoteAddr (SubStream*, char*, int);

LookUpId(SOCKINETSTREAM*) ;

4.1.2.4 SubStream Class Description

An instance of class SubStream is created for each video client during the

two phase commit protocol. Class SubStream connects to server to its
video client by using UDP sockets (class SOCKINETDGRAM, for

addresses MYSOCKADDRINETATM and SOCKADDRINETATM).

SubStream is created by passing an object of class SELECT to which its

net descriptor will be added. Later on one can use the SELECT object for

polling the socket.

SubStream’s method assembleFrame() generates UDP datagrams from

video frames corresponding to section “Video transmission protocol™ on

page 8, and writes the datagrams to the corresponding socket. Video

frames are fragmented into pieces of ppupaTASIZE (defined in pduC.h)

bytes or less each.




= e ‘44 M;

| -

,____ =~ e O e B =

o —

Video Server

typedef struct
int
int
inkt
int
JPEGHeader

StoredvideoInfo (
vid;
position;
size_in_blocks;
n_server;
jpeg_info;

The member position specifies the video’s starting position on the raw
disk as expressed in blocks of size pIsk_Max_BUFFERS (also defined in
vstorage.h). The video is assumed to be stored sequentially, occupying
size_in_blocks blocks of size DISK_MAX_BUFFERS bytes.

In its dispatch loop serve () DiskManager performs a blocking read from
the message pipe to the scheduler process. It handles all incoming
requests, events and errors on a first-come-first-serve basis. Please refer
table “Server finite state machine (disk manager)” on page 12 for com-
plete reference of the disk manager - scheduler IPC protocol. When
requested to open a new video DiskManager searches its library for the
video identifier passed from the scheduler. If found, a new ServicedVideo
instance is created and shared memory allocated as described. If all goes

well the video is added to DiskManager’s service list video_list.

DiskManager’s methods for reading from and writing to the disk file
descriptor are straight forward and need not be further explained. It
should be made clear that class DiskManager is a best-effort approach

without any performance optimization.

class DiskManager ({

public:
DiskManager
~DiskManager
int
1ot

(ehar *,; dint, int);
()i
rawdisk;
ShutDown;

#ifdef _ STATISTICS

TallyVariance
FILE
#endif
int
int
int
int
int
int
void

service_time;
* diskman_stat_file;

Add (ServicedVideo *)

Add (StoredVideo *);

Remove (Servicedvideo *);
Remove (StoredvVideo *);
Read (off_t, int, char *);
Write (off_t, int, char *);
Serve();

ServicedVideoList video_list;

protected:
int

DID:

StoredVideolist library;

int
int
void

Listen, Speak;
number_videos;
SendSchedulerMsg (PipeBuffer *);




=

4.4_.

e

— o B e

Video Client 27

4.1.3.2 StoredVideo Class Description
Class StoredVideo is used to store information on one video stored on the
video server’s disk. It contains the struct StoredVideolnfo shown in the
previous section and new operators == and < to allow a Stored Video to be
sorted in ascenc-:ling order by its unique video identifier.

class StoredVideo |

public:
StoredVideolInfo info;
StoredvVideo(StoredvVideolInfo *);
int operator==(Storedvideos§);
int operator< (StoredvVideo&);

4.1.3.3 ServicedVideo Class Description

Class ServicedVideo is used to store information on one video currently
serviced or ready to be serviced by the disk manager. It differs from class
StoredVideo in the fields determining the attached shared memory, and
the operators == and < to allow a ServicedVideo to be sorted in ascending
order according to the video’s position on the disk as stored in
info.position. If two serviced videos hold one same disk position (i.e.
the video server plays the same video to different clients) the video’s
unique stream identifier is taken into the metric.

class ServicedVideo : public Video (

public:
int shmid;
char * shmaddr;
int shmsize;

StoredvVideoInfo info;
ServicedVideo (int, StoredVideo *);
~ServicedvVideo();

int operator==(ServicedVideos);

int operator< (ServicedVideo&);

4.2 Video Client

4.2.1 General Architecture
The video client is designed to play several video streams at the same
time. The mechanism for administration of several streams is already
included, yet the scheduling of videos with different frame rates remains
unimplemented. A class Scheduler is also provided but not yet imple-
mented. At present the client runs as one process. The architecture of the

client is fully asynchronous and event-driven.




= B B B T BV b B B

Video Client

4.2.1.1

The functionality can be divided into two parts:

» Handling of metaserver communication, user interface communica-
tion and the communication with the servers, especially reading
frames from the ATM network. These tasks are accomplished by a
dispatch loop in main() of the client. The connection to the meta
server is established using Ethernet TCP, the transmission of frames
by the servers is based upon ATM UDP. For both techniques a trans-
parent C++ network API developed at EURECOM has been used. The
communication with the user interface is handled via standard i/o
pipes.

« Display of frames in an X window with the correct frame rate. In
order to guarantee real-time behavior an interval timer is set to 1
divided by the frame rate of the video. At each SIGALRM delivery
the client process calls the scheduleFrames () function and displays
the frames. The realization of the display was also supported by a C++
Parallax API developed at EURECOM.

Those two parts are bound together by an instance of class SORTLIST, a
list of all videos to be served by the client. The list is sorted by a unique
stream identifier issued by the meta server and a priority code currently
unused. The information stored in class Video allows the client to address
the ATM network and the meta server, as well as to draw video data on the
screen (refer to section “Video class description™ on page 30).

Main Dispatch Loop

One of the main tasks of the client is the communication with the servers,
the user interface and the meta server. Before entering the main loop the
client creates instances, opens files for statistical tracing and debugging,
and builds a TCP connection to the meta server. If no meta server is found
or the connect command fails the client exits. After successfully connect-
ing the client the connection is preserved for the client’s lifetime. In the
main loop a select call with well-defined waiting time is made. Then the
following steps are periodically taken:

»  Browse through a list of Video objects to be served by the client:
For one Video stream the client creates one UDP socket for each
server. For each Video object the corresponding sockets are now
checked if readable. In case data is encountered on the socket it is
peeked into (by using the MSG_PEEK command) and the client
decides which kind of PDU arrived.




—— e

9

H

—

Video Client 29

For each data PDU a reassembling function is called that can rebuild
the frames that have been fragmented by the sending processes,

respectively the servers.> While in the state VIDEO_NEGOTIATE the
arrival time of the frames is used for an adjusting calculation of the
servers start time as expressed in its own system time; finally the
frames are dropped.

For each Video object X event handling is then performed. Expose
and Resize events are caught and handled. Expose events switch the
Parallax display to prLx_viDEO that provokes a redraw of the image.

Resize events are handled with Parallax’s resize function.

Finally, the states of each Video are checked, state transitions are per-
formed and time-outs are controlled and updated. We implemented
one time-out for an empty frame queue and one for retransmission and
negotiation while calculating the starting points of the servers as UDP
does not guarantee the arrival of the packets. A time-out provokes
Video object deletion and its removal out of the service queue.

» Checking user interface input:
If data arrives on the standard input pipe it will be read and evaluated.
User commands are executed in conformance with the protocol
described in section “Finite state machines” on page 9.

» Checking meta server input:
If the file descriptor for the meta server socket in the select object is
set a look-ahead function is called to retrieve the identifier of the
arrived pdu. The client then performs state transitions as described in
section “Finite state machines™ on page 9.

4.21.2 Alarm Function
Depending on the frame rate of the current video an interval timer is set. It
calls the SIGALRM signal handler schedulerrames() which provides
for the accurate display of the video. As at present only one video stream
is supported by the client. For future multi-stream support a fixed frame
rate should be chosen. Each video object should be decided on having a

frame due to be displayed or not.* Browsing through the video list is how-
play g g

ever already implemented and performed during run-time.

The average size of a frame exceeds the maximum transfer unit of UPD. Hence it is necessary to
transmit the frames in smaller units. At present a unit size of 4096 bytes is used.

This same mechanism has been implemented in the video server. It would have to be ported to the
video client.




—_—

Video Client 30

The function evaluates each video's state. Two states that are most impor-
tant for the scheduling function:

— b — —

ity

— ey e s e

VIDEO_READY:

In this state the size of the frame queue, i.e. the number of playable
frames, is checked. Once encountering a frame queue half filled a
transition to state VIDEO_PLAYING is performed. Thus we can
guarantee that at start-time of the video and in the case of slow servers
the frame queue gets partly refilled before any playback may take
place. This strategy optimizes the use of our buffer.

VIDEO PLAYING

In the state VIDEO_PLAYING the function also checks the size of the
frame queue. If found empty it follow the transition to
VIDEO_PLAYING and sets a timer. To guarantee an accurate play-
back the client follows the following strategies:

It calculates the difference between the sequence number of the frame
that is currently due and of the first frame in the queue. A negative dif-
ference indicates that the frame is late: it is discarded and removed
from the queue. On a positive distance a frame will be displayed if the
difference is either zero or greater or equal to the number of servers
involved. This makes it possible to react in real-time to frame loss and
server shutdowns while being able to continue displaying the video. If
a server shuts down for any reason the video will continue to play
back with the same frame rate, yet with every nth frame missing. For a
great number of servers this is hardly noticeable to the user. A mecha-
nism for stream recovery has to be developed in the near future.

The client can be blocked temporarily by the X server when the user
moves or places other windows. It may also be blocked by launched
processes. In these cases the socket buffer overflows and arrived pack-
ets are dropped. The client detects packet drop by calculating the dis-
tance between two consecutive alarm function calls. With this value a
new due frame number is calculated. If the distance between the cur-
rent frame number and the calculated new due frame number is
greater than the buffer space currently free the frame queue and the
socket buffer are cleared. The current frame counter is set to the new
value. The expected frame numbers for the various sockets are
updated. This mechanism can react to large interruptions while




| =

F [

i

R

=]

=

e e ey e e e e e — b — )

Video Client

4.2.2
4.2.2.1

smaller ones are buffered.

Class Description

FrameBuffer and Buffer Class Descriptions

The Buffer class contains the video and playback data for one frame
received. FrameNum is used for play-back as mentioned above. status
can be either one of

« BUFFER_FREE
« BUFFER_RESERVED
« BUFFER_FULL

After a complete frame has been read a new buffer slot is allocated for the
next expected frame (BUFFER_RESERVED). A playable buffer is set with
BUFFER_FULL.

1Time is used to calculate the delay between subsequent frames in the
queue. This mechanism can for example be used for detecting the delay of
certain servers. data is a pointer to the continuous media data, respec-
tively JPEG compressed images.

class Buffer [

public:
int
int
u_int
long
long
char*

Buffer ();
~Buffer();

FrameNum;

FrameLength; // absolut length in bytes
status; // reserved, free,

rTime; // remote time, means send time
1Time; // local time, means receive time
data; // frame data

int operator<(Buffers):
int operator==(Buffers);

The Buffer constructor sets status to BUFFER_FREE and allocates an
amount of memory sufficient for storage of one frame (defined in MAX-
viDEO). The maximum size of one frame is not known in advance. The
memory is freed by the destructor.

The FrameBuffer class makes use of the Buffer class. It contains an array
of Buffer elements called BList and a sorted list of pointers to Buffer
slots called prist. PList is the actual frame queue. The queue is sorted in
ascending order by the frame number.

While calling the FrameBuffer constructor with the requested buffer size




r

i

s

— i W s S o .___

Video Client 32

anew BList object is created. Initially, the frame queue pList is empty.
The GetFreeBuffer() function returns an index to a free buffer slot in
BList. This index can be used to get access to the slot by using Get-

Buffer(int).

addFrame () inserts a buffer slot into the frame list and increases the num-
ber of playable frames by one. During the insertion SIGARLM is blocked
to avoid simultaneous access in the alarm function and in main(). The
counterpart RemoveFrame (int) removes either a specific frame number
or the first frame from the queue when called without an argument. Spe-
cific frame numbers must be removed during the negotiation process
between client and servers because adjust frames are not displayed.
QueueSize() returns the number of playable frames in the queue,
QueueEmty () returns TRUE on an empty frame queue.

class FrameBuffer{
public:

FrameBuffer(int);
~FrameBuffer();

GetFreeBuffer();
Buffer* GetBuffer(int);
BufferSize();

// plavable frame list sorted by framenumber
FrameQueue PList;

AddFrame (Buffer+*);
RemoveFrame(int = 0);
QueueSize();
QueueEmpty ()

protected:

// specifys the amont of playable frames in the buffer
int PlayableFrames;

int buffer size;

// buffer array provides elements toc be inserted in PList
Buffer>* BList;

4.2.2.2 SubStreamHandler Class
The SubStreamHandler class realizes the communication with the servers
that deliver together one video stream. Hence each video stream contains
an own SubStreamHandler object. It uses the communication API devel-
oped at EURECOM. An array of UDP sockets is created, one for each
server delivering a sub-stream of video data. We expect frame number
zero arriving on array element zero, frame number one on array element
one, etc. Since the location of each video are known by the meta server it
will distribute the correct destination ports to all involved servers during

the two-phase-commit protocol. The remote and local addresses are




e e

— —

Video Client 33

stored in sockADDRINETATM objects. Furthermore the SubStreamHandler
contains variables for frame reassembling, statistics and control of the
sub-streams. And it finally contains a FrameBuffer object for frame stor-
age as described in section “FrameBuffer and Buffer class descriptions”

_.‘44-4#

ﬁ_A_

— — —

on page 24.

class SubStreamHandler {

public:
// LA AR R R R R R E R R R R I U T R e upr o

// network connection stuff for server communication
// LE R R R R R R R R R R R R R R R R e  E L

FDSOCKINETDGRAM* ServerStream; // UDP-Socket for server substreams
MYSOCKADDRINETATM* LocalAddr; // Address Client (INET-Server)
SOCKADDRINETATM* RemoteAddr; // Address Server (INET-Client)

// EER A SRS R R R R R R R R R o e T e

// Variables for frame reassembling
// L R o R R e R R RS

int#* actual_slot; // actual buffer slot
int+* pdu_number; // expected PDU number
int* frame_number; // expected frame number
DataHeader* header; // PDU header

long* receive_time; // stores receive time
long* server_timeout; // catch server shutdown

ReassembleFrame(int);
ResetReInfo(int);

// RS SRR EEEE A SRS SRR R RS EEE R EEEER SRR R SRS ERR Rl R R R RN R

// variables for statistics & control
// LR E R R R EEEREEEEE EEEE EEEEEEEE B B R o 3

int NumberServer;

unsigned long* ScheduledPeriod;

long* ReceiveTime;

long* SendTime;

int* ExpNum;

int* last_lost; // last lost frame

int* lost_frames; // number lost frames

int* last_unexpected; // store last unexp for calculation
int* status; // substream status

long* interframe_delay; // controcl serverspeed

long* expected_delay; // might be different on frame loss

CalculateExpectedDelay( int, int, int = 0);
DisplayReport (FILE*);




i R i R i

— — — — — — — e —

e

T e e —

Video Client

35

is given in our environment for the reason that Fore’s UDP relies on con-
nection-oriented ATM with Fore’s SPANS. ReassembleFrame() may
return one the following values:

+ RE_FAILED
» RE_AWAIT
+ RE_SUCCESS

If the last pdu of a frame has been successfully read into the buffer
RE_succEss is returned. The buffer is inserted into the frame queue, the
expected delay is calculated and written into the debug file, and all buffer
variables are set. If further pdus are expected RE_AWAIT is returned. The
ResetReInfo() function resets all reassembling variables after a
RE_FAILED.

CalculateExpectedDelay () calculates the expected delay between the
currently arrived frame and the last one. This value increases when frames
are lost. Regularly however it stores a multiple of the frame rate in milli-
seconds.

DisplayReport () writes information about the number of lost frames,
the last lost frame number and the total number of lost frames into the
debug file.

InitRemoteaddr () 18 called after a COMMIT from the meta server. The
server destination addresses are initialized with hostname and port num-
ber.

The synchronization of the servers is performed by the adjustserver-
Last () function. It is called with the current server index and the frame
rate for the video. After having received a CONTROL_ADJUST each
server sends an adjust frame with a local time stamp to the client. When
all frames have been arrived the function calculates the individual starting
time of each server. The latest frame is taken as reference; all other serv-
ers are adjusted relative to this frame. The starting times are calculated in
each server’s own system time as follows:

The expected distance to the reference frame is added to the scheduled
time of the frame. This value is corrected by the actual arrival distance to
the reference. Finally, a time buffer is added. It equals of the maximum
round-trip time for all servers plus a buffer defined in
TIME_BUFFER_IN_SLICES. Even if frames are out of phase, i.e. the
expected frames are not received in descending order, the function per-




e

e e ee -

e e

e e e s e e

— e

[ — —— -

Video Client

36

4.2.2.3

forms a correct calculation for each server, calculating the expected dis-

tance using the variable ExpNum.

CONTROL_START pdus are then sent to all involved servers. The
adjust frames are removed from the frame queue. This strategy minimizes
the delay between a play request of the user and the actual starting point
of the video. As tests show servers are well-synchronized. This mecha-

nism is also used to restart playing after a pause.

LookUpId() performs a message peek into a UDP packet. It returns the
pdu identifier or -1 on failure.

substreamind () checks the states of each server stream and returns TRUE
if all server’s states are SUBS_END.

AbortSubstreans () sends an CONTROL_ABORT to all servers but the
one who provoked the abort. It returns TRUE on success.

StreamManager Class Description

The StreamManager is generally responsible for all network i/o. It offers
almost the same functionality as the video server’s StreamManager (refer
to section “StreamManager class description” on page 18). The client’s
StreamManager contains additional functions to connect and disconnect
to the meta server. The functions CreateSubStreamHandler() and
DeleteSubStreamHandler() COI‘I‘GSpOI‘td t0 CreateSubStream() and
DeleteSubStream() in the video server’s StreamManager. Though per-
haps unnecessary these functions provide transparent access to the net-

work.




4_4 ‘AW Au 4#

— e

g e g

Video Client 37

class StreamManager |

publ rek
// network connection stuff for Meta Server communication
SOCKADDRINET MetaLocalAddr; // Address Server (INET-Server)
SOCKADDRINET* MetaRemoteAddr; // Bddress Meta Server (INET-Client)
SOCKINETSTREAM* MetaStream; // TCP socket Server (INET-Server)
char HostName[32]; // Local hostname
int PortNumber; // Local Port

// select object neccessary for listening on several file descriptors
SELECT* SelectStream;
TIMEVAL=* Timing;

StreamManager() ;
~StreamManager();

SubStreamHandler* CreateSubStreamHandler(int);
DeleteSubStreamHandler (SubStreamHandler*);

SendMetaMsg(char*, int);
ReceiveMetaMsg(char*, int);

LookUpId(SOCKINETSTREAM®*) ;
ConnectMetaServer(int, char¥*);
DisconnectMetaServer();

4.2.2.4 Video Class Description
As mentioned above the Video class binds the two parts of the client
together. Video streams are administered in a sorted list of Video obje