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near-end from far-end
| ABSTRACT | L } a(n)
This paper focuses on cascaded approaches to non-linear acoustic / ]

non-linear
Pre-processor

echo cancellation (AEC) for mobile communications. The contribu-
tions in this paper are two-fold. They relate (i) to computationally
efficient pre-processing and clipping compensation which aims to
improve non-linear modelling and (ii) decorrelation filtering which
aims to improve the tracking performance of a conventional linear
AEC algorithm. While well-established in the literature the two
modules require significant development in order that they function
coherently in a cascaded approach. This paper presents new, adap-
tive parameterisation procedures for both modules and demonstrates
significant improvements in terms of echo return loss enhancement
when the two modules are combined.

Index Terms— Echo cancellation, non-linear, Volterra, NLMS, y(n>|:
decorrelation filtering, clipping compensation.

linear AEC with
decorrelation filter

Fig. 1. The non-linear AEC system is composed of, a pre-processor
1. INTRODUCTION that model the down-link path, a decorrelation filkefn) and a lin-
ear AECh(n).

The problem of acoustic echo arises during mobile communication
due to the coupling of a far-end signal to a near-end microphonedlgorithm tend to deliver faster convergence, tracking performance
With the delay in the network the far-end user will thus hear theiris known to be inferior to that of the NLMS algorithm [1, 7]. With
own delayed voice which can often perturb communications qualdecorrelation filtering NLMS algorithms are generally preferred
ity. Early acoustic echo cancellation (AEC) solutions [1] are base®n account of lower complexity, and better stability and tracking
on the assumed linearity of the loudspeaker enclosure microphorigerformance. Furthermore, despite efforts to improve pre-psoces
(LEM) system. However, due to the increasing use of smaller loudconvergence in the cascaded model [4] we deem the convergence
speakers the linearity assumption does not always hold. of linear AEC to be of higher priority. This is because the pre-

Non-linear solutions have been developed to tackle the probProcessor is in any case relatively time-invariant (and thus there is
lem of non-linearity and are generally based on Volterra series [2Jreduced need for efficient tracking) and since it fundamentally de-
Unfortunately though, they are typically complex and convergenc®€nds on feedback from the linear AEC module [3—6] which is more
can be slow. Among alternative solutions [2] is the cascaded agime-variant (and thus specifically requires efficient tracking). While
proach [3-5] which divides the LEM system into two sub-systems{eing relatively well-established in the literature, the integration of
a non-linear system (pre-processor) which represents the amplifi@h independent clipping model and decorrelation filtering within the
and loudspeaker and a linear system (linear AEC) which represeng@scaded model is far from straight forward and requires significan
the acoustic channel and the up-link path. new development. Itis reported here and shown to deliver significant

We have achieved competitive performance with such an apmprovements to our original system presented in [6].
proach [6] and in this paper we report our recent efforts in two di-  The remainder of this paper is organized as follows. In Section 2
rections to improve performance still further. First, we investigatedve present an overview of the proposed system model. In Section 3
the use of separate models of the amplifier and loudspeaker withiprocedures to estimate the different parameters are derived.iExper
the pre-processor. These two components typically exhibit differentnental results and analysis are presented in Section 4. In Section 5
characteristics and thus independent models are more appropriatee present our conclusions and perspectives.
a clipping model for the amplifier and a power-filter model for the
loudspeaker. In addition we have developed various modifications
to the original work in [3-5] to significantly improve computational
efficiency. 2. SYSTEM MODEL

Second, we have investigated the use of decorrelation filtering.
This aims to counter the increase in correlation caused by prdn this section we review the non-linear AEC model presented re-
processor filtering and the presence of non-linearities. Decorrelatiocently in [6] and outline the essence of the new contributions pre-
filtering is also known to improve the convergence of AEC based orsented in this paper. As illustrated in Figure 1 the approach is com-
normalized least mean square (NLMS) algorithms. Even if alternaposed of a non-linear pre-processor (1) and a group of interctethe
tive linear AEC algorithms such as the recursive least square (RLSjodules combining decorrelation filtering and linear AEC.



95 (n). Thush(n) is duplicated and applied #, (n) as illustrated
F‘C(x(n)) in Figure 1. The output of the linear AEC module is given by:
C

x(n) ~W AW

#(n) < §"(n) =" (n)37:(n)

whereg? (n) = [§%(n), % (n—1),- - ,y}’j(n—N—{)}T. Thereal
Power filter Clipping function echo estimatg(n) is then obtained an identical filté(n) which is
applied tog, (n). The outputy(n) is therefore exactly the same
Fig. 2. Pre-processor module: the clipping function represents th&S in an otherwise e_ntirely conventional AEC implementation and is
amplifier effects while the power filter models the loudspeaker,  Subtracted fromy(n) in the usual way.

2.1. Pre-processor and clipping model
3. PARAMETER ESTIMATION

The pre-processor elements (block 1 in Figure 1, expanded in Fig-

ure 2) involve models of the downlink path which includes the ampli-Though conceptually straight forward in principal, the integration
fier and loudspeaker. In a typical system these components are wedlf the new clipping compensator and adaptive decorrelation filter
known to have the greatest contribution to non-linearities [5, 8, 9]into our existing system [6] requires significant development. It is
They stem from the use of smaller loudspeakers, high signal levelsresented here starting with a description of our baseline system.
in hands-free mode and from limited amplifier power which may

introduce clipping distortion. As illustrated in Figure 2 clipping dis-

tortion is modelled with a hard clipping function [3,4,10] which has 3.1. Baseline system

a single parameteroperating on the input(n):
gen P g put(n) The cascaded power filter and linear AEC system are presented in

sign(z(n))c if [z(n)] > ¢ detail in [6] and thus we give here the essential baseline estimation
z(n) = fe(z(n)) = { 2(n) if w(n)) <c () procedures with minimal detail only. Ignoring the clipping com-
pensator in Figure 2, i.e. by assuming théh) = z(n), the pre-

wherec > 0 represents the absolute clipping value. processor estimate is obtained according to:
The loudspeaker is modelled with a power filter [6,9]. Short im- . . - -
pulse responses and slow variability (relative to the acoustic channel h,(n+ 1) = hy(n) + p,(n) [h' (n)Zy(n)]" e(n) 4)

changes) are generally assumed. As illustrated in Figure 2 the output

h . :Ahp(n)
of the power filter can be written as:
P whereZ,(n) = [zp(n),zp(n — 1), - ,2z,(n — N — 1)]T and
9. (n) = Z h” (n)z,(n) @) where 3%&") is an input vecFor with qugtHYp where ji, (n) =
o — ToT )2 (7 and where: is a regularization factor to avoid di-
=9, (n) e : . : o
o vision by zero. The estimate of linear filth{n) is given by:
wherez,(n) = [2F(n),2"(n — 1),--- ,2P(n — N, — 1)]T is the N . N
input signal to the" sub-filterh,, (n) which hasN, taps and output h(n+1) = h(n) + p, (1) » (n)e(n), ®)
9, (n). wherey, (n) = 0.75

e
2.2. Decorrelation filtering and linear AEC

The adaptive decorrelation filter (block 2 in Figure 1) is representeg'z' Clipping compensation (CC)

by the adaptive filtew (n) and is applied to the pre-processor output. The proposed clipping estimator is based on the system presented
Duplicate filtering is applied to the echo signgh) so that the echo jn [10]. In order to derive an LMS-based estimate of the clipping
path estimate will still converge th(n) [1,11]. Asin [7,12] the |evel we need to incorporate the clipping function (1) into an expres-
output is given by: sion for the feedback error leading to:

Jp(n) =gp(n) =W (n)§,(n - 1), ®)

e(n) = y(n) —h™(n) ; h;, (n) [fe(X(n))]p

which, according to classical LP analysis, should be minimized so =z (n)
thaty) (n) is decorrelated. o ) ) )
The linear AEC module (block 3 in Figure 1) represents the con¥Vhere[fc(X(n))], indicates that the functiorf. (x(n)) is applied
catenation of the acoustic channel and the up-link path. The acousfig €a¢h glement of the matri (n) = [x(n),x(n - 1), -, X("T_
channel is assumed to be linear and has a significantly longer im¥ — 1)I" wherex(n) = [z(n), z(n —1),---,2(n = Ny = 1)]7.
pulse response and also a higher degree of time variability relative to  The clipping level is estimated recursively by setting the deriva-
down-link components (e.g. in the case of a moving, near-end userjve of the square error with respect¢eequal to zero. This leads
Estimation of the echo path is thus generally linear and adaptive iF:
nature [1]. The up-link path includes a microphone and amplifier P
which generally introduce only small distortion due to low signal¢(p, 4+ 1) = &(n) + . (n)h” (n) Z h! (n) [8fc (X(n)]pe(n) (6)
levels. Itis also generally assumed to be linear [4,5, 9]. =1 oc
On account of the decorrelation filter the linear AEC operates on =27 (n)




wherep, (1) = traamyoor IS @n adaptive step size derived from

the least perturbation approach as given in [13] and whki(e) =
Ge(n — 1) + €*(n). The derivative (z(n)) is equal to:

3]
o
=

echo path‘
changes

2

baseline + CC + DF

baseline + DF

baseline + CC

baseline [6] 1
loud signal

IS
a
T
.

N
o
T

w
a1
T

Ofe (m(n)):{ sign(z(n)) if |z(n)] < c .

dc 0 elsewhere

w
o
T
L

According to [10] we can furthermore simplify (6) by constrain-
ing hi(n) to §(n), whered(n) is the Dirac function. Equation (6)
then becomes:

ERLE (dB)
N
(4]
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én+1) = é(n) + p, (T () = G (m))e)  (8)
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As explained in [5, 10] the constraining éf (n) to §(n) also
modifies sub-filter estimates fgr> 2 and the linear AEC estimate ) /
h(n). In this case the sub-filters,(n) will converge toh; ' (n) * 0 10 20 30 40 50 60
h,,(n) andh(n) will converge toh, (n) * h(n). me

We also propose here an approach to reduce sub-filter estima-
tion complexity which aims to offset the extra computation intro- Fig. 3. ERLE against time in an environment where the acoustic
duced through clipping compensation. Computation of the gradien¢hannel varies and with an interval of loud speech.

Ah,(n) in (4) is rather complex as the calculationf(n)h” (n)
requiresV,, x N multiplications. A more efficient approximation can Whereas a smaller value is used subsequently for improved stability.

o
T

be obtained if, for all but the first coefficient of the gradiéxi, (n), We now consider the effect of decorrelation filtering on other
h(n) is replaced by previously calculated echo path estimates. Thusystem elements. Firt, (n) in (5) is replaced by, (n) and sim-
instead of: ilarly e(n) is replaced by" (n) as in Figure 1. The input to the
) R R linear AEC module is thus decorrelated and so convergence is im-
b (n)Z,(n) = [ (n)zp(n), -, h"(n)z, (1), proved. Second, on account of adaptive pre-processing, thalsign
o 7, (n) in (2) will be highly non-stationary. It is then necessary to
~ =0 apply lower step-sizes to sub-filter estimation in order to reduce the
-, hT (n)zp(n — N, — 1)] non-stationarity irjj . (n) and thus to improve decorrelation filtering.

For this reason the decorrelation filter is of short order so that it can
. am A reliably follow variations in pre-processing. The decorrelation filter
wherez,(l) = h' (n)z,(l) depends on the current estimaten) 556 has secondary benefits. In (4) we see that sub-filter estimation
we usez(l) = hT(l)ZP(l) which depends o (/) calculated in  ,5as the linear AEC estimatgn) and will now be more accurate
previous iterations. This approximation does not require any cOMaster convergence). The pre-processor estimate is then itself more
putation forl < n and leads to: accurate and will converge faster, resulting in more stable sub-filter

o T T estimationh,, (). Note also that, due to the presence of clipping
b WZ(n) = |k (mzm), ’W’ compensation, decorrelation filter estimation should be paused dur-
=Zp(1) ing intervals in which clipping compensation is applied, i.e. when
BT = N, — Dzp(n — Ny — 1)] z(n) = é(n), since in these intervals a constant-level pre-processor
’ p P P

output may disturb estimation. A solution involves changing the
decorrelation filter step size o, (n) = (=% (2(n))) - ., (n)
Complexity is thus reduced by a factor %, per sub-filter with ~ where— is the logic ‘NOT’ and wheréy/= (z(n)) is as given in (7).
the added advantage of reacting faster to changes in the echo paHEnce—.%(m(n)) is equal to0 whenz(n) = ¢é(n) and equal to
The only drawback is that initial convergence is somewhat slowers(n) otherwise.
Note that a similar simplification can be applied to other cascaded

approaches, for example those in [3-5].
4. EXPERIMENTAL WORK

3.3. Decorrelation filtering (DF) All algorithms are assessed using real speech signals recorded from

c tional. fixed hes 1o d lati ¢ ._mobile phones in office environments. Two different experiments
onventiona, fixed approaches lo decorrezation are no approprla?e reported. The first aims to assess tracking performance vgherea
h

here due to the use of pre-processing to_ which the decorrelatiqn ﬁ e second aims to assess clipping compensation performance. Four
ter_ must adapt. Adaptive de_correlat|on S thus_necess_a_ry _but IS Ir}:ﬂgorithms are assessed in both cases: the baseline system [6] with
evitably more .complex. }33'”9 the LMS criteria tp minimise the and without clipping compensation (CC) and the baseline system
decorrelatloq filter outpug; (n) we obtain an adaptive estimate of with decorrelation filtering (DF), both with and without clipping
w(n) according to: compensation (CC). In all case the linear AEC Bas= 200 taps,

Ny = 1tap andN,—2 3 = 5 taps. The decorrelation filtev(n) has
3 taps. Echo cancellation is assessed in terms of echo return loss en-

and whereu < 0.01. In practice  hancement (ERLE) given &RLE(m) = 10-log,, <7Z?’:,f‘;’ yz(")>

Sl e2(n)

w(n+1) =w(n) + pu, (n)§p(n—1)j; (n)

wherep,, (n) = i+
P

a larger value of: is used initially to encourage rapid convergencewherel/ is the frame length equal 12 samples.



tion than without. Decorrelation filtering improves convergence and
ensures accurate estimation of the acoustic path and hence, there-
fore, also of the clipping level which is dependent upon it (8). We
remark that, betweeid and20s the baseline + DF gives better per-
formance than the baseline + CC + DF. This is explained by the time
required for the clipping compensator to converge.

All these observations show that acoustic path tracking is as im-
portant as non-linear modelling and that, even with a good model
of non-linearities, better performance is difficult to attain when the
linear acoustic path estimate is inaccurate.

T
baseline + CC + DF
baseline + DF

30

baseline + CC 1
baseline [6]

ERLE (dB)

5. CONCLUSIONS

This paper proposes a simplified approach to model loudspeaker
and amplifier non-linearity though independent power filtering and
clipping compensation. Decorrelation filtering is shown to bring
large improvements in global system performance. The interaction
between different system elements is described and estimation pro-
cedures for efficient integration are presented. Experimental results
show that tracking of the acoustic path is as important as reliable
modelling of non-linearities; robust tracking improves pre-processor
estimation accuracy, particularly of the clipping compensator. The
baseline NLMS-based non-linear AEC algorithm is shown to be
In the first experiment tracking performance is assessed usin@rgely inefficient for non-linear AEC due to slow convergence;
recordings of real mobile devices in hands-free mode with abrupéven with a good model of the LEM system improvements are
echo path changes and an interval containing high-level signals imarginal. Thus with cascaded approaches to non-linear AEC in-
order to induce clipping. Results are illustrated in Figure 3. Clip-yolving clipping compensation and decorrelation filtering good

time(s)

Fig. 4. ERLE against time in environment with high amplifier satu-
ration.

4.1. Tracking performance

ping compensation without decorrelation filtering (baseline + CC)racking performance is essential to global system performance.

results in poorer performance than the baseline until afisywhen
the clipping compensation estimate converges, after which there is
little difference in performance as the signal level is moderate. After
45s, however, (baseline + CC) performance subsequently improves)
slightly where compensation is then effective in the case of clipping
induced by high-level signals. With decorrelation filtering (base-
line + DF) performance improves significantly and we observe rapid!?]
convergence during echo path changes or pause to speech transitions
around11, 22 and39s. When decorrelation filtering is combined 3]
with clipping compensation (baseline + CC + DF) performance
improves still further where the signal level is high. These results 4]
show that decorrelation filtering offsets the effects of pre-processing
which introduces greater levels of non-linearity and more correlation
through sub-filtering, both of which are harmful to LMS-based adap- Bl
tive filtering. The fact that (baseline + DF) is better than (baseline
+ CC) highlights the importance of rapid convergence and accurat 6]
acoustic path estimates in cascaded approaches to echo cancella-
tion. We note that clipping compensation is effective only when the [7]
acoustic path estimate is accurate (i.e. baseline + CC + DF). Withg
clipping compensation only (i.e. baseline + CC) improvements are
negligible.

[0

4.2. Clipping compensation
[10]

Clipping compensation performance is assessed by forcing the ana-
log amplifier gain of the mobile terminal to its maximum in or-
der to induce saturation. Results are illustrated in Figure 4 whicftl
again shows improved results, particularly with decorrelation filter- 12]
ing. Here, however, as clipping is continuously active, we observé
that performance is improved even without decorrelation filtering; )
(baseline + CC). This is expected since power filtering cannot ac-
curately approximate clipping even with Gram-Schmidt orthogonal{14]
ization [14]. With decorrelation filtering, however, performance is
consistently better with clipping (baseline + CC + DF) compensa-
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