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ABSTRACT

This paper focuses on cascaded approaches to non-linear acoustic
echo cancellation (AEC) for mobile communications. The contribu-
tions in this paper are two-fold. They relate (i) to computationally
efficient pre-processing and clipping compensation which aims to
improve non-linear modelling and (ii) decorrelation filtering which
aims to improve the tracking performance of a conventional linear
AEC algorithm. While well-established in the literature the two
modules require significant development in order that they function
coherently in a cascaded approach. This paper presents new, adap-
tive parameterisation procedures for both modules and demonstrates
significant improvements in terms of echo return loss enhancement
when the two modules are combined.

Index Terms— Echo cancellation, non-linear, Volterra, NLMS,
decorrelation filtering, clipping compensation.

1. INTRODUCTION

The problem of acoustic echo arises during mobile communication
due to the coupling of a far-end signal to a near-end microphone.
With the delay in the network the far-end user will thus hear their
own delayed voice which can often perturb communications qual-
ity. Early acoustic echo cancellation (AEC) solutions [1] are based
on the assumed linearity of the loudspeaker enclosure microphone
(LEM) system. However, due to the increasing use of smaller loud-
speakers the linearity assumption does not always hold.

Non-linear solutions have been developed to tackle the prob-
lem of non-linearity and are generally based on Volterra series [2].
Unfortunately though, they are typically complex and convergence
can be slow. Among alternative solutions [2] is the cascaded ap-
proach [3–5] which divides the LEM system into two sub-systems:
a non-linear system (pre-processor) which represents the amplifier
and loudspeaker and a linear system (linear AEC) which represents
the acoustic channel and the up-link path.

We have achieved competitive performance with such an ap-
proach [6] and in this paper we report our recent efforts in two di-
rections to improve performance still further. First, we investigated
the use of separate models of the amplifier and loudspeaker within
the pre-processor. These two components typically exhibit different
characteristics and thus independent models are more appropriate:
a clipping model for the amplifier and a power-filter model for the
loudspeaker. In addition we have developed various modifications
to the original work in [3–5] to significantly improve computational
efficiency.

Second, we have investigated the use of decorrelation filtering.
This aims to counter the increase in correlation caused by pre-
processor filtering and the presence of non-linearities. Decorrelation
filtering is also known to improve the convergence of AEC based on
normalized least mean square (NLMS) algorithms. Even if alterna-
tive linear AEC algorithms such as the recursive least square (RLS)
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Fig. 1. The non-linear AEC system is composed of, a pre-processor
that model the down-link path, a decorrelation filterw(n) and a lin-
ear AECh(n).

algorithm tend to deliver faster convergence, tracking performance
is known to be inferior to that of the NLMS algorithm [1, 7]. With
decorrelation filtering NLMS algorithms are generally preferred
on account of lower complexity, and better stability and tracking
performance. Furthermore, despite efforts to improve pre-processor
convergence in the cascaded model [4] we deem the convergence
of linear AEC to be of higher priority. This is because the pre-
processor is in any case relatively time-invariant (and thus there is
reduced need for efficient tracking) and since it fundamentally de-
pends on feedback from the linear AEC module [3–6] which is more
time-variant (and thus specifically requires efficient tracking). While
being relatively well-established in the literature, the integration of
an independent clipping model and decorrelation filtering within the
cascaded model is far from straight forward and requires significant
new development. It is reported here and shown to deliver significant
improvements to our original system presented in [6].

The remainder of this paper is organized as follows. In Section 2
we present an overview of the proposed system model. In Section 3
procedures to estimate the different parameters are derived. Experi-
mental results and analysis are presented in Section 4. In Section 5
we present our conclusions and perspectives.

2. SYSTEM MODEL

In this section we review the non-linear AEC model presented re-
cently in [6] and outline the essence of the new contributions pre-
sented in this paper. As illustrated in Figure 1 the approach is com-
posed of a non-linear pre-processor (1) and a group of interconnected
modules combining decorrelation filtering and linear AEC.
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Fig. 2. Pre-processor module: the clipping function represents the
amplifier effects while the power filter models the loudspeaker.

2.1. Pre-processor and clipping model

The pre-processor elements (block 1 in Figure 1, expanded in Fig-
ure 2) involve models of the downlink path which includes the ampli-
fier and loudspeaker. In a typical system these components are well-
known to have the greatest contribution to non-linearities [5, 8, 9].
They stem from the use of smaller loudspeakers, high signal levels
in hands-free mode and from limited amplifier power which may
introduce clipping distortion. As illustrated in Figure 2 clipping dis-
tortion is modelled with a hard clipping function [3,4,10] which has
a single parameterc operating on the inputx(n):

z(n) = fc(x(n)) =

{
sign(x(n))c if |x(n)| ≥ c

x(n) if |x(n)| < c
(1)

wherec ≥ 0 represents the absolute clipping value.
The loudspeaker is modelled with a power filter [6,9]. Short im-

pulse responses and slow variability (relative to the acoustic channel
changes) are generally assumed. As illustrated in Figure 2 the output
of the power filter can be written as:

ŷ
P
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wherezp(n) = [zp(n), zp(n − 1), · · · , zp(n − Np − 1)]T is the
input signal to thepth sub-filterhp(n) which hasNp taps and output
ŷ

p
(n).

2.2. Decorrelation filtering and linear AEC

The adaptive decorrelation filter (block 2 in Figure 1) is represented
by the adaptive filterw(n) and is applied to the pre-processor output.
Duplicate filtering is applied to the echo signaly(n) so that the echo
path estimate will still converge toh(n) [1, 11]. As in [7, 12] the
output is given by:

ŷ
w

P
(n) = ŷ

P
(n) − w

T (n)ŷ
P

(n − 1), (3)

which, according to classical LP analysis, should be minimized so
that ŷw

P
(n) is decorrelated.

The linear AEC module (block 3 in Figure 1) represents the con-
catenation of the acoustic channel and the up-link path. The acoustic
channel is assumed to be linear and has a significantly longer im-
pulse response and also a higher degree of time variability relative to
down-link components (e.g. in the case of a moving, near-end user).
Estimation of the echo path is thus generally linear and adaptive in
nature [1]. The up-link path includes a microphone and amplifier
which generally introduce only small distortion due to low signal
levels. It is also generally assumed to be linear [4,5,9].

On account of the decorrelation filter the linear AEC operates on

ŷw

P
(n). Thush(n) is duplicated and applied tôy

P
(n) as illustrated

in Figure 1. The output of the linear AEC module is given by:
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P
(n−N−1)]T . The real

echo estimatêy(n) is then obtained an identical filter̂h(n) which is
applied toŷ

P
(n). The outputŷ(n) is therefore exactly the same

as in an otherwise entirely conventional AEC implementation and is
subtracted fromy(n) in the usual way.

3. PARAMETER ESTIMATION

Though conceptually straight forward in principal, the integration
of the new clipping compensator and adaptive decorrelation filter
into our existing system [6] requires significant development. It is
presented here starting with a description of our baseline system.

3.1. Baseline system

The cascaded power filter and linear AEC system are presented in
detail in [6] and thus we give here the essential baseline estimation
procedures with minimal detail only. Ignoring the clipping com-
pensator in Figure 2, i.e. by assuming thatx(n) = z(n), the pre-
processor estimate is obtained according to:

ĥp(n + 1) = ĥp(n) + µ
p
(n) [ĥT (n)Zp(n)]T e(n)

︸ ︷︷ ︸

=∆hp(n)

(4)

whereZp(n) = [zp(n), zp(n − 1), · · · , zp(n − N − 1)]T and
wherezp(n) is an input vector with lengthNp whereµ

p
(n) =

0.01

‖hT (n)Zp(n)‖2
+ǫ

and whereǫ is a regularization factor to avoid di-

vision by zero. The estimate of linear filterh(n) is given by:

ĥ(n + 1) = ĥ(n) + µ
l
(n)ŷ

P
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l
(n) = 0.75

‖ŷ
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(n)‖2
+ǫ

.

3.2. Clipping compensation (CC)

The proposed clipping estimator is based on the system presented
in [10]. In order to derive an LMS-based estimate of the clipping
level we need to incorporate the clipping function (1) into an expres-
sion for the feedback error leading to:

e(n) = y(n) − h
T (n)

P∑

p=1

h
T

p (n) [fc(X(n))]p
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where[fc(X(n))]p indicates that the functionfc(x(n)) is applied
to each element of the matrixX(n) = [x(n),x(n− 1), · · · ,x(n−
N − 1)]T wherex(n) = [x(n), x(n − 1), · · · , x(n − Np − 1)]T .

The clipping level is estimated recursively by setting the deriva-
tive of the square error with respect toc equal to zero. This leads
to:
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whereµ
c
(n) = 0.01

1+Gc(n)·0.01
is an adaptive step size derived from

the least perturbation approach as given in [13] and whereGc(n) =
Gc(n − 1) + e2(n). The derivative∂fc

∂c
(x(n)) is equal to:

∂fc

∂c
(x(n)) =

{
sign(x(n)) if |x(n)| ≤ c

0 elsewhere
(7)

According to [10] we can furthermore simplify (6) by constrain-
ing ĥ1(n) to δ(n), whereδ(n) is the Dirac function. Equation (6)
then becomes:

ĉ(n + 1) = ĉ(n) + µ
c
(n)ĥT (n)

∂fc

∂c
(x1(n))e(n) (8)

As explained in [5, 10] the constraining ofĥ1(n) to δ(n) also
modifies sub-filter estimates forp ≥ 2 and the linear AEC estimate
ĥ(n). In this case the sub-filterŝhp(n) will converge toh−1

1 (n) ∗

hp(n) andĥ(n) will converge toh1(n) ∗ h(n).
We also propose here an approach to reduce sub-filter estima-

tion complexity which aims to offset the extra computation intro-
duced through clipping compensation. Computation of the gradient
∆hp(n) in (4) is rather complex as the calculation ofZp(n)ĥT (n)
requiresNp×N multiplications. A more efficient approximation can
be obtained if, for all but the first coefficient of the gradient∆hp(n),
ĥ(n) is replaced by previously calculated echo path estimates. Thus,
instead of:

ĥ
T (n)Zp(n) = [ĥT (n)zp(n), · · · , ĥ

T (n)zp(l)
︸ ︷︷ ︸

=z̃p(l)

,

· · · , ĥ
T (n)zp(n − Np − 1)]

wherez̃p(l) = ĥT (n)zp(l) depends on the current estimateĥ(n)

we usez̃p(l) = ĥT (l)zp(l) which depends on̂h(l) calculated in
previous iterations. This approximation does not require any com-
putation forl < n and leads to:

ĥ
T (n)Zp(n) = [ĥT (n)zp(n), · · · , ĥ

T (l)zp(l)
︸ ︷︷ ︸

=z̃p(l)

,

· · · , ĥ
T (n − Np − 1)zp(n − Np − 1)]

Complexity is thus reduced by a factor ofNp per sub-filter with
the added advantage of reacting faster to changes in the echo path.
The only drawback is that initial convergence is somewhat slower.
Note that a similar simplification can be applied to other cascaded
approaches, for example those in [3–5].

3.3. Decorrelation filtering (DF)

Conventional, fixed approaches to decorrelation are not appropriate
here due to the use of pre-processing to which the decorrelation fil-
ter must adapt. Adaptive decorrelation is thus necessary but is in-
evitably more complex. Using the LMS criteria to minimise the
decorrelation filter output̂yw

P
(n) we obtain an adaptive estimate of

w(n) according to:

w(n + 1) = w(n) + µ
w

(n)ŷ
P

(n − 1)ŷw

P
(n)

whereµ
w

(n) = µ

‖ŷ
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and whereµ ≤ 0.01. In practice

a larger value ofµ is used initially to encourage rapid convergence
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Fig. 3. ERLE against time in an environment where the acoustic
channel varies and with an interval of loud speech.

whereas a smaller value is used subsequently for improved stability.
We now consider the effect of decorrelation filtering on other

system elements. First̂y
P

(n) in (5) is replaced bŷyw

P
(n) and sim-

ilarly e(n) is replaced byew(n) as in Figure 1. The input to the
linear AEC module is thus decorrelated and so convergence is im-
proved. Second, on account of adaptive pre-processing, the signal
ŷ

P
(n) in (2) will be highly non-stationary. It is then necessary to

apply lower step-sizes to sub-filter estimation in order to reduce the
non-stationarity in̂y

P
(n) and thus to improve decorrelation filtering.

For this reason the decorrelation filter is of short order so that it can
reliably follow variations in pre-processing. The decorrelation filter
also has secondary benefits. In (4) we see that sub-filter estimation
uses the linear AEC estimatêh(n) and will now be more accurate
(faster convergence). The pre-processor estimate is then itself more
accurate and will converge faster, resulting in more stable sub-filter
estimationĥp(n). Note also that, due to the presence of clipping
compensation, decorrelation filter estimation should be paused dur-
ing intervals in which clipping compensation is applied, i.e. when
z(n) = ĉ(n), since in these intervals a constant-level pre-processor
output may disturb estimation. A solution involves changing the
decorrelation filter step size tōµ

w
(n) = (¬ ∂fc

∂c
(x(n))) · µ

w
(n)

where¬ is the logic ‘NOT’ and where∂fc

∂c
(x(n)) is as given in (7).

Hence¬ ∂fc

∂c
(x(n)) is equal to0 whenz(n) = ĉ(n) and equal to

δ(n) otherwise.

4. EXPERIMENTAL WORK

All algorithms are assessed using real speech signals recorded from
mobile phones in office environments. Two different experiments
are reported. The first aims to assess tracking performance whereas
the second aims to assess clipping compensation performance. Four
algorithms are assessed in both cases: the baseline system [6] with
and without clipping compensation (CC) and the baseline system
with decorrelation filtering (DF), both with and without clipping
compensation (CC). In all case the linear AEC hasN = 200 taps,
N1 = 1 tap andNp=2,3 = 5 taps. The decorrelation filterw(n) has
3 taps. Echo cancellation is assessed in terms of echo return loss en-

hancement (ERLE) given asERLE(m) = 10·log10

( ∑
m+M

n=m
y
2(n)

∑m+M
n=m e2(n)

)

whereM is the frame length equal to512 samples.
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4.1. Tracking performance

In the first experiment tracking performance is assessed using
recordings of real mobile devices in hands-free mode with abrupt
echo path changes and an interval containing high-level signals in
order to induce clipping. Results are illustrated in Figure 3. Clip-
ping compensation without decorrelation filtering (baseline + CC)
results in poorer performance than the baseline until after20s, when
the clipping compensation estimate converges, after which there is
little difference in performance as the signal level is moderate. After
45s, however, (baseline + CC) performance subsequently improves
slightly where compensation is then effective in the case of clipping
induced by high-level signals. With decorrelation filtering (base-
line + DF) performance improves significantly and we observe rapid
convergence during echo path changes or pause to speech transitions
around11, 22 and39s. When decorrelation filtering is combined
with clipping compensation (baseline + CC + DF) performance
improves still further where the signal level is high. These results
show that decorrelation filtering offsets the effects of pre-processing
which introduces greater levels of non-linearity and more correlation
through sub-filtering, both of which are harmful to LMS-based adap-
tive filtering. The fact that (baseline + DF) is better than (baseline
+ CC) highlights the importance of rapid convergence and accurate
acoustic path estimates in cascaded approaches to echo cancella-
tion. We note that clipping compensation is effective only when the
acoustic path estimate is accurate (i.e. baseline + CC + DF). With
clipping compensation only (i.e. baseline + CC) improvements are
negligible.

4.2. Clipping compensation

Clipping compensation performance is assessed by forcing the ana-
log amplifier gain of the mobile terminal to its maximum in or-
der to induce saturation. Results are illustrated in Figure 4 which
again shows improved results, particularly with decorrelation filter-
ing. Here, however, as clipping is continuously active, we observe
that performance is improved even without decorrelation filtering
(baseline + CC). This is expected since power filtering cannot ac-
curately approximate clipping even with Gram-Schmidt orthogonal-
ization [14]. With decorrelation filtering, however, performance is
consistently better with clipping (baseline + CC + DF) compensa-

tion than without. Decorrelation filtering improves convergence and
ensures accurate estimation of the acoustic path and hence, there-
fore, also of the clipping level which is dependent upon it (8). We
remark that, between10 and20s the baseline + DF gives better per-
formance than the baseline + CC + DF. This is explained by the time
required for the clipping compensator to converge.

All these observations show that acoustic path tracking is as im-
portant as non-linear modelling and that, even with a good model
of non-linearities, better performance is difficult to attain when the
linear acoustic path estimate is inaccurate.

5. CONCLUSIONS

This paper proposes a simplified approach to model loudspeaker
and amplifier non-linearity though independent power filtering and
clipping compensation. Decorrelation filtering is shown to bring
large improvements in global system performance. The interaction
between different system elements is described and estimation pro-
cedures for efficient integration are presented. Experimental results
show that tracking of the acoustic path is as important as reliable
modelling of non-linearities; robust tracking improves pre-processor
estimation accuracy, particularly of the clipping compensator. The
baseline NLMS-based non-linear AEC algorithm is shown to be
largely inefficient for non-linear AEC due to slow convergence;
even with a good model of the LEM system improvements are
marginal. Thus with cascaded approaches to non-linear AEC in-
volving clipping compensation and decorrelation filtering good
tracking performance is essential to global system performance.

6. REFERENCES
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