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Mathematical Modeling for Network Selection in
Heterogeneous Wireless Networks – A Tutorial

Lusheng Wang and Geng-Sheng (G.S.) Kuo

Abstract—In heterogeneous wireless networks, an important
task for mobile terminals is to select the best network for
various communications at any time anywhere, usually called
network selection. In recent years, this topic has been widely
studied by using various mathematical theories. The employed
theory decides the objective of optimization, complexity and
performance, so it is a must to understand the potential math-
ematical theories and choose the appropriate one for obtaining
the best result. Therefore, this paper systematically studies the
most important mathematical theories used for modeling the
network selection problem in the literature. With a carefully
designed unified scenario, we compare the schemes of various
mathematical theories and discuss the ways to benefit from
combining multiple of them together. Furthermore, an integrated
scheme using multiple attribute decision making as the coreof
the selection procedure is proposed.

Index Terms—Network selection, heterogeneous wireless net-
works (HWNs), utility theory, multiple attribute decision making
(MADM), fuzzy logic, game theory, combinatorial optimization,
Markov chain.

I. I NTRODUCTION

T He recent development of wireless technologies has
totally revolutionized the world of communications. Mul-

tiple technologies are evolving simultaneously towards provid-
ing users with high-quality services of broadband access and
seamless mobility. On one hand, wireless wide area networks
(WWANs) evolve from GSM to UMTS and beyond 3G,
providing wide coverage and good mobility capabilities. On
the other hand, a series of standards of wireless local area
networks (WLANs), including IEEE 802.11a, IEEE 802.11b,
IEEE 802.11g, IEEE 802.11n, etc., have been established for
local-area high-speed economic wireless access. To comple-
ment them, wireless personal area networks (WPANs), e.g.,
Bluetooth and Zigbee, and wireless metropolitan area networks
(WMANs), e.g., WiMAX, are developed for short-range and
metropolitan coverages, respectively. All the above networks
have been deployed with coverage overlapping one another,
hence forming a hybrid network for wireless access, which is
usually called heterogeneous wireless networks (HWNs).
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Digital Object Identifier ...

To access the Internet through HWNs, current terminals,
e.g., laptops and cellphones, are usually installed with multiple
wireless access network interfaces. One type of terminals
widely used nowadays is those with multiple interfaces but
no functionality to support IP mobility or multihoming, called
multi-mode mobile terminals. The other is with IP mobility
and multihoming functionalities, called multi-homed mobile
terminals. Mobility means that a terminal can switch between
networks without breaking on-going communications. Multi-
homing means that a terminal has multiple IP connections
to one or multiple networks simultaneously. Multi-homed
terminals use multiple interfaces to share load for the same
session and support session continuity with low (or no) packet
loss during mobility or link break. By contrast, multi-mode
terminals can only select and use one interface for certain
session at a time.

Both multi-mode and multi-homed terminals require always
to rank the access networks and select the best at any time
anywhere, which is well known as always best connected
(ABC). ABC brings plenty of advantages to users. With ABC
functionality, terminals select appropriate access networks to
fit for various QoS requirements of applications; terminals
avoid selecting a network with high traffic load for avoiding
congestion; terminals predict networks’ availability so that
they do not connect to networks which disappear soon; and
terminals minimize signalling costs by using network selection
and handover decision strategies specifically for this purpose.
Moreover, ABC benefits operators. Since ABC has the feature
of assisting the assignment of traffic load to multiple networks,
operators maximize the utilization rate of the resources ofthe
networks they operated, hence maximizing revenue. According
to network selection strategies, operators analyze and decide
the number of WiFi access points they should deploy to attract
users to WLANs. Finally, ABC is suitable to synthetically
consider users’ and operators’ benefits, so that a win-win
partnership can be achieved.

ABC contains many necessary components [1], such as
network discovery, network selection, handover execution,
authentication, authorization and accounting (AAA), mobility
management, profile handling, content adaptation, etc., in
which network selection is a key component and will be
extensively discussed in this paper. In recent years, a large
number of research works have discussed the selection of the
best network. Among them, different mathematical theories
have been used for modeling this problem. Although two
survey papers on this topic [2], [3] have been published, they
were not focused on the mathematical theories used to model
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TABLE I
NETWORKS AND SELECTEDATTRIBUTES IN THE UNIFIED SCENARIO

Bandwidth Price Cell radius Security Power consumption Traffic

WWAN 2 50 2000 3 1/100 X

WMAN 10 20 2000 3 1/100 X

WLAN 54 5 75 1 1/50 X

WPAN 1 1 10 2 1/1000 X

TABLE II
SELECTED PROPERTIES OF THE16 USERS IN THEUNIFIED SCENARIO

User No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Application

Conversational • • • •

Streaming • • • •

Interactive • • • •

Background • • • •

User
Money first • • • • • • • •

Quality first • • • • • • • •

Terminal
Battery first • • • • • • • •

Mobility first • • • • • • • •

this problem. Based on our study, the mathematical model
used for representing the problem is the first thing and the
most important thing we should consider when designing a
network selection strategy. It decides the aim of optimization,
the utilization of different parameters, and the performance
of the selection strategy. Therefore, to fill out this blank,we
conduct a serious survey and provide a systematic tutorial
on mathematical theories for modeling the network selection
problem.

Throughout this paper, we use a unified scenario to help
explain schemes using different mathematical theories. On
the network side, we consider4 types of available net-
works (i.e., WWAN, WMAN, WLAN and WPAN) and6
attributes (i.e., bandwidth, price, cell radius, security, power
consumption and traffic), as given in Table I. These attributes
are carefully selected, so that there is upward attribute e.g.,
bandwidth, downward attribute e.g., price, dynamic attribute
e.g., traffic, terminal-related attribute e.g., power consumption,
application-related attribute e.g., security and mobility-related
attribute e.g., cell radius. Note that one attribute could have
multiple of these features. Moreover, we design WMAN as
a dominant alternative of WWAN, so that we could clearly
see the load balancing feature of the schemes with different
mathematical theories. On the user side, we consider4 types
of applications with different QoS requirements including
conversational, streaming, interactive and background [4]. For
each application type, we consider4 users with different user
preferences (i.e., money first and quality first) and different
terminal properties (i.e., battery first and mobility first). To-
tally, there are16 users with different user-side features, as
summarized in Table II.

VHO represents handover between different types of access
technologies, which is needed not only for connectivity reason

but also for other ones, such as user preference and network
load balancing. In the literature, VHO decision is sometimes
confused with the term network selection, so in this paper,
we strictly distinguish the two terms: network selection isto
rank networks and find the best one, while VHO decision is to
decide whether it is worth the handover to the best network or
a network better than the current one. VHO decision is not to
simply check whether the difference between the two networks
is larger than the VHO cost. In fact, this decision takes into
account the predicted information of many parameters as long
as they are predictable, including the expected time point that
a better network will be available, the average duration that a
better network can last, the probability density function of a
better network’s dwelling time, the utilities of networks,etc.
However, since the subject of this tutorial is network selection,
we are not going to discuss too much on VHO decision.

The rest of this paper is organized as follows. From Sections
II to VII, we systematically discuss the existing studies on
network selection using utility theory (cost function), multiple
attribute decision making, fuzzy logic, game theory, combi-
natorial optimization, Markov chain, respectively. In Section
VIII, we compare schemes using different mathematical the-
ories, discuss the ways to combine multiple of these theories
together, and propose an integrated scheme in the end. Section
IX concludes the paper. Finally, Section X and Section XI
provides the notations and the glossary.

II. U TILITY THEORY (COST FUNCTION)

For making a decision, utility refers to the satisfaction that a
goods or service provides to the decision maker [5]. An associ-
ated term is utility function which relates to the utility derived
by a consumer from a goods or service. Different consumers
with different user preferences will have different utility values
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Fig. 1. Typical utility functions.

for the same product. Thus, the individual preferences should
be taken into account in the utility evaluation.

A. Utility functions in network selection

Utilities can be classified into monotonic utilities and non-
monotonic ones. The utility is said to be monotonic if the
measure of satisfaction associated with the attribute shows a
monotonic increase and decrease with an increase in attribute
value. Otherwise, it is said to be non-monotonic. Normally,
monotonic utilities are used, except if the attribute is consid-
ered as the nominal-the-best. For a nominal-the-best attribute,
instead of considering the best (either the largest or the
smallest) as the most desired network, the one that is closest
to the service requirement is preferred [6]. When evaluating
the utility of an attribute, we should distinguish between the
upward and downward attributes. The attributes of which the
higher preference relation is in favor of the higher value are
called upward attributes. Conversely, the downward attributes
encompass various costs. Given an attribute, its utility can be
calculated based on certain utility function. And, the utility
function of one attribute could be different from that of others.
Some examples of common utility functions are shown in Fig.
1. It is important to select the suitable utility function for each
attribute. Sigmoidal utility function is considered to be suitable
for the network selection problem [7], but the parameters in
the sigmoidal function might be different to fit for different
attributes’ features.

During the network selection procedure, we consider mul-
tiple attributes together, so the utilities of multiple attributes
are combined as a total utility. It has been pointed out that
a valid form to combine these attributes together satisfies the
following requirements [7]:



















∂U
∂uj

≥ 0

lim
uj→0

U = 0, ∀j = 1, ...,M

lim
u1,...,uM→1

U = 1

(1)

whereU is the total utility of all the attributes anduj is
the utility of attributej. M denotes the number of attributes
throughout this paper.

Cost function is a measurement of the cost caused by
using certain network. Usually, the cost of a network can
be considered as the inverse of its utility, but the form of
this inversion is related with the way to combine multiple
attributes. For example, if these attributes are summed up,the
total cost is calculated as the cost minus the utility. A general
form of cost function for the network selection problem was
given in [8], which integrates a large number of attributes,their
weights, and furthermore, network elimination factors given by

Fi =
∑

k

(
∏

j

ǫkij)
∑

j

[fk
j (wk

j )N (uk
ij)], (2)

whereN (uk
ij) represents the normalized utility of application

k in networki in terms of attributej. fk
j (wk

j ) is the weighting
function of attributej for applicationk. ǫkij is the network
elimination factor, either1 or infinite, to reflect whether current
network conditions are suitable for requested applications. For
example, if a network cannot guarantee the delay requirement
of certain real-time application, its corresponding elimination
factor will be set to infinite. Thus, the corresponding cost
becomes infinite, which eliminates this network.

One study that is worth mentioning is the usage of the
consumer-surplus concept of microeconomics in [9]. Users
always search for cost effective solutions to meet their ex-
pectations. If the price is less than the value the user is
willing to pay, he saves money. Consumer-surplus represents
the difference between the monetary value of the data to the
user and its actual price, so the network with the best predicted
consumer-surplus, which is also predicted to meet the service
completion deadline, will be selected.

B. Attributes in network selection

A lot of studies model the network selection issue with
cost or utility functions, but they may consider different
attributes and measure them in different manners. A summary
of attributes and their usage in different papers is provided
in Table III. For types of attributes, we first classify them
into upward and downward attributes, then static, dynamic
and semi-dynamic attribute. Semi-dynamic attributes are those
that are not totally static but not quite dynamic either. For
example, bandwidth is sometimes used statically as the total
bandwidth of each network, but sometime used dynamically
as the average bandwidth a user obtains. Bit error rate (BER),
jitter and service completion time are changeable along with
the environment and the network condition, but it is difficult
to dynamically evaluate their instantaneous values for network
selection, so they are classified as semi-dynamic attributes.
Moreover, we also consider some other features of attributes,
such as mobility-related, QoS-related, terminal-relatedand
inter-network. For lists of references, considering that every
study on network selection will use one or multiple attributes
as decision criteria and some key attributes are even used by
most studies on this issue, so it is tedious to provide complete
lists for all the attributes. Instead, Table III just aims tolist
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TABLE III
KEY ATTRIBUTES AND THEIR UTILITY FUNCTIONS

Attribute Types References Utility functions

Bandwidth upward/semi-dynamic/QoS-related [7], [8], [10], [20], [21], [23], [24],
[28], [30], [37], [38], [46], [51]

linear, logarithmic,
sigmoidal

Cell radius (diameter) upward/static/mobility-related [38] linear

Security upward/static/QoS-related [10], [21], [23], [24], [51] linear, sigmoidal

Battery upward/dynamic/terminal-related [21], [22], [28] linear

SNR/SIR upward/dynamic/QoS-related [21], [22] linear

RSS upward/dynamic/QoS-related [11]–[13], [21], [28], [51] linear

Price downward/static [7]–[10], [13], [21], [23], [24], [28],
[34], [38]

linear, logarithmic

VHO signaling cost downward/static/mobility-related/inter-network [12], [24], [54] linear

VHO latency downward/static/mobility-related/inter-network [12], [27] linear

HHO signaling cost downward/static/mobility-related [12], [54] linear

HHO latency downward/static/mobility-related [12], [38] linear

Handover failure probability downward/static/mobility-related [27] linear

Interruption probability downward/static/mobility-related [27] linear

Size of unsent messages downward/static/mobility-related [27] linear

Traffic downward/dynamic [7], [11], [24], [34], [37] linear, sigmoidal

Power consumption downward/static/terminal-related [24], [38], [51] linear

BER downward/semi-dynamic/QoS-related [21], [23], [24] linear, sigmoidal

Delay downward/semi-dynamic/QoS-related [20], [21], [23], [51] linear, sigmoidal

Packet loss downward/semi-dynamic/QoS-related [20], [23] linear, sigmoidal

Jitter downward/semi-dynamic/QoS-related [20], [21], [23], [24], [51] linear, sigmoidal

Response time downward/semi-dynamic/QoS-related [23] linear

Service completion time downward/semi-dynamic/QoS-related [9] linear, polynomial,
exponential

some most typical examples of each attribute. For utility func-
tions used in the literature, most studies that do not specifically
discuss utility functions could be considered as using linear
utility functions. While in some recent studies, polynomial,
logarithmic, exponential and sigmoidal utility functionsare
utilized for some attributes, which are summarized in this
table.

In the above presentations, we discussed utility functions
for various attributes. To avoid a potential misunderstanding,
we would like to point out that utility function for a certain
attribute could be totally different in different scenarios. For
example, the utility of bandwidth should jump to a fixed value
after certain thresholds for voice and video applications,but
kind of linearly increase for data application [13]. If sigmoidal
functions are used, the parametera, as shown in Fig. 1, should
be large for voice and video applications while small for data
applications. For voice and video applications, the mid values,
corresponding to the thresholds, should be also different.

Moreover, it is important to state clear that other studies on
the network selection issue could also evaluate networks based
on utility/cost functions which combine multiple attributes.
However, those studies focus on other mathematical models,
which will be presented in later sections.

C. Case study

We consider the unified scenario presented in Section I
with Tables I and II. Since it would be unfair by assuming
different networks with different traffic conditions, we assume
that they have the same traffic condition, which means that the
attribute ‘traffic’ is not considered in this case study. Based
on the above studies, sigmoidal utility functions with different
configurations of mid value and parametera, as shown in Fig.
1, are used for different attributes under the cases of different
user-side properties. For example, user5 requires streaming
application while user1 requires conversational application, so
the mid value in the sigmoidal utility function of ‘bandwidth’
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TABLE IV
OBJECTIVE AND SUBJECTIVEWEIGHTING METHODS

Category Calculation

Entropy Objective weighting wj = 1 − 1

ln N

∑N

i=1

[

xij ln(xij)
]

Variance Objective weighting wj =

√

∑N

i=1
(xij − x̄j)2/Nx̄j , x̄j = 1

N

∑N

i=1
xij

Eigenvector Subjective weighting (B − λI) · w = 0

Weighted least square Subjective weightingminZ =
∑M

i=1

∑M

j=1
(bijwj − wi)2, s.t.

∑M

i=1
wi = 1

TRUST Subjective weighting w = e × (d × I) × R

is much larger for user5 than for user1; user7 prefers better
service, soa in the sigmoidal utility function of ‘price’ can be
small but that of ‘bandwidth’ should be large. In other words,
sigmoidal utility functions could be different for different users
and different attributes, so there are5 × 16 sigmoidal utility
functions. For the sake of conciseness, we are not going to list
them.

In order to prominently reflect the effect of the sigmoidal
utility functions, we simply sum the utilities of these attributes
with equal weights. Moreover, we use the Enhanced Max-
Min method in Table V to normalize the values of attributes
for all the case studies throughout this paper. We want to
mention that, with Enhanced Max-Min method, the utilities
of the best and the worst networks on any attribute will be
stretched close to1 and 0, respective. Then, if the utilities
are going to be summed up with equal weights as we said
above, multiple trivial attributes could conceal the importance
of the key attribute and dominant the final decision. To
avoid this pitfall, we compress all the utilities from[0, 1]
to [0.1, 0.9] and set the mid value of sigmoidal function to
0.01 (or 0.99) when the attribute is trivial (or dramatically
important). Network selection results of the 16 users are given
in Table VII, together with the results from schemes using
other mathematical theories for comparison.

III. M ULTIPLE ATTRIBUTE DECISION MAKING

Multiple attribute decision making (MADM) refers to mak-
ing preference decision over the available alternatives that
are characterized by multiple (usually conflicting) attributes.
MADM is a branch of multiple criteria decision making
(MCDM) which also includes multiple objective decision mak-
ing (MODM). MODM problems involve designing the best
alternative given a set of conflicting objectives, which creates
a product in the design process. For example, automobile
manufacturers want to design a car that maximizes riding
comfort and fuel economy and minimizes production cost.
Apparently, network selection does not create any physical
product but only makes a decision, so MADM is more suitable
for this problem.

A. MADM basics

MADM problems have several common characteristics [14]:

Alternatives: a finite number of alternatives are screened,
prioritized, selected and/or ranked for making the final de-
cision. The term ‘alternative’ is synonymous with ‘option,’
‘policy,’ ‘action,’ ‘candidate,’ etc.

Multiple attributes: the decision maker does consider mul-
tiple attributes of these alternatives. The term ‘attribute’ can
be referred to as ‘goal,’ ‘criterion,’ ‘property,’ ‘characteristic,’
etc.

Decision matrix: a MADM problem can be concisely ex-
pressed in a matrix format, where columns indicate attributes
and rows indicate alternatives. Thus, a typical elementxij of
the matrix indicates the value of theith alternative with respect
to the jth attribute.

Attribute weights: different decision makers might focus on
different aspects when ranking the alternatives, so weights
must be calculated to represent multiple attributes’ relative
importance. Table IV gives some common weighting methods
including objective and subjective methods. The objective
weights are calculated directly based on the relative difference
between attributes, given bywj for attribute j. Then, the
objective weights are obtained as the normalized values of
wj . By contrary, subjective weightsw are usually calculated
based on the decision maker’s pair-wise comparison between
all the attributes, given bybij as the comparison value between
the ith andjth attributes andB as the matrix containing all
the comparison values. Moreover, for the eigenvector method
in the table,λ is the eigenvalue andI is an identity matrix.
N denotes the number of networks throughout this paper.

However, these traditional methods to calculate subjective
weights do not work well for the network selection problem
since its pair-wise comparison process is slow and not au-
tomatic. Therefore, we proposed a TRigger-based aUtomatic
Subjective weighTing (TRUST) method [15] to calculate sub-
jective weights, as shown in the weighting module of Fig. 6.
Since some events can trigger the network selection procedure,
there should be some relationship between these events and
selection results. Our method uses a mapping pot to store this
relationship in order to calculate the subjective weights.Two
parameters are stored in the mapping pot and used for the
calculation of subjective weights. One is aE-by-M matrix
R representing the relationship between events and network
attributes, whereE is the number of events andrij in the
matrix represents the strength of the effect from theith event
to the jth attribute, e.g., the event ‘speed up’ increases the
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TABLE V
NORMALIZATION METHODS FORATTRIBUTES IN NETWORK SELECTION

Normalization Function

Max-Min vij = (xij − min
i

(xij))/(max
i

(xij) − min
i

(xij))

Square root vij = xij/

√

∑N

i=1
x2

ij

Sum vij = xij/
∑N

i=1
xij

Enhanced Max-Min vij =











1 − |xij − max
i

(xij)|/(max
i

(xij) − min
i

(xij)) for upward attributes

1 − |xij − min
i

(xij)|/(max
i

(xij) − min
i

(xij)) for downward attributes

1 − |xij − Λj |/max
i

{max
i

(xij) − Λj , Λj − min
i

(xij)} for nominal-the-best attributes

weight of mobility-related attributes. The other is a1-by-E
vector e representing the weights of events, which can be
calculated in advance or obtained from the operator during
the initiation of the mobile terminal. Finally, the subjective
weights of network attributes can be calculated as shown in
Table IV, whered is a 1-by-E binary vector denoting true or
false of the trigger events.

Normalization: different attributes have different measure-
ment units, so normalization is treated as a necessary step of
network selection. There are several methods of normalization,
compared in Table V. For a given attributej, xij represents
the value of theith network in terms of this attribute, and
vij represents its normalized value. The enhanced Max-Min
method consider three groups of network-side attributes, i.e.,
upward, downward and nominal-the-best, whereΛj represents
the nominal value of attributej. There are two differences
between Max-Min and enhanced Max-Min methods: first, the
latter considers the nominal-the-best group; second, the latter
adjusts downward attributes into upward attributes. For the
sake of the second difference, the outputs of the enhanced
Max-Min method are all considered as upward attributes,
while for the other three methods, we have to distinguish be-
tween upward and downward attributes while combining them
together. For examples of the usages of these normalization
methods, refer to [16]–[19].

B. MADM algorithms in network selection

MADM algorithms can be divided into compensatory and
non-compensatory ones [20]. Non-compensatory algorithms,
e.g., dominance, conjunctive, disjunctive or sequential elimi-
nation, are used to find acceptable alternatives which satisfy
the minimum cutoff. By contrary, compensatory algorithms
combine multiple attributes to find the best alternative. Most
MADM algorithms that have been studied for the network
selection problem are compensatory algorithms, including
simple additive weighting (SAW), multiplicative exponential
weighting (MEW), gray relational analysis (GRA), Technique
for Order Preference by Similarity to an Ideal Solution (TOP-
SIS), ELimination Et Choix Traduisant la REalité (ELEC-
TRE), etc.

SAW is widely used by most studies of the network selec-
tion problem using cost or utility functions, generally given

by

CSAW =

M
∑

j=1

wjvij , (3)

wherewj represents the weight of thejth attribute, andvij

represents the adjusted value of thejth attribute of theith
network.

MEW is to calculate the coefficient by multiplicative oper-
ation [7], [21], given by

CMEW =
M
∏

j=1

v
wj

ij . (4)

(4) can be further modified asC∗
MEW = ln(CMEW ) =

∑M

j=1 wj ln(vij). Considering the characteristic of the natural
logarithm, the attribute whose cost is close to 0 has larger
impact on the total cost than others. For example, Bluetooth
is more often selected by MEW than by other algorithms due
to its low monetary and power costs.

Another two MADM algorithms used for network selection
are TOPSIS [17], [22] and GRA [6], [23], which both consider
the distance from the evaluated network to one or multiple
reference networks. Coefficient of TOPSIS can be calculated
as

CTOPSIS =
Dα

Dβ + Dα
, (5)

where Dα =
√

∑M

j=1 w
2
j (vij − Vα

j )2 and Dβ =
√

∑M

j=1 w
2
j (vij − Vβ

j )2 represent the Euclidean distances
from the current network to the worst and best reference
networks, respectively.Vα

j and Vβ
j represent the values of

the jth attribute of the worst and best reference networks,
respectively.

Different from TOPSIS, GRA uses only the best reference
network to calculate the coefficient, given by

CGRA =
1

∑M

j=1 wj |vij − Vβ
j | + 1

. (6)

ELECTRE, another well-known MADM algorithm but dif-
ferent from the above four algorithms, does not calculate cer-
tain coefficient for network ranking. It contains the following
steps [16]:

1) identifying attributes of different networks as a decision
matrix;
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Fig. 2. An example of combining MADM with AHP-based subjective
weighting.

2) defining an ideal network;
3) calculating the absolute difference between each network

and the ideal network;
4) normalizing the absolute difference;
5) multiplying weights of attributes;
6) calculating concordance and discordance matrices; and
7) making decision based on concordance and discordance

matrices.
Among them, the key step is 6), in which concordance

and discordance matrices are calculated based on concordance
and discordance sets, denoted byC andD , respectively.Ckl

contains the attributes on which networkk is better than
network l, andDkl is inverse.

Then, the elements in concordance and discordance matrices
are calculated as follows:











ckl =
∑

j∈Ckl
wj

dkl =

∑

j∈Dkl
|vkj−vlj |

∑

M

j=1
|vkj−vlj |

.
(7)

Among all the MADM algorithms, [7] pointed out that
MEW is the only one that satisfies all the requirements
indicated by (1), while [6] argued that GRA is more suitable
than others in the scenarios when some attributes have non-
monotonic utilities. [21] showed that SAW, MEW and TOPSIS
have similar performance to all traffic classes, while GRA
provides a slightly higher bandwidth and lower delay for
interactive and background traffic. [24] showed that MEW
gives larger probability to select WPAN than other algorithms
due to its multiplication operation. Moreover, it is easy to
combine compensatory MADM algorithms with the eigenvec-
tor subjective weighting method based on analytical hierarchy
process (AHP), such as the scheme shown in Fig. 2 [23]. AHP
is a procedure to divide a complex problem into a number of
deciding factors and integrate the relative dominances of the
factors with the solution alternatives to find the optimal one.

For weighting the attributes in a network selection scheme,
AHP structures attributes into a hierarchy. For example, [23]
structures all the QoS-related attributes into five groups (i.e.,
throughput, timeliness, reliability, security and cost) and each
group has one or multiple attributes (e.g., delay, responsetime
and jitter are in the group of timeliness). Therefore, QoS ison
the first level, the five groups are on the second level, while
attributes in each group are on the third level. Then, on each
level in the hierarchy, weights are calculated based on certain
weighting method, e.g., those in Table IV. Finally, weightsof
different levels are synthesized to achieve the overall weight
of each attribute.

Note that MADM is not the only mathematical theory that
combines multiple attributes together. Theories in the other
sections also prefer to combine multiple attributes for decision,
using usually SAW. Moreover, weighting and normalization
are common operations for schemes using all kinds of mathe-
matical theories, not only for MADM. We present them in this
section since they are mainly studied in the scope of MADM-
based network selection.

C. Case study

We consider the unified scenario presented in Section I
with Tables I and II. Similar to the case study in Section
II, attribute ‘traffic’ is not considered in this case study.
Based on the above studies, we choose the widely used
MADM algorithm, SAW, for this case study. Enhanced
Max-Min method is used for normalization. Eigenvector
method is used for calculating the subjective weights. For
each user, a pair-wise comparison matrix is obtained by the
decision maker based on user-side properties. For example,
the pair-wise comparison matrix of user1 could be

B =













1 1/7 1 1 1/7
7 1 7 7 1
1 1/7 1 1 1/7
1 1/7 1 1 1/7
7 1 7 7 1













.

Weights are calculated as the eigenvector of the above pair-
wise comparison matrix corresponding to the largest eigen-
value, given by {0.0588, 0.4118, 0.0588, 0.0588, 0.4118}.
Sometimes, the eigenvector could be negative, so we should
always normalize the obtained eigenvector to avoid treating
the worst network as the best.

We can see from this matrix that two attributes are key
factors for the decision, i.e., price (as the user preference
is ‘money first’) and power consumption (as the terminal
property is ‘battery first’). For the other three attributes,
it is really difficult for us to say which one is the most
important one, so we give them equal weights. For the sake of
conciseness, we are not going to list the pair-wise comparison
matrices for all the users, but we would like to remind that
pair-wise comparison matrices are different from user to user
and from scenario to scenario.

Network selection results of the16 users are given in
Table VII, together with the results from schemes using other
mathematical theories for comparison. Notice that the selection
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Fig. 3. A combined framework of fuzzy logic based network selection.

results by using other MADM algorithms are quite close to
SAW. For example, with TOPSIS, the only difference in the
results is that user6 selects WLAN instead of WMAN.

IV. FUZZY LOGIC

Humans usually think in terms of linguistic descriptions,
so giving these descriptions some mathematical form helps
exploit human knowledge. Fuzzy logic utilizes human knowl-
edge by giving the fuzzy or linguistic descriptions a definite
structure.

A. Fuzzy logic basics

To understand well this section, it is necessary to know the
following concepts [25]:

Fuzzy set: a fuzzy set is a class of objects with a con-
tinuum of grades of membership, which is characterized by
a membership function assigning to each object a grade of
membership ranging between zero and one [26]. Fuzzy set is
considered as an extension of the classical notion of set. In
the classical set theory, the membership of elements in a setis
assessed in binary terms, which means either belongs or does
not belong to the set. By contrast, the fuzzy set theory permits
the gradual assessment of membership using a membership
function valued within[0, 1]. The classical set is usually called
crisp setin the fuzzy logic theory.

Fuzzifier: the module to map a crisp point into a fuzzy set.
Fuzzy rule base: the module consisting of a collection of

fuzzy IF-THEN rules. A typical form of a rule is

IF X1 is F
l
1 and ... andXM is F

l
M , THEN Y is G

l, (8)

wherel denotes the index of the rule in the fuzzy rule base,
Xj represents thejth input variable,Y represents the output
variable, andF l

j andG l are corresponding fuzzy sets forXj

andY, respectively.
Fuzzy inference engine: the module which uses fuzzy logic

principles to combine the fuzzy IF-THEN rules in the fuzzy
rule base.

Defuzzifier: the module to map a fuzzy set into a crisp point
(the opposite of fuzzifier).

Membership function: representing the degree of truth in
fuzzy logic theory.

B. Fuzzy logic in network selection

There are different ways to use the fuzzy logic theory in a
network selection scheme: some studies use it as the core of
the selection scheme, some combine fuzzy logic with MADM
algorithms, while some use the fuzzy logic with recursion
(neural network, kernel learning, etc.).

A very basic framework without combining with any other
theory is used by [27] for fuzzy logic based network selection,
as shown in Fig. 3, eliminating the recursion part. In their
scheme, three input fuzzy variables are considered (i.e., the
probability of a short interruption, the failure probability of
handover to radio, and the size of unsent messages), while we
could surely consider more attributes as input fuzzy variables
for network selection. At the beginning of the procedure, the
fuzzy variables are fuzzified and converted into fuzzy sets by
a singleton fuzzifier. Then, based on the fuzzy rule base, the
fuzzy inference engine maps the input fuzzy sets into output
fuzzy sets by the algebraic product operation. Finally, the
output fuzzy sets are defuzzified into a crisp decision point.

Many studies proposed schemes by combining fuzzy logic
with MADM algorithms [2], [22], [28], coinedfuzzy MADM.
The idea is to use MADM for the fuzzy interference engine
and defuzzifier parts. Fuzzy MADM is particularly interesting
for the case when some attributes cannot be precisely obtained
or when some attributes are better to be set with fuzziness due
to the complex HWNs environment in an MADM scheme.
According to the data type of the alternative’s performance,
fuzzy MADM can be categorized into three groups: data being
all fuzzy, all crisp, and either fuzzy or crisp [22].

Since some dynamic factors change frequently, the recursion
is used to combine the latest information with previous ranking
result to obtain the latest rank. In the literature, there are
several proposals combining fuzzy logic with a recursion
procedure. The recursion procedure can be a simple recursion
without any further operation or certain learning procedure,
such as neural network or kernel learning, as shown in Fig.
3. [29] proposed a fuzzy logic based scheme using simple
recursion, which considers the requirements of both operator
and user. The rank produced by the fuzzy module is fed back
to this module, so that it could produce a new rank when some
factors change. [30] combined the fuzzy logic with neural
network for network selection. Elman neural network is used
to predict the number of users using certain network after the
selection and feeds it back to the fuzzifier. And, [31] proposed
a scheme to combine the fuzzy logic with kernel learning for
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Fig. 4. Membership functions of different attributes in theunified scenario.

similar purpose.

C. Case study

We consider the unified scenario presented in Section I with
Tables I and II. For the same reason as the case studies in
previous sections, attribute ‘traffic’ is not considered inthis
case study. We consider two fuzzy sets for each attribute, e.g.
bandwidth has ‘large’ and ‘small’ fuzzy sets. Thus, with five
attributes, there are maximum25 fuzzy rules in the fuzzy rule
base. For example, a basic fuzzy rule could be ‘IF bandwidth is
large & price is low & cell radius is large & security is high &
power consumption is low, THEN utility is high’. Membership
function of each attribute is carefully designed based on the
property of the attribute, as shown in Fig. 4. For example,
bandwidth is an attribute which has some kind of threshold
to guarantee QoS, so the slope of its membership function is
large.

In order to combine the user-side properties into the scheme
and to simplify the fuzzy rule base, each user maintains
his/her own bunch of fuzzy rules and each fuzzy rule contains
only some of the five inputs. For example, user1 uses
conversational applications with money first and battery first
properties, so one of his fuzzy rules could be ‘IF price is low
& power consumption is low, THEN utility is high’. For the
sake of conciseness, we are not going to list all the fuzzy rules.
For each network, the fuzzy inference engine combines all the
fuzzy rules in the user’s fuzzy rule base and the defuzzifier
transfers the fuzzy output into a crisp value to represent the
utility of the network. In the end, the network with the highest
utility is selected.

Network selection results of the16 users are given in Table
VII, together with the results from schemes using other math-
ematical theories for comparison. Since fuzzy logic module

ignores trivial difference, there is a non-negligible probability
that several networks might have the same priority. Therefore,
in Table VII, we mark all the best networks when we could
not distinguish them.

V. GAME THEORY

Game theory is related to the actions of decision makers
who are conscious that their actions affect each other. The
essential elements of a game include [32]:

Player: the individual who makes the decision. The goal of
each player is to maximize his/her own payoff by a choice of
strategy.

Strategy set: the set containing all the strategies a player can
choose. In each round, the player chooses one strategy from
the set.

Payoff: the utility that a player can receive by taking certain
strategy when all the other players’ strategies are decided.

Equilibrium: the combination of strategies containing the
best strategy for every player. Nash equilibrium (NE) is the
solution of a game, in which no player can achieve more
payoffs by unilaterally changing his own strategy.

The techniques of game theory are widely adapted in
resource management mechanisms in HWNs. We categorize
game theoretical network selection scheme into three groups:
game between users, game between networks and game be-
tween users and networks.

A. Game between users

The game between users considers the problem in which
users selfishly select their believed best network, hence caus-
ing network congestion and performance degradation. [33]
modeled the network selection problem into a non-cooperative
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game belonging to the class of congestion games between
selfish users. In this game, the users are the players who take
their actions on selecting one network among the available
ones. Analytical upper bounds for the price-of-anarchy and
price-of-stability are derived, which are considerably tighter
than well known bounds for generic congestion games. The
cost of each user depends on the congestion of the selected
network, given byck(i,

∑

l∈K
ηli), where i indicates that

userk selects networki. ηki is a binary variable representing
whether userk selects networki, so

∑

l∈K
ηli indicates the

total number of users selecting networki. This game becomes
a problem in which all the users try to choose the network
with minimum cost, whose NE can be indicated as

ζki′ηkick(i,
∑

l∈K

ηli) ≤ ck(i′,
∑

l∈K

ηli′ ), ∀i, i
′ ∈ N , ∀k ∈ K ,

(9)
whereK and N represents the sets of users and networks,
respectively.ζki′ is a binary variable representing whether user
k is within the coverage of networki′.

Another game model used for network selection is the
evolutionary game, which extends the formulation of a non-
cooperative game by including the concept of population, i.e.
a group of players. In an evolutionary game, there could
be a single or multiple populations, and the players from
one population may choose strategies against players from
another population. In a word, an evolutionary game defines a
foundation to obtain equilibrium for the game of populations.

Beside the concept of population, there are two other
important concepts in an evolutionary game: replicator and
replicator dynamics. A replicator is a player from a population
who is able to replicate itself through the process of mutation
and selection. This replication process can be modeled by a set
of ordinary differential equations, called replicator dynamics,
given by

ṗi(t) = pi(t)[πi(t) − π̄(t)], (10)

where pi(t) = Ki/K denotes the proportion of players
choosing strategyi, with Ki is the number of players choosing
strategyi andK is the total number of players in the game.
πi(t) is the payoff of the players choosing strategyi andπ̄(t) is
the average payoff of the entire population. Based on the above
replicator dynamics, the evolutionary equilibrium is defined
as the set of fixed points of the replicator dynamics that are
stable. In other words, none of the players wants to change its
strategy since its payoff is equal to the average payoff of the
population.

[34] studied the evolutionary game for network selection.
In this game, users are players, users in a service area forms
a population, the selection of one network is considered as
the strategy and utility of a user is its payoff. For service area
a, the evolutionary equilibrium is obtained by solving the set
of equations indicated by{ṗ(a)

i = 0|i = 1, ..., N}, whereN
is the total number of candidate networks in service areaa
and p(a)

i denotes the proportion of users choosing network
i in service areaa. The evolutionary equilibrium is stable if
all the eigenvalues of the Jacobian matrix corresponding tothe
replicator dynamics have a negative real part. [34] also studied
a non-cooperative game between users in different service

areas. In this game, users in the same area collaborate with
each other to compete for bandwidth with other groups of users
in other areas. A strategy is the proportion of users choosing
network i, denoted byp(a)

i . The payoff of a player is the
total utility from all users in the group choosing all different
networks, denoted byπ(p(a),p(−a)), wherep(a) denotes the
vector of proportion of users choosing different networks in
service areaa, andp(−a) denotes a vector of the proportion
of users in all service areas excepta. This game is similar
to the congestion game presented above, except it is a game
between groups of users in different service areas, insteadof
single users.

Another idea is to model network selection as a Bayesian
game with incomplete information since it is usually difficult
to inform all the players about the required information from
other users. In a Bayesian game, the incomplete informationis
considered as private information of players before the game
begins, called thetype of the player. [35] modeled network
selection into a Bayesian game by defining the type of player
k as its minimum bandwidth requirementBk ∈ Bk, where
Bk is the type space of playerk. Bk is a variable obeying
certain probability distribution function. Then, the expected
payoff π̄k is defined as bandwidth utility minus connection
fee, where bandwidth utility is the benefit the user gets from
selecting certain network, which could be zero if the allocated
bandwidth is smaller thanBk. In a Bayesian game, for every
type of playerk, the best response can be obtained by

Bk(q−k, Bk) = arg max
qk∈Q

π̄k(qk,q−k, Bk), (11)

whereQ is the set of Bayesian strategies.
A NE is indicated by strategy{q∗k,q

∗
−k}, if and only if

∀qk ∈ Q, ∀k ∈ K , π̄k(q∗k,q
∗
−k) > π̄k(qk,q

∗
−k). Moreover, a

combination of Bayesian game and evolutionary game is also
tried for the network selection issue by [35].

In the above studies of game between users, they assume
that multiple users are waiting for service at the time of deci-
sion. However, we all know that users usually come for service
one by one. [36] studied a WLAN access point selection
case where selection requirement of multiple terminals are
not coming concurrently and all the terminals in the WLAN
coverage area are informed immediately with the network
selection information of each terminal. It was proved that
the outcome of a one-by-one optimization process of these
terminals corresponds to the NE of a one-shot game with
multiple terminals’ concurrent selection.

One special scenario where multiple users might do network
selection at the same time is called group handover in [37].
This happens when multiple users move together, e.g., in a
bus, or when certain network has some sudden problem. Three
options were proposed:

1) if each mobile terminal knows the traffic loads of the
other terminals, a NE based algorithm can be used. In this
algorithm, the selection of each terminal is the corresponding
strategy of the computed NE;

2) another algorithm is to separate terminals’ handovers
by using random delays, similar to the algorithm avoiding
handover synchronization in [38]. In this algorithm, each
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terminal that has decided its selection should announce that to
the others or to an independent function entity, so that others
know its selection; and

3) sometimes, a terminal decides to select a target network
and announces its selection to others, but it may not be able to
really handover to it due to failure or rejection by that network.
In this case, other terminals get incorrect information about the
handover of this terminal. Therefore, the third algorithm is to
announce its selection after the terminal has already finished
its handover to the target network.

B. Game between networks

In an HWNs environment, different networks might be
managed by different service providers, so their competition to
attract and get more users become an important issue. Game
between networks does not provide us a network selection
scheme for users, but it indirectly guides users to think about
their corresponding schemes for network selection under this
network competition environment.

One model is to consider pricing strategies as the strategies
of networks. For non-cooperative case, the problem is modeled
as a Bertrand game [13], which describes interactions among
sellers that consider their prices and buyers that choose their
product at that price. Assuming that each user chooses the
network with the maximum performance-cost ratio (PCR),
each network chooses the pricing strategy that maximizes its
own payoff (related to the price of service and the number
of users choosing this network), fixing the other networks’
pricing strategies, which indicates the NE. However, severe
competition may result in low price and shrink total payoff in
turn, which is not acceptable for network operators. Therefore,
cooperation between several or all network operators may be
established to provide the same QoS to users with the coalition
price.

Another model is to consider the strategy of a network as
the selection of a user for service, in which the users are totally
passive and have no right to decide which network he wants to
use. As an example, [39] described such a multi-round game
model as follows:

1) a bunch of users send service requests to multiple
networks;

2) a centralized entity gathers requests and put the users into
a waiting list. Networks calculate payoffs based on gathered
information;

3) in each round, each network selects one user for service
and this user is removed from the waiting list;

4) multiple rounds are performed until all the users are
served.

In this game, the best strategy for each network is to select
the user with the maximum payoff from the waiting list of
users that have not been served.

C. Game between users and networks

The set of users and the set of networks are considered as
two players. The users’ strategies are to select their favorable
networks to maximize their payoffs, such as quality of ser-
vices and price. Meanwhile, the networks’ strategies are to

select their favorable users to maximize their payoffs, such
as the revenue [40]. If NE exists, the users and the networks
correspondingly select each other. Otherwise, a sub-optimal
solution will be used.

At the end of this section, we would like to mention that, for
studies using game theory, it is important to not only indicate
NE but also study how to reach the NE. Studies on network
selection have utilised different approaches for this purpose,
such as a centralized approach called population evolution
in [34], and some decentralized approaches in which users
could independently adapt themselves to reach the equilib-
ria, e.g., Q-learning in [34] and no-regret learning in [41].
Moreover, in the literature of game theory, there are numerous
algorithms for NE searching, e.g., Lemke-Howson algorithm
[42] searching for one NE and Dickhaut-Kaplan algorithm [43]
searching for the support of all NE. However, explanation of
these algorithms is out of the scope of this tutorial.

D. Case study

We consider the unified scenario presented in Section I with
Tables I and II. First and foremost, we emphasize that the
feature and result of a game is largely related to the definition
of the utility in the game. If the utility is defined highly
correlated to the average bandwidth obtained by selecting
certain network, the equilibrium of this game has the trend
to uniformly distribute users into different networks. However,
when networks are all with enough resource at certain moment,
this kind of equilibrium is apparently not a good solution.
Therefore, we define the utility of the game as follows in this
case study: when the selected network could support all its
users, the utility of each user is calculated as the total utility
of the five normalized attributes by SAW algorithm, similar
to the case study in Section III; otherwise, we assume that
congestion in this network occurs, so the utility of each user
in this network is zero.

With the above utility function, the equilibrium provides the
same result as SAW algorithm when networks have enough
resource. In order to show the difference between this game
model and MADM, we consider the situation when networks’
capacities are quite limited and we could not let all the users
select their favorite networks as in MADM-based schemes. We
set each network a limited capacity for these16 users. In other
words, you could imagine that these networks’ capacities have
already been largely occupied by other users at the moment
of the coming of these16 users. For fairness, we assume that
the 4 networks have the same limited capacity, given by12,
so that we could avoid the case where the previous traffic of
networks dominates these users’ selection. Moreover, in order
to let all the users being served by the end of the selection
procedure, we set the capacity cost of each user, based on
their applications, as{1, 1, 1, 1, 5, 5, 5, 5, 1, 1, 1, 1, 2, 2, 2, 2}.
We intentionally set the whole capacity of the4 networks (i.e.
48) larger than the total required capacity of the16 users (i.e.
36), so as to see the possibility of some networks having more
users than others.

Based on Nash’s theorem in [44], this game has at least
one NE. We could definitely use certain algorithm mentioned
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above to find the NE, but the usage of these algorithms could
not show us the difference between using game theory of
this network selection issue or other mathematical theories.
In order to show an intuitionistic comparison between game
theoretical network selection scheme and other schemes, e.g.,
MADM-based schemes, we use the following method to
simply find a pure strategy NE: First, we put all the users
into their favorite networks based on the calculated utilities
using SAW. Second, we check if there are some networks
getting congested. If so, we choose the user with minimum
capacity cost from this network and put it into the network
with maximum utility among all the networks with enough
capacity. We continue this procedure until no network is under
congestion. Third, in the obtained allocation state, we search
and switch for each user if there is a better network until
no user could increase its utility by unilaterally changingto
another network. Finally, we reach a pure strategy NE.

We can see that the objective of the first and second steps
in the above method is just to get to an initial state for the
third step. We use SAW in the first step instead of a random
initial state, so that we could compare the results with MADM-
based schemes. We find that the allocation in the first step is
quite similar to that of MADM-based schemes without traffic
consideration in Section III.

Network selection results of the16 users using the above
game theoretical scheme are given in Table VII, together with
the results from schemes using other mathematical theories
for comparison. With the above configuration of networks
and users, these results are actually obtained by the first and
the second steps. When we check for the possibility of any
user could unilaterally increase its own utility by changing to
another network, we find that the allocation state obtained by
the first two steps is coincidently already a pure strategy NE.

VI. COMBINATORIAL OPTIMIZATION

Combinatorial optimization searches for an optimum object
in a finite collection of objects. The number of objects grows
exponentially in the size of the collection, so scanning all
objects one by one and selecting the best one is not an
option [45]. Based on the time complexity, combinatorial
optimization problems can be classified into several groups,
e.g., NP-hard problems which are considered at least as hard
as NP problems. NP is short fornon deterministic polynomial
time.

A. Combinatorial optimization in network selection

Two NP hard models, i.e., knapsack and bin packing, have
been considered for the network selection problem.

Knapsack problems are a family of optimization problems
that require a subset of some given items to be chosen so that
the corresponding profit sum is maximized without exceeding
the capacity of the knapsack(s).

A generalized knapsack model fitting for the network se-
lection problem is a combination of the 0-1 knapsack model
and the multiple choice multiple dimension knapsack (MMKP)

model [46], given by

maxU =

N
∑

k=1

M
∑

i=1

ψkizki, s.t.

N
∑

k=1

ckizki ≤ Ci, (12)

whereU is the total profit,ψki is the profit of itemk placed
in knapsacki, cki is the capacity cost of itemk placed in
knapsacki, zki is a binary variable representing the placement
(or not) of item k in knapsacki, andCi is the capacity of
knapsacki.

Mappings between network selection and the knapsack
problem are given as follows:

1) Applications map to the items,
2) Networks map to the knapsacks,
3) Resource constraint of a network maps to the capacity

of a knapsack,
4) Cost of an application in a network maps to the cost of

an item in a knapsack,
5) User utility maps to the profits, and
6) Utility of an application in a network maps to the profit

of an item in a knapsack.
It is worth mentioning that the knapsack model fits for

the case when networks’ capacities are quite limited and
load balancing is strongly demanded. When the capacity of
networks is large enough for a coming application, the above
model becomes a SAW algorithm presented in Section III.

Another NP hard model used to solve the network selection
problem is bin packing. The classical bin packing problem isa
well studied optimization problem: givenK objects with sizes
c1, ..., cK belonging to(0, 1], find a packing in unit-sized bins
that minimizes the number of bins used. In the off-line version
of this problem, it is possible to consider all the objects and
choose the order of assignment. In the online version however,
each object must be assigned in turn without knowledge of the
next objects. That is, givenK−1 already packed objects with
sizesc1, ..., cK−1 belonging to(0, 1], the new objectK with
sizecK belonging to(0, 1] must be packed in such a manner
that the number of used bins is minimized.

Network selection can be formulated as a bounded-space
variable-size online bin packing problem, in which the number
of available bins at any time is a restricted to a predefined
number (i.e., bounded-space) and the capacities of bins can
be different (i.e., variable-size). The objective is to findthe
best way of allocating applications into the networks in order
to minimize the number of rejected applications, i.e., the
blocking probability, hence maximizing the whole system’s
capacity. Moreover, one obvious difference from the classical
bin packing problem is that the bandwidth required by one
application is determined by the selected network, so we use
cki to denote the size of applicationk in networki. In [47], the
authors mapped the problem of network selection into the bin
packing problem in this way and compared five algorithms,
including FirstFit, BestFit, WorstFit, LessVoice and Random.
The selection rules of these algorithms are summarized as
follows:

FirstFit: the first randomly selected network that has enough
space for the application.

BestFit: the network with minimum free space left after
serving the application.
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WorstFit: the network with maximum free space left after
serving the application.

LessVoice: the network with minimumcki/cvoice,i.
Random: a totally random network, rejecting to serve the

application when no enough space for it.
Based on the above studies, [35] proposed a greedy heuristic

algorithm to match between the users and the networks. For the
case ofK users allocating toN networks, the algorithm starts
with anK ×N utility-to-resource ratio list where a utility-to-
resource ratio is between the utility of a user and the resource
that a network could allocate to this user. In each round of
the algorithm, the user-network pair with the largest utility-
to-resource ratio is picked and all the ratios for this user are
removed from the list. The time complexity of this algorithm
is bounded byO(K2 × N). This greedy heuristic algorithm
was compared with three bin-packing algorithms (including
FirstFit, BestFit and WorstFit) and was shown that it out-
performs them on both total utility and blocking probability.

B. Case study

We consider the usage of the MMKP knapsack model in
the unified scenario presented in Section I with Tables I
and II. Similar to the case study in Section V, this model
also fits for the situation when networks’ capacities are quite
limited. Otherwise, it becomes a SAW algorithm of MADM,
as explained in the case study of Section III. Therefore,
in order to show the difference between schemes with this
mathematical model and others, the capacity of networks and
the capacity cost of users are set in the same way as explained
in the case study of Section V.

The profit of each user is obtained as the combination of
the normalized values of the five attributes based on their
weights obtained by the eigenvector method, similar to our
configuration in the case study of Section III. Finally, we use
simulated annealing (SA) algorithm [48] to find a sub-optimal
solution for this problem.

We state the algorithm from an initial state with
a total profit of 6.16, given by {W,M,L, P,W,
M,L, P,W,M,L, P,W,M,L, P}, in which network serves
one user of each application. With1, 000, 000 rounds, we
finally find a sub-optimal solution with a total profit of11.67
and the allocation in Table VII. Based on the selection results
of MADM in Table VII, we predicted that users should first
occupy the capacities of WMAN and WPAN as much as
possible, then choose WWAN or WLAN. This is proved true
by the results, in which the four networks’ capacities are
occupied as{2, 12, 10, 12}.

VII. M ARKOV CHAIN

Markov chain is a common tool for decision making.
In this section, we present three types of Markovian ap-
proaches for network selection: Markov decision process
(MDP) based scheme, permutation-based scheme and rank
aggregation based scheme.

A. MDP-based scheme

In many situations in the optimization of dynamic systems,
a single utility for the optimizer might not suffice to describe
the real objectives involved in the sequential decision making.
A natural approach is to optimize each objective with con-
straints on others. MDP can be used to handle this kind of
multi-objective dynamic decision making problem [49]. In the
literature, several network selection schemes based on MDP
theory have been proposed.

An MDP is defined through the following objects [50]: a
state spaceS, setsA (s) of available actions at statess ∈ S,
transition probabilitiesρ(Y |s, a) and reward functionsr(s, a)
denoting the one-step reward using actiona in states.

The above objects indicate a stochastic system with a state
spaceS. When the system is at states ∈ S, a decision
maker selects an actiona from the set of actionsA (s).
After an actiona is selected, the system moves to the next
states according to the probability distributionρ(Y |s, a) and
the decision-maker collects a one-step rewardr(s, a). The
selection of an actiona may depend on the current state of the
system, the current time, and the available information about
the history of the system. At each step, the decision maker
may select a particular action or, in a more general way, a
probability distribution on the set of available actionsA (s),
which are called nonrandomized and randomized decisions,
respectively. An MDP is calleddiscreteif the state and action
sets are discrete, which is the case for network selection.
For discrete MDP, we denote the transition probabilities by
ρ(y|s, a).

[51], [52] provides an idea for modeling the network
selection problem into an MDP. They put many decision
epochs during the lifetime of a session with either equal or
variable time intervals, represented byt = {1, ..., T}, where
T denotes the time that the session terminates. At decision
epoch t ∈ t, st and at are used to represent the current
state and the chosen action, respectively. The state transition
probability is denoted byρ(y|st, at). The reward is defined
by r(st, at) = f(st, at)−g(st, at), wheref(st, at) represents
the benefit from using another network rather than the current
one andg(st, at) represents the signalling cost (may also
consider packet loss) for handing-over to that network. For
the whole session period, a policyθ = (δ1, ..., δT ) ∈ Θ,
Θ = A (s1) × ... × A (sT ), is defined as a sequence of
action rules at all the decision epochs, whereδt, t ∈ {1, ..., T}
represents the action rule at decision timet. Given an initial
states1, the objective of this MDP is to determine an optimal
policy θ to maximize the expected total reward, denoted by
v(s1) = max

θ∈Θ
vθ(s1). vθ(s1) is calculated as the mean value

of the total reward of all epochs with respect to the policy
θ and the initial states1. To satisfy the Bellman optimality
equation, the above equation could be further written as

v(s1) = max
a∈A (s1)

{

r(s1, a) + γ
∑

y∈S

[

ρ(y|s1, a)v(y)
]}

(13)

whereγ is the discount factor mapping the future reward to the
current state. The future reward is less reliable and predictable,
so it is less important than the current reward, denoted by
γ ≤ 1.
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One key feature of MDP model is that it considers a
bunch of consecutive decision epochs and makes a combined
decision at the beginning, but this also requires an ambitious
assumption that we need to predict, at the beginning of
a session, the state information for all the future decision
epochs during this session. Another feature is that MDP model
solves network selection and VHO decision at one time by
considering both benefitf(st, at) and handover costg(st, at).
If we only considerf(st, at), this model tells us the best
network at all the decision epochs.

Moreover, [53] used MDP for user/operator negotiation after
network ranking. State is defined by the number of ongoing
calls and the events, e.g., new call arrival, handover call arrival
and call departure. Action is defined as admitting a call,
rejecting a call and no action for call departure case. Reward
is defined as the benefit for the operator from the acceptance
of a call, which is related to service class. Based on these defi-
nitions, an operator could find the best strategy for a sequence
of calls, which satisfies the Bellman optimality equation. Due
to the fact that [53] is mainly about user/operator negotiation,
not network selection, we are not going to discuss more on it.

B. Permutation-based scheme

To select the best network, an important task is to distin-
guish between networks. Since we consider network selection
for mobile terminals, one important type of attributes to
distinguish between networks is the mobility-related attributes,
such as cell radius, coverage percentage, VHO properties,
etc. Traditional attributes, e.g., price, bandwidth, etc., usually
lead to the discovery of the best network, but mobility-
related factors show us the priorities of networks. For example,
noticing that certain nomadic terminal’s VHO cost between
3G and WLAN is acceptably small, a strategy calledWLAN
first for this terminal should be used. This strategy does not
mean the terminal always connects to WLAN, but WLAN has
a higher priority than 3G.

In this tutorial, we use the conceptpermutationto represent
the priorities of all the networks, without considering their
availability. At anytime and anywhere, the first available
network in the permutation should be selected. When there are
N networks, we haveN factorial permutations, so the network
selection issue becomes the selection of the best permutation
for usage, while the definition of the ‘best’ permutation is
largely related to the VHO cost between networks. In our
previous work [54], the total cost of a permutation was
modeled as follows:

With N networks andM attributes, we usevij to denote
the value of thejth attribute of theith network,σi to denote
the probability that networki is available,wH to denote the
weight of average handover cost andwi to denote the weight of
theith attribute except the average handover cost, respectively.
The total cost of each permutation can be written as

CPERM = (hH + h+
V + h−V ) · wH+

N
∑

i=1

[

Riσi

i−1
∏

j=0

(1 − σj)
]

· (1 − wH),
(14)

whereRi =
∑M

j=1 vijwj is the combination of all the other
attributes except VHO cost for networki, hH is the average
HHO cost,h+

V and h−V represent the average VHO cost of
moving into a network better than the current one and the
average VHO cost of moving out of the first available network,
respectively.

Markov chain is used to help calculateh+
V andh−V . A state

S(·) in the Markov chain is defined as the state of a terminal
staying in an area covered by a certain bunch of networks.
For example,S({n1 > n2 > n3}) represents that the terminal
is covered by networkn1, n2 and n3, while S({n2 > n3})
represents that the terminal is covered by networkn2 and
network n3. Symbol ‘>’ represents the left-side network is
better than the right-side one. Therefore, when the terminal
is moving fromS({n1 > n2 > n3}) to S({n2 > n3}), this
movement leads to a VHO, contributing toh−V .

Since the number of permutations is the factorial of the
number of networks, a permutation-based scheme could take
too much time on the calculation of all the permutations’ total
costs, which causes a problem of slow decision. One idea to
simplify the scheme is to divide all the networks into a few
groups. As an example, [55] used sigmoidal utility functions
for attribute adjustment, hence dividing all the networks into
two groups. One group is small-scale networks, while the
other group is large-scale networks. Using the above model,a
threshold could be obtained for this two-group case, given by

T (wH) =
RL−S

RL−S + h{S>L}−{L>S}/ρS

, (15)

where the subscriptsL andS represents large-scale and small-
scale networks, respectively. Hence,RL−S is the difference
betweenRL and RS , and h{S>L}−{L>S} represents the
difference between average handover costs of the two per-
mutations{S > L} and {L > S}, respectively. Seen from
the above threshold, the decision is dependent onwH . If a
scheme uses a weight smaller thanT (wH), {S > L} is the
best permutation. Otherwise,{L > S} is the best.

Beside the consideration of mobility-related factors, another
key advantage of permutation-based scheme is that it decreases
the scheme trigger rate. When the best permutation is obtained,
we do not have to trigger the scheme by terminal movement,
but all the other schemes have to trigger network selection
when the terminal moves to a new place where network
coverage is different (i.e. from state to state in the Markov
chain of permutation-based scheme).

C. Rank aggregation based scheme

Network selection can be formulated into a rank aggregation
problem, in which a better rank can be derived by combining
multiple ranks of different decision factors. [56] proposed
a weighted Markov chain (WMC) scheme, falling into this
branch, which finds the best network with the following
algorithm:

1) Based on each attributej, a rank of all the networks is
obtained, given byτj = {nj

1 ≥ ... ≥ nj
N}, wherenj

i represents
the ith network in the rank by this attribute andN represents
the number of candidate networks.τj(i) denotes the rank of
network i in τj . wj denotes the weight of attributej.
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2) An N ×N weighted Markov chain transition matrixY
is initialized and updated with certain method below.

3) The stationary distribution vectorf = {f1, ..., fN}, where
sdi is the preference index of networki, calculated byf =
f × Y.

4) The best networknθ is the one satisfyingθ = arg max
i
fi.

The key step of this algorithm is step 2 to update theY

matrix. [56] proposed two methods for this task:
Method I: for each attributej and for each entryykl in

matrix Y, ykl = ykl +
wj

τj(n
j

k
)

if τj(n
j
k) ≥ τj(n

j
l ).

Method II: for each attributej and for each entryykl in

matrix Y, ykl = ykl +
wj(N−τj(n

j

k
)+1)

N
if τj(n

j
k) = τj(n

j
l ), or

ykl = ykl +
wj

N
if τj(n

j
k) ≥ τj(n

j
l ).

Another Markovian approach related to network selection
was proposed in [57]. State is defined based on the number of
users of different services (e.g., voice and data) in different
candidate networks. Transitions between states within the
Markov chain will occur due to the arrival and departure of
voice call or data session. Giving the arrival distributions of
voice calls and data sessions, the transition rates betweenstates
in the Markov chain will be decided by the network selection
policy. The original authors showed that this model could be
used to evaluate the performance of many types of network
selection schemes, e.g., random selection and load balancing
based selection. However, based on our understanding, this
approach is more related to call admission control and it is
difficult to be used as a scheme to dynamically select the best
network in various scenarios. Therefore, we are not going to
discuss more on this model.

D. Case study

MDP is an important mathematical model for decision
making. An important feature of studies in [51], [52] is that
MDP enlarges the importance of handover cost, so some
state information, e.g. the current used network, becomes
very important for the decision. By ignoring VHO cost, these
consequent decisions become totally independent, and this
model provides actually an MADM-based network selection.
By considering VHO cost, this model provides actually a VHO
decision scheme not a network selection scheme. However,
since MDP-based scheme becomes an MADM-based scheme
by removing the VHO decision part, we are not going to
do any comparison between MDP-based scheme and other
schemes. For similar reason, we are going to compare the
permutation-based scheme with other schemes. Instead, we
select the WMC-based scheme withMC update method I for
this case study.

We still use the unified scenario presented in Section I with
Tables I and II. Weights are calculated by eigenvector method,
as explained in Section III. As we assumed in Table I, some
features of different networks are totally the same. If we give
them different positions in the rank, it is unfair. For example,
we assume cell radius of WWAN and WMAN are both2000,
if we give WWAN the first place in the rank and WMAN the
second place in the rank, WWAN dominates WMAN based on
the rank of cell radius for most ‘mobility first’ users, whichis
wrong. Therefore, in our study, we specifically check if some

networks have quite similar values for certain attribute. If so,
we give them the same position in the rank. For each user, the
stationary distribution vector is obtained and the best network
is selected as shown in Table VII.

VIII. I NTEGRATED SCHEME

A. Comparison of using different mathematical theories for
network selection

A general comparison of using the above mathematical
theories for the network selection issue is provided in Table
VI. We compared eight aspects as follows:

Objective: different mathematical theories have different
functionalities, which lead to different objectives for their
usage in network selection. To sum up, utility theory evaluates
the utility of the value of each attribute. For example, a
little change of the value of an attribute, that passes some
QoS threshold, leads to greatly change of its utility. MADM
provides a comprehensive theory for the combination of mul-
tiple attributes for a decision, although most studies using
other theories also consider SAW by default. Fuzzy logic
theory is especially helpful to adjust the values of dynamic
attributes since the information of these attributes couldbe
imprecisely collected. Game theory tells us the equilibrium
between networks, between users, or between networks and
users, which helps us to balance benefits among multiple
entities. Combinatorial optimization provides us a sub-optimal
allocation of users to networks, which could be quite close
to the optimal solution. For the three types of Markovian
approaches, the functionalities and objectives are totally differ-
ent. MDP-based scheme is to optimize a series of consecutive
decisions with prediction, permutation-based scheme provides
the priorities of networks instead of the best network, while
rank aggregation based scheme is to aggregate the ranks of
networks obtained by different attributes.

Decision speed: schemes using utility theory, MADM or
fuzzy logic are all fast to make a decision. Schemes using
combinatorial optimization are really slow. For example, in our
case study of the knapsack problem using simulated annealing,
it takes dozens of seconds to complete a search of 1,000,000
rounds, which is definitely too late for making the decision on
the best network. For game theory, the learning process takes
some time. For Markovian approaches, the combination of
consecutive decisions in MDP-based scheme, the calculation
of the total costs of all the permutations in permutation-based
scheme and the update of the MC matrix in rank aggregation
based scheme all take some time. Therefore, schemes using
game theory and Markov chain are not as fast as the first three
theories, but definitely faster than combinatorial optimization.

Implementation complexity: schemes using utility theory,
MADM or fuzzy logic are all simple to be implemented.
Schemes using combinatorial optimization are complex. The
complexity of Markovian approaches is between them due to
the fact that the algorithms and calculations in Markovian
approaches are more complex than the first three theories
and definitely less complex than combinatorial optimization.
For the implementation of a game-theoretic scheme, a dis-
tributed algorithm by each player is usually used to get to the
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TABLE VI
COMPARISON OFUSING DIFFERENTMATHEMATICAL THEORIES FORNETWORK SELECTION

Utility theory MADM Fuzzy logic Game theory Combinatorial
optimization Markov chain

Objective Utility evaluation
Combination
of multiple
attributes

Imprecision
handling

Equilibrium
between multiple
entities

Allocation of
applications
to networks

Consecutive decisions / rank
aggregation / priority evalu-
ation

Decision speed Fast Fast Fast Middle Slow Middle

Implementation
complexity

Simple Simple Simple Complex Complex Middle

Precision Middle High Middle High High High (but Low for WMC)

Decentralized Yes Yes Yes Yes No Yes

User-centric Yes Yes Yes No No Yes

Mobility-oriented No No Yes No No Yes

Traffic-oriented No No No Yes Yes No

equilibrium, which is largely more complex than Markovian
approaches.

Precision: schemes using MADM, game theory or combi-
natorial optimization are precise. For Markovian approaches,
MDP-based scheme and permutation-based scheme are pre-
cise, but rank aggregation based scheme is really imprecise
due to the fact that rank only provides networks’ priorities
not the exact difference between their quantitative values. The
precision of schemes using utility theory and fuzzy logic is
difficult to judge. Utility functions in utility theory and mem-
bership functions in fuzzy logic both have the functionality
to adjust attributes, i.e. enlarge or diminish the difference
between networks on certain attribute, but this adjustment
could loss precision. For example, in our case study of fuzzy
logic, we utilized some simple membership functions and
some simple fuzzy rules, so some networks are found with the
same total utility. Therefore, the precision of schemes using
utility theory and fuzzy logic is lower than MADM, game
theory and combinatorial optimization.

Decentralized: without considering the problem of informa-
tion gathering, all the theories could be used for decentralized
network selection schemes except combinatorial optimization.
Combinatorial optimization provides centralized algorithms to
optimize the allocation of applications to networks.

User-centric: schemes using game theory or combinatorial
optimization consider too much on the traffic load of networks,
which benefits operators a lot but degrades the user’s benefit.
Schemes using the other theories do not have this feature,
which are user-centric.

Mobility-oriented: as we explained in Section VII, it is diffi-
cult to take mobility-related attributes, especially VHO-related
attributes, into account for the decision of the best network.
In the literature, only schemes using fuzzy logic and some
Markovian approaches considered VHO-related attributes for
the decision. Among these schemes, only permutation-based
scheme used VHO-related attributes for network selection,
while the others used them for VHO decision. In Table VI, we

judge all these schemes as mobility-oriented due to the fact
that network selection and VHO decision might be processed
together.

Traffic-oriented: similar to our explanation on whether the
schemes are user-centric, schemes using game theory or com-
binatorial optimization take traffic load as a quite important
factor for the decision, which even degrades other attributes.
Therefore, the two are considered as traffic-oriented, while the
others are not.

B. Integration of multiple mathematical theories

We studied the usage of various mathematical theories
in this tutorial for the network selection issue. As you can
see from the above studies, they have different features and
different functionalities. To get all their benefits, we could
think about combining them in the way shown in Fig. 5 to
achieve an integrated solution:

Utility theory: network attributes, including traffic load,
are adjusted by utility functions, but traffic load, which is
highly related to combinatorial optimization and game in later
operations, may be adjusted in a different way from others.

Fuzzy logic: when there are many access networks, we
classify all the networks into several groups to decrease the
time cost on the comparison of all the permutations. This
operation is based on some key factors, such as cell radius,
bandwidth and price, using fuzzy logic.

MADM: after the adjustment of the network attributes,
MADM algorithm is used to combine these attributes based
on their weights.

Combinatorial optimization: before MADM, we might
check whether many networks’ available capacity become
limited. If so, instead of MADM, we could use certain
algorithm of combinatorial optimization for the allocation of
new services. Note that this theory is used in a centric manner
on the network-side, not by terminals.

Markov chain: MDP might be used in the tradeoff of VHO
decision after the networks are ranked
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Fig. 5. Relationship between various mathematical theories for network selection.

Game theory: after the tradeoff of VHO decision, many
simultaneous (or technically considered as simultaneous)
handing-over terminals might select the same best network,
which causes congestion. We might use game theory for
an opportunistic decision, so that these terminals could be
distributed into different networks.

C. Case study of an integrated scheme

For this case study, we take our previous design which was
very briefly presented in [24] as an example of the integrated
scheme. As shown in Fig. 6, the solution contains four steps:

1) monitor the triggers and gather the required information.
2) preparations before combining all the attributes, including

weighting procedure and attribute adjustment procedure.
3) combine multiple attributes as a single rank. The left part

of this step, which could be any traditional network selection
scheme, gives the best network. The right part of this step gives
the best permutation, as explained in Section VII.B. Since it
takes more time to get the best permutation than to get the best
network, we use the best network until the best permutation
is obtained.

4) make VHO decision. If the best network or the first
available network of the best permutation is better than the
current network, this step makes a simple decision on whether
the benefit is worth the one-shot VHO cost.

We believe that the network selection procedure imple-
mented in the future terminals should be simple and fast, and
the main goal of network selection is to always select the
best network for serving the given application, not to pay
too much attention to load balancing. A network selection
scheme paying too much attention to this attribute degrades
other attributes’ importance. Taking two networks both with
low but totally different traffic loads as an example, the
normalization process will ignore the two networks’ low traffic
loads but retain only the relative large difference, which leads
to immoderate traffic load balancing between the two networks
and compromises the importance of other attributes. Therefore,
traffic loads are usually not required to be strictly balanced

among different networks due to the fact that traffic load is
only one of a number of attributes, usually even not a decisive
attribute, except when at least one network does not have much
resource.

Based on the above analysis, we do not use game theory
or combinatorial optimization for a specific load balancing.
Instead, we adjust traffic load in a different manner from other
attributes in our integrated scheme. First, since the real values
are more important than the relative difference between the
traffic loads of the two networks, we do not normalize them.
Second, we use a special sigmoidal utility function with mid
value equals1 and a ≥ 2 to calculate the utility. Based on
our experience, a large value fora can be used to overcome
immoderate traffic load balancing.

For this case study, the unified scenario presented in Section
I with Tables I and II is used. In order to provide a fair
comparison with other schemes, we use the same attributes,
the same sigmoidal utility functions and the same MADM
algorithm i.e., SAW. Moreover, we have the following specific
configuration to guarantee fairness in this comparison:
• fuzzy logic theory for network grouping is not considered

in this study. Otherwise, some networks are going to be totally
the same after the adjustment of utility functions and fuzzy
membership functions, which hides the load balancing feature
of this integrated scheme.
• other schemes do not consider VHO decision, so we

are not going to use VHO decision step in this case study,
either. Otherwise, the comparison is unfair for other schemes.
Therefore, the networks indicated in Table VII are the best
networks for those users. Whether those users will handover
to their best networks still depends on VHO decision.

The difference between the integrated scheme in this study
and other scheme presented in previous sections is as follows:
• our solution combines utility theory and MADM.
• the sigmoidal utility function for ‘traffic load’ is specifi-

cally designed as explained above.
• weights are calculated based on our trigger-based method.
• Markov chain is used for best permutation selection.
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Fig. 6. An example of integrated scheme for case study.

• the best network is the first network (because all the four
networks are available) in the best permutation obtained bythe
right side of step 3, not from a best network selection scheme.
• traditional network selection scheme is integrated for a

fast decision before the best permutation is found.
• the difficulty of implementation comes from the calcula-

tion of total costs of all permutations.
• the precision is high as long as we do not use the ‘network

grouping’ functionality.
• the solution is decentralized, user-centric, mobility-

oriented and traffic-oriented.
Note that Fig. 6 is just one example of integrating multiple

theories, and the features and network selection results could

be totally different if you combine multiple theories in a
different way.

In this study, we also consider the case where each network
has a limited capacity for these16 users, as explained in the
case study of game theory. We rank the4 networks based on
the integrated scheme as shown in Fig. 6, but at the beginning
of the last step, we check if the network has enough resource
before VHO decision. We will show that our integrated scheme
could achieve a similar load balancing functionality without
using game theory or combinatorial optimization.

Network selection results of the16 users are given in
Table VII, together with the results from schemes using other
mathematical theories for comparison.
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TABLE VII
SELECTION RESULTS OFDIFFERENTSCHEMES IN THECASE STUDIES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sigmoidal utility M M M M L M L M M M M M P M P M

SAW with AHP P M P M P M P M P M P M P M P M

Fuzzy logic L M L WM LP L M M P WM WMP WM P L P WM

Game between users L L W W P M P M W W W W L L P M

Knapsack with SA P M P M L L P M P M M M P M P W

WMC P M P M P M M M P M M M P M P M

Integrated scheme P M P M L L P M M M M M L P P W

Note: W = WWAN, M = WMAN, L = WLAN and P = WPAN

D. Observations on the selection results of different schemes

For the selection results of different schemes in the case
studies in this section and previous sections, summarized in
Table VII, we have the following important observations:
• different types of users have some general preferences. For

example, WLAN is selected by a lot of streaming users but
not selected by interactive users at all; interactive usersprefer
WMAN and WWAN for security reason; conversational users
also prefer WMAN and WWAN but for continuity reason;
money-first users prefer WPAN and WLAN; mobility-first
users prefer WMAN and WWAN; and battery-first users prefer
WPAN.
• since we design WWAN as a dominated network by

WMAN, users basically prefer WMAN to WWAN. For ex-
ample, with the first two schemes, no user selects WWAN at
all. With schemes using fuzzy logic, WMAN is better than
WWAN for most users, but equally good as WWAN for some
users for the sake of imprecision of fuzzy logic. With schemes
using the other four theories, traffic is considered, so WWAN
might be selected when WMAN is full.
• if we consider battery low as an important event, WPAN is

obviously preferred. A few exceptions with utility theory and
fuzzy logic are due to the imprecision reason, while a few
exceptions with the last four theories are due to the reason of
traffic load balancing.
• SAW with AHP, fuzzy logic, game between users, knap-

sack with SA and WMC all define total utility in the same
way, i.e., summing up multiple attributes based on linear utility
function. Among these five schemes, SAW with AHP provides
higher utility than fuzzy logic and WMC since it is precise,
while knapsack with SA provides higher utility than game
between users since it takes much more time to search for
the network with the maximum utility. However, it is unfair
to compare the total utilities of all the schemes together since
they are actually suitable for different situations: SAW with
AHP, fuzzy logic and WMC are suitable for the case when
traffic is not a key factor, while game between users and
knapsack with SA are suitable for the case when resource
of some networks becomes tight. For the scheme sigmoidal
utility and the integrated scheme, it is unfair to compare with
other schemes on the total utility since they use actually a

totally different way to evaluate the total utility. Sigmoidal
utility scheme uses sigmoidal functions to adjust the utilities of
attributes, so it assumes that the best network should be with
the maximum adjusted utility, not the maximum unadjusted
utility. The integrated scheme combines traffic into the total
utility, so the definition of the total utility is different from
others. If we use this definition to evaluate the utility of
different schemes, the integrated scheme is surely with the
maximum utility, but we feel it unfair for other schemes in
this kind of comparison. That is also why we provide general
comparison of different schemes’ total utilities, insteadof
demonstrating them in figures.
• with the integrated scheme, traffic loads of different

networks are{2, 11, 12, 11}. Considering that WWAN is dom-
inated by WMAN, it is quite correct to not select WWAN
until there is not enough space in WMAN. Traffic loads of
different networks using game between users and knapsack
with SA are {6, 12, 6, 12} and {2, 12, 10, 12}, respectively.
Therefore, considering traffic load balancing, we can see that
our integrated scheme is equally good as knapsack with SA,
while we do not have to use a slow optimization algorithm,
such as SA, in our integrated scheme.

IX. CONCLUSION

Network selection has been widely studied by using various
mathematical theories in the literature. The employed theory
is extremely important because it decides the objective of
optimization, complexity and performance, but there lacksa
tutorial on the mathematical models used for the network
selection problem. Therefore, this paper filled the blank by
conducting a serious survey and providing a systematic tutorial
on the main mathematical theories used for this problem,
including utility theory (cost function), MADM, fuzzy logic,
game theory, combinatorial optimization, Markov chain. A
unified scenario was used to explain and compare selected
network selection schemes using these theories. In the end,
the integration of multiple of these theories was discussed,
and an integrated scheme combining the advantages of sev-
eral mathematical theories was proposed and compared with
selected schemes.
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X. NOTATIONS

C: total coefficient of combining multiple attributes
K: number of users or applications
M : number of attributes
N : number of networks
cki: capacity cost of applicationk in network i
ni: network i
vij : normalized value of attributej in network i
wk

j : weights of attributej for applicationk
xij : value of attributej in network i

Utility Theorey (Cost Function):
N (·): normalization of certain utility
Fi: total cost of networki
U : total utility of all the attributes
fk

j (·): weighting function of attributej for applicationk
uk

ij : utility of applicationk in network i in terms of attribute
j
ǫkij : network elimination factor for applicationk, network i
and attributej

MADM :
Ckl: concordance set including the attributes on which
networkk is better than networkl
Dkl: discordance set including the attributes on which
networkk is worse than networkl
Dα: Euclidean distance from certain network to the worst
reference network
Dβ : Euclidean distance from certain network to the best
reference network
Vα

j : value of thejth attribute of the worst reference network
Vβ

j : value of thejth attribute of the best reference network
B: pair-wise comparison matrix between all the attributes
R: relationship matrix between events and attributes
d: binary vector denoting true or false of events
e: weights of all the events
I: identity matrix
w: weights of all the attributes
E: number of events
bij : comparison value between theith and thejth attributes
in B

rij : strength of the effect from theith event to thejth
attribute
x̄j : mean value of all the networks in terms of attributej
λ: eigenvalue ofB
Λj : nominal value of attributej

Fuzzy Logic:
F l

j : fuzzy set for thejth input in fuzzy rulel
G l: fuzzy set for the output in fuzzy rulel
Xj : the jth input of a fuzzy logic system
Y: output of a fuzzy logic system

Game Theory:
Bk: type space of playerk in Bayesian game
K : set of users
N : set of networks

Q: set of Bayesian strategies
Bk(q−k, Bk): best response of playerk in Bayesian game
Ki: number of users choosing networki
p(a): vector of proportion of users choosing different networks
in service areaa
qk: Bayesian strategies of all the players exceptk
Bk: minimum bandwidth requirement as the type of playerk
in Bayesian game
ck(·): cost of userk in the congestion game
pi(t): proportion of users choosing networki
p
(a)
i : proportion of users choosing networki in service areaa
qk: Bayesian strategy of playerk
ζki′ : binary variable representing whether userk is within the
coverage of networki′

ηki: binary variable representing whether userk selects
network i
πi(t): payoff of the users choosing networki in the
evolutionary game
π̄(t): average payoff of the entire population
π̄k: expected payoff of playerk as bandwidth utility minus
connection fee

Combinatorial Optimization :
U : total profit
Ci: capacity of networki
zki: binary variable representing whether applicationk selects
network i
ψki: profit of applicationk selecting networki

Markov Chain :
S: state space
A (s): set of available actions at states
Ri: combination of all the other attributes except VHO cost
S(·): state denoted by the area covered by a certain bunch of
networks
T : threshold between the selection of different permutations
Y: weighted Markov chain transition matrix
f : stationary distribution vectort: decision epochs
T : number of epochs during a session lifetime in an MDP
at: action at epocht
f(st, at): benefit of using actionat from statest

g(st, at): cost of using actionat from statest

hH : average horizontal handover cost
h+

V : average cost of vertical handover to a better network
h−V : average cost of vertical handover from the current best
network
r(st, at): one-step reward using actionat from statest

st: state at epocht in an MDP
ykl: element inY, representing the difference between net-
work k and l
δt: epoch t during a session lifetimeγ: discount factor
mapping the future reward to the current state
σi: probability that networki is available
ρ(y|s, a): transition probability from states with actiona in
discrete MDP
ρ(Y |s, a): transition probability from states with actiona in
continuous MDP
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τj : rank of networks based on attributej
θ: policy indicating the network selection for each epoch
during a session lifetime in an MDP
Θ: policy space

XI. GLOSSARY

AAA : Authentication, authorization and Accounting
ABC: Always Best Connected
AHP: Analytical Hierarchy Process
BER: Bit Error Rate
ELECTRE : ELimination Et Choix Traduisant la REalité
GRA: Gray Relational Analysis
GSM: Global System for Mobile communications
HHO : Horizontal HandOver
HWNs: Heterogeneous Wireless Networks
MADM : Multiple Attribute Decision Making
MCDM : Multiple Criteria Decision Making
MDP: Markov Decision Process
MEW : Multiplicative Exponential Weighting
MMKP : Multiple Choice Multiple Dimension
MODM : Multiple Objective Decision Making
NE: Nash Equilibrium
NP: Non deterministic Polynomial
PCR: Performance-Cost Ratio
QoS: Quality of Service
RSS: Received Signal Strength
SA: Simulated Annealing
SAW: Simple Additive Weighting
SIR: Signal-to-Interference Ratio
SNR: Signal-to-Noise Ratio
TOPSIS: Technique for Order Preference by Similarity to an
Ideal Solution
TRUST: TRigger-based aUtomatic Subjective weighTing
UMTS: Universal Mobile Telecommunications System
VHO : Vertical HandOver
WiMAX : Worldwide interoperability for Microwave Access
WLAN : Wireless Local Area Network
WMAN : Wireless Metropolitan Area Network
WMC : Weighted Markov Chain
WPAN: Wireless Personal Area Network
WWAN : Wireless Wide Area Network
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