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Mathematical Modeling for Network Selection in
Heterogeneous Wireless Networks — A Tutorial

Lusheng Wang and Geng-Sheng (G.S.) Kuo

Abstract—In heterogeneous wireless networks, an important ~ To access the Internet through HWNSs, current terminals,
task for mobile terminals is to select the best network for e.g., laptops and cellphones, are usually installed witHipie
various communications at any time anywhere, usually cale \ireless access network interfaces. One type of terminals

network selection. In recent years, this topic has been widg . . . . .
studied by using various mathematical theories. The emplad widely used nowadays is those with multiple interfaces but

theory decides the objective of optimization, complexity ad NO functionality to support IP mobility or multihoming, dedi
performance, so it is a must to understand the potential math multi-mode mobile terminals. The other is with IP mobility

ematical theories and choose the appropriate one for obtaing and multihoming functionalities, called multi-homed miebi
the best result. Therefore, this paper systematically stus the o minals. Mobility means that a terminal can switch betwee

most important mathematical theories used for modeling the tworks without breaki - icati Multi
network selection problem in the literature. With a carefully ~NEWOrKS without bréaking on-going communications. Mulli

designed unified scenario, we compare the schemes of varioushOming means that a terminal has multiple IP connections
mathematical theories and discuss the ways to benefit from to one or multiple networks simultaneously. Multi-homed

combining multiple of them together. Furthermore, an integated  terminals use multiple interfaces to share load for the same
sr(l:hemle using mult:jple attribute degnsnon making as the cor®f  gaggion and support session continuity with low (or no) pack
the selection procedure Is proposed. loss during mobility or link break. By contrast, multi-mode

Index Terms—Network selection, heterogeneous wireless net- terminals can only select and use one interface for certain
works (HWNSs), utility theory, multiple attribute decision making session at a time

MADM), fuzzy logic, game theory, combinatorial optimization, . . . .
ﬁ/larkov)chain.y gie. g 4 P Both multi-mode and multi-homed terminals require always

to rank the access networks and select the best at any time
anywhere, which is well known as always best connected
. INTRODUCTION (ABC). ABC brings plenty of advantages to users. With ABC
He recent development of wireless technologies hasnctionality, terminals select appropriate access neksvto
totally revolutionized the world of communications. Mul-it for various QoS requirements of applications; terminals
tiple technologies are evolving simultaneously towards/jal-  avoid selecting a network with high traffic load for avoiding
ing users with high-quality services of broadband access agongestion; terminals predict networks’ availability duatt
seamless mobility. On one hand, wireless wide area netwotkey do not connect to networks which disappear soon; and
(WWANS) evolve from GSM to UMTS and beyond 3G terminals minimize signalling costs by using network sttec
providing wide coverage and good mobility capabilities. Oand handover decision strategies specifically for this psep
the other hand, a series of standards of wireless local arareover, ABC benefits operators. Since ABC has the feature
networks (WLANS), including IEEE 802.11a, IEEE 802.11bof assisting the assignment of traffic load to multiple neksp
IEEE 802.11g, IEEE 802.11n, etc., have been established &perators maximize the utilization rate of the resourcethef
local-area high-speed economic wireless access. To cempigtworks they operated, hence maximizing revenue. Acagrdi
ment them, wireless personal area networks (WPANSs), e.@,network selection strategies, operators analyze anidl@lec
Bluetooth and Zigbee, and wireless metropolitan area msvothe number of WiFi access points they should deploy to attrac
(WMANS), e.g., WIMAX, are developed for short-range andisers to WLANs. Finally, ABC is suitable to synthetically
metropolitan coverages, respectively. All the above nete/o consider users’ and operators’ benefits, so that a win-win
have been deployed with coverage overlapping one anothgirtnership can be achieved.
hence forming a hybrid network for wireless access, which is ABC contains many necessary components [1], such as
usually called heterogeneous wireless networks (HWNSs). network discovery, network selection, handover execytion

o . o _ authentication, authorization and accounting (AAA), nlibpi
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TABLE |
NETWORKS AND SELECTEDATTRIBUTES IN THE UNIFIED SCENARIO

Bandwidth  Price  Cell radius  Security = Power consumption ffitra

WWAN 2 50 2000 3 1/100
WMAN 10 20 2000 3 1/100 X
WLAN 54 5 75 1 1/50 X
WPAN 1 1 10 2 1/1000 X
TABLE Il
SELECTED PROPERTIES OF THEL6 USERS IN THEUNIFIED SCENARIO
User No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Conversational| ¢ e e e
L Streaming e o o o
Application
Interactive o o ° .
Background . . ° °
Money first e o o o e o . .
User
Quality first o o o o . . ° °
) Battery first ° ° ° ° ° . . .
Terminal
Mobility first ) ) . . . . . °

this problem. Based on our study, the mathematical modalt also for other ones, such as user preference and network
used for representing the problem is the first thing and thead balancing. In the literature, VHO decision is sometime
most important thing we should consider when designingcanfused with the term network selection, so in this paper,
network selection strategy. It decides the aim of optiniigt we strictly distinguish the two terms: network selectiortas
the utilization of different parameters, and the perforoeanrank networks and find the best one, while VHO decision is to
of the selection strategy. Therefore, to fill out this blamike decide whether it is worth the handover to the best network or
conduct a serious survey and provide a systematic tutoréahetwork better than the current one. VHO decision is not to
on mathematical theories for modeling the network selactigimply check whether the difference between the two netsork
problem. is larger than the VHO cost. In fact, this decision takes into
Throughout this paper, we use a unified scenario to hedpcount the predicted information of many parameters a$ lon
explain schemes using different mathematical theories. @a they are predictable, including the expected time pbet t
the network side, we considet types of available net- a better network will be available, the average duration ¢ha
works (i.e., WWAN, WMAN, WLAN and WPAN) and6 better network can last, the probability density functidnao
attributes (i.e., bandwidth, price, cell radius, secuntgwer better network’s dwelling time, the utilities of networketc.
consumption and traffic), as given in Table |. These atteébutHowever, since the subject of this tutorial is network sédec
are carefully selected, so that there is upward attribuge, e we are not going to discuss too much on VHO decision.
bandwidth, downward attribute e.g., price, dynamic atieéb ~ The rest of this paper is organized as follows. From Sections
e.g., traffic, terminal-related attribute e.g., power econption, 1l to VI, we systematically discuss the existing studies on
application-related attribute e.g., security and mopilélated network selection using utility theory (cost function), iple
attribute e.g., cell radius. Note that one attribute coudsteh attribute decision making, fuzzy logic, game theory, combi
multiple of these features. Moreover, we design WMAN asatorial optimization, Markov chain, respectively. In Seq
a dominant alternative of WWAN, so that we could clearly/1ll, we compare schemes using different mathematical the-
see the load balancing feature of the schemes with differenites, discuss the ways to combine multiple of these thsorie
mathematical theories. On the user side, we considgpes together, and propose an integrated scheme in the endo®ecti
of applications with different QoS requirements includingX concludes the paper. Finally, Section X and Section XI
conversational, streaming, interactive and backgrouhdddr provides the notations and the glossary.
each application type, we consideusers with different user
preferences (i.e., money first and quality first) and diffiere [I. UTILITY THEORY (COSTFUNCTION)
terminal properties (i.e., battery first and mobility firsto- For making a decision, utility refers to the satisfactioatta
tally, there arel6 users with different user-side features, agoods or service provides to the decision maker [5]. An assoc
summarized in Table II. ated term is utility function which relates to the utilityrileed
VHO represents handover between different types of accédgsa consumer from a goods or service. Different consumers
technologies, which is needed not only for connectivitysmga with different user preferences will have different ugilitalues
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where U is the total utility of all the attributes and; is
the utility of attributej. M denotes the number of attributes
throughout this paper.

Cost function is a measurement of the cost caused by
using certain network. Usually, the cost of a network can
be considered as the inverse of its utility, but the form of
this inversion is related with the way to combine multiple
attributes. For example, if these attributes are summedhep,

1 total cost is calculated as the cost minus the utility. A gehe
form of cost function for the network selection problem was
given in [8], which integrates a large number of attributhsjr
weights, and furthermore, network elimination factorsegiby
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Wherej\/(uifj) represents the normalized utility of application

Fig. 1. Typical utility functions. k in networki in terms of attributej. f¥(w%) is the weighting
function of attribute; for applicationk. efj is the network
elimination factor, eithet or infinite, to reflect whether current

for the same product. Thus, the individual preferences Ishouetwork conditions are suitable for requested applicati&ior

be taken into account in the utility evaluation. example, if a network cannot guarantee the delay requiremen
of certain real-time application, its corresponding efiation
factor will be set to infinite. Thus, the corresponding cost

A. Utility functions in network selection becomes infinite, which eliminates this network.

Utilities can be classified into monotonic utilities and nron Ogsnemsgrlfgyr t?ast ::Sor\:\ézrt? (;?erzpcorgg]gofor;hgs qrs]a?ge] OLsttgres
monotonic ones. The utility is said to be monotonic if th&Onsu urpiu P ! 1es | '

measure of satisfaction associated with the attribute sm)walways search for cost effective solutions to meet their ex-

o : . : .bBectations. If the price is less than the value the user is
monotonic increase and decrease with an increase in aéri iling to bay. he saves monev. Consumer-surolus represent
value. Otherwise, it is said to be non-monotonic. Normall g o pay, Y- P b

monotonic utilities are used, except if the attribute issidn ¥he dlﬁ%r(?tnce tb etlvvefan the tr:onettary \I:alqti ?r: tfg)e dtatt?mtﬂq the
ered as the nominal-the-best. For a nominal-the-besbaty;i USer and Its actual price, So the network wi € best predic

instead of considering the best (either the largest or t hsumer-surplus, which is also predicted to meet the aervi

smallest) as the most desired network, the one that is ¢|Os%gsmpletlon deadline, will be selected.

to the service requirement is preferred [6]. When evalgatin
the utility of an attribute, we should distinguish betwete t B. Attributes in network selection
upward and downward attributes. The attributes of which the o |0t of studies model the network selection issue with

higher preference_relation is in favor of the higher valug atost or utility functions, but they may consider different
called upward attributes. Conversely, the downward atté® atriputes and measure them in different manners. A summary
encompass various costs. Given an attribute, its utilityloa ¢ gttributes and their usage in different papers is pravide
calculated based on certain utility function. And, theittil ;y Taple 1II. For types of attributes, we first classify them
function of one attribute could be different from that ofets. ¢ upward and downward attributes, then static, dynamic
Some examples of common utility functions are shown in Figy,q semi-dynamic attribute. Semi-dynamic attributes laee

1. It is important to select the suitable utility functiomrfeach ihat are not totally static but not quite dynamic either. For
attribute. Sigmoidal utility function is considered to hétable example, bandwidth is sometimes used statically as thé tota
for the network selection problem [7], but the parameters ghngwidth of each network, but sometime used dynamically
the sigmoidal function might be different to fit for differen 55 the average bandwidth a user obtains. Bit error rate (BER)
attributes’ features. jitter and service completion time are changeable along wit

During the network selection procedure, we consider muhe environment and the network condition, but it is difftcul

tiple attributes together, so the utilities of multipleriittites o dynamically evaluate their instantaneous values forvaet

are combined as a total utility. It has been pointed out thgélection, so they are classified as semi-dynamic attsbute
a valid form to combine these attributes together satisfies t\vioreover, we also consider some other features of attshute

following requirements [7]: such as mobility-related, QoS-related, terminal-relate
o < inter-network. For lists <_Jf refgrences, consideri_ng thm_ry
Du; = study on network selection will use one or multiple attrésut
ul-@oU =0,vVj=1,...M (1) @as decision criteria and some key attributes are even used by
J

I U=1 most studies on this issue, so it is tedious to provide cotaple
ul,,,,}%ﬂ - lists for all the attributes. Instead, Table Il just aimsligt
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TABLE Il

KEY ATTRIBUTES AND THEIR UTILITY FUNCTIONS

Attribute Types References Utility functions

i . . ) [71, [8], [10], [20], [21], [23], [24], linear, logarithmic,
Bandwidth upward/semi-dynamic/QoS-related 28], [30], [37]. [38]. [46], [51] sigmoidal
Cell radius (diameter) upward/static/mobility-related 38] linear

Security upward/static/QoS-related [10], [21], [23], [2BB1] linear, sigmoidal
Battery upward/dynamic/terminal-related [21], [22], T28 linear

SNR/SIR upward/dynamic/QoS-related [21], [22] linear

RSS upward/dynamic/QoS-related [11]-[23], [21], [2811]5 linear

Price downward/static [[372]_[[1%] [13], [21], [23], [24], [28], linear, logarithmic
VHO signaling cost downward/static/mobility-relatedénnetwork [12], [24], [54] linear

VHO latency downward/static/mobility-related/intertwerk [12], [27] linear

HHO signaling cost downward/static/mobility-related T1B4] linear

HHO latency downward/static/mobility-related [12], [38] linear

Handover failure probability = downward/static/mobilitgtated [27] linear
Interruption probability downward/static/mobility-egkd [27] linear

Size of unsent messages downward/static/mobility-relate [27] linear

Traffic downward/dynamic [71, [11], [24], [34], [37] lineasigmoidal
Power consumption downward/static/terminal-related 1,[&38], [51] linear

BER downward/semi-dynamic/QoS-related [21], [23], [24] inelr, sigmoidal
Delay downward/semi-dynamic/QoS-related [20], [21],1[481] linear, sigmoidal
Packet loss downward/semi-dynamic/QoS-related [20]) [23 linear, sigmoidal
Jitter downward/semi-dynamic/QoS-related [20], [21B][Z24], [51] linear, sigmoidal
Response time downward/semi-dynamic/QoS-related [23] neali

Service completion time downward/semi-dynamic/QoSteela 9] gr)lgi:,]e?gilgromial,

some most typical examples of each attribute. For utilitycku ~ Moreover, it is important to state clear that other studies o
tions used in the literature, most studies that do not spedifi the network selection issue could also evaluate networksda
discuss utility functions could be considered as usingalineon utility/cost functions which combine multiple attrilest
utility functions. While in some recent studies, polynomiaHowever, those studies focus on other mathematical models,
logarithmic, exponential and sigmoidal utility functiomse which will be presented in later sections.

utilized for some attributes, which are summarized in this

table. C. Case study

In the above presentations, we discussed utility functionsWe consider the unified scenario presented in Section |
for various attributes. To avoid a potential misunderstagd with Tables | and Il. Since it would be unfair by assuming
we would like to point out that utility function for a certaindifferent networks with different traffic conditions, wesasne
attribute could be totally different in different scenavid-or that they have the same traffic condition, which means tteat th
example, the utility of bandwidth should jump to a fixed valuattribute ‘traffic’ is not considered in this case study. &hs
after certain thresholds for voice and video applicatidng, on the above studies, sigmoidal utility functions with diffnt
kind of linearly increase for data application [13]. If sigidal configurations of mid value and parametgeras shown in Fig.
functions are used, the parametiens shown in Fig. 1, should 1, are used for different attributes under the cases ofrdiffie
be large for voice and video applications while small foradatuser-side properties. For example, userequires streaming
applications. For voice and video applications, the midiga) application while uset requires conversational application, so
corresponding to the thresholds, should be also different. the mid value in the sigmoidal utility function of ‘bandwidt
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TABLE IV
OBJECTIVE AND SUBJECTIVEWEIGHTING METHODS

Category Calculation
Entropy Objective weighting w; =1 — Zf\;l [:cw ln(ZCZ‘j):I
Variance Objective weighting w; = \/Zi\;l(ffi]’ —Z;)2/NZ;, %5 = + Zil oy
Eigenvector Subjective weighting (B — A\I) - w =0

Weighted least square  Subjective weightingmin Z = Zﬁl Z?il(bijw]' —w;)?, s.t. Zﬁl w; =1

TRUST Subjective weighting w =e x (d xI) xR

is much larger for uses than for usen; user7 prefers better  Alternatives a finite number of alternatives are screened,
service, sa in the sigmoidal utility function of ‘price’ can be prioritized, selected and/or ranked for making the final de-
small but that of ‘bandwidth’ should be large. In other wgrdision. The term ‘alternative’ is synonymous with ‘option,
sigmoidal utility functions could be different for diffemeusers ‘policy,” ‘action,” ‘candidate, etc.
and different attributes, so there aye< 16 sigmoidal utility ~ Multiple attributes the decision maker does consider mul-
functions. For the sake of conciseness, we are not goingtto fiple attributes of these alternatives. The term ‘attrébutan
them. be referred to as ‘goal,’ ‘criterion,’ ‘property,’ ‘chartagistic,
In order to prominently reflect the effect of the sigmoidagtc.
ut|||ty funCtionS, we Slmp|y sum the utilities of these ditrtes Decision matrix a MADM prob'em can be Concise|y ex-
with equal weights. Moreover, we use the Enhanced Magressed in a matrix format, where columns indicate attetut
Min method in Table V to normalize the values of attributeﬁnd rows indicate alternatives. ThUS, a typ|Ca| e|emptof
for all the case studies throughout this paper. We want Qe matrix indicates the value of thign alternative with respect
mention that, with Enhanced Max-Min method, the utilitiego the jth attribute.
of the best and the worst networks on any attribute will be ayibte weightsdifferent decision makers might focus on
stretchgd close ta and 0, respgctlve. Then,_n‘ the utilities different aspects when ranking the alternatives, so weight
are going to be summed up with equal weights as we sgifl ¢ pe calculated to represent multiple attributes’ resat
above, multiple anal attributes _could conce_al the |rr_t|e_mce importance. Table IV gives some common weighting methods
of the key attribute and dominant the final decision. T@,q),qing objective and subjective methods. The objective
avoid this pitfall, we compress all the utilities frof, 1]\ eights are calculated directly based on the relative iffee
to [0.1,0.9] and set the mid value of sigmoidal function tq,onveen attributes, given by, for attribute j. Then, the
0.01 (or 0.99) when the attribute is trivial (or dramatica”yobjective weights are obtainejd as the normalized values of
@mportant). Network selec_:tion results of the 16 users arergi_ w;. By contrary, subjective weights are usually calculated
in Table VII, together with the results from schemes usingaseqd on the decision maker's pair-wise comparison between
other mathematical theories for comparison. all the attributes, given bi;; as the comparison value between
the ith andjth attributes and3 as the matrix containing all
1. M ULTIPLE ATTRIBUTE DECISION MAKING the comparison values. Moreover, for the eigenvector ntetho
in the table,\ is the eigenvalue andl is an identity matrix.
Multiple attribute decision making (MADM) refers to mak- N denotes the number of networks throughout this paper.
ing preference decision over the available alternative® th owever, these traditional methods to calculate subjectiv
are characterized by multiple (usually conflicting) atit#s. \yeights do not work well for the network selection problem
MADM is a branch of multiple criteria decision makinggsjnce its pair-wise comparison process is slow and not au-
(MCDM) which also includes mult.iple objectiye d.ecision maKiomatic. Therefore, we proposed a TRigger-based aUtomatic
ing (MODM). MODM problems involve designing the bestspjective weighTing (TRUST) method [15] to calculate sub-
alternative given a set_of conflicting objectives, whichates jective weights, as shown in the weighting module of Fig. 6.
a product in the design process. For example, automobdg,ce some events can trigger the network selection proegdu
manufacturers want to design a car that maximizes ridif§ere should be some relationship between these events and
comfort and fuel economy and minimizes production coS{g|ection results. Our method uses a mapping pot to stase thi
Apparently, network selection does not create any physigglationship in order to calculate the subjective weigfitso
produ_ct but only makes a decision, so MADM is more SUitabl?arameters are stored in the mapping pot and used for the
for this problem. calculation of subjective weights. One isFxby-M matrix
R representing the relationship between events and network
attributes, wheref/ is the number of events and; in the
matrix represents the strength of the effect from dteevent
MADM problems have several common characteristics [14fp the jth attribute, e.g., the event ‘speed up’ increases the

A. MADM basics
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TABLE V
NORMALIZATION METHODS FORATTRIBUTES INNETWORK SELECTION

Normalization Function

Max-Min vij = (2i5 — min(z45))/(max(z;;) — min(zs;))
k2 k2 k2
Square root Vij = Tij /A /Zil :v?J
N
Sum Vij = xij/zi:l Tij

1 — |as; — max(x;;)|/(max(x;;) — min(z,;)) for upward attributes
7 K2 K2

Enhanced Max-Min v, 1—|ag; — miin(mij)\/(m?x(:vij) - miin(mij)) for downward attributes

1— x4 — Ajl/miax{miax(:[?z‘j) —Aj, A — Hliin(ZCZ‘j)} for nominal-the-best attributes

weight of mobility-related attributes. The other isleby-E by
vector e representing the weights of events, which can be M
calculated in advance or obtained from the operator during Csaw = ijvij, 3)
the initiation of the mobile terminal. Finally, the subjeet j=1
weights of network attributes can be calculated as shownwherew; represents the weight of thgh attribute, andv;;
Table 1V, whered is a 1-by-E binary vector denoting true or represents the adjusted value of tfid attribute of theith
false of the trigger events. network.

Normalization different attributes have different measure- MEW is to calculate the coefficient by multiplicative oper-
ment units, so normalization is treated as a necessary $te@iion [7], [21], given by
network selection. There are several methods of normadizat M
compared in Table V. For a given attribuie x;; represents CrEw = H v;;j. (4)
the value of theith network in terms of this attribute, and =1
vy represents its normalized value. The enhanced Max-Min

method consider three groups of network-side attributes, i (4) can be further modified a8y, = In(Cyew) =

M . . ..
upward, downward and nominal-the-best, whérerepresents >_j—1 w; In(v;;). Considering the characteristic of the natural
logarithm, the attribute whose cost is close to 0 has larger

the nominal value of attributg. There are two differences.
between Max-Min and enhanced Max-Min methods: first, tr{gPact on the total cost than others. For example,_BIuetooth
latter considers the nominal-the-best group; second,étter| Is more often selected by MEW than by other algorithms due

adjusts downward attributes into upward attributes. Fer tfC IS 1ow monetary and power costs.

sake of the second difference, the outputs of the enhance@‘nOther two MADM algorithms used for network selection

Max-Min method are all considered as upward attribute re TOPSIS [17], [22] and GRA [6], [23], which both consider

while for the other three methods, we have to distinguish b -? distance frorrll the e‘;f?‘“%ate‘j fnetwork to onekz) or rrulltlpled
tween upward and downward attributes while combining theffiference networks. Coefficient of TOPSIS can be calculate

together. For examples of the usages of these normalizatfh Do
methods, refer to [16]—[19]. CTorsis = 55 pa (5)
where D* = \/ij\il w?(vi; — V)2 and D =

B. MADM algorithms in network selection Zj]\il w?(vij — Vf)Q represent the Euclidean distances

MADM algorithms can be divided into compensatory anfrom the current network to the worst and best reference
non-compensatory ones [20]. Non-compensatory algorithnmetworks, respectivelyVs and Vf represent the values of
e.g., dominance, conjunctive, disjunctive or sequentiatie the jth attribute of the worst and best reference networks,
nation, are used to find acceptable alternatives whichfgatisespectively.
the minimum cutoff. By contrary, compensatory algorithms Different from TOPSIS, GRA uses only the best reference
combine multiple attributes to find the best alternative.sMonetwork to calculate the coefficient, given by

MADM algorithms that have been studied for the network 1
sglectlon pr_oblem are compensatory. a_Igonthms, mgludmg Cera = ZM wjlvij — V[-jl +1 (6)
simple additive weighting (SAW), multiplicative exponeit j=1"31Yij J

weighting (MEW), gray relational analysis (GRA), Techniqgu ELECTRE, another well-known MADM algorithm but dif-
for Order Preference by Similarity to an Ideal Solution (FORerent from the above four algorithms, does not calculate ce
SIS), ELimination Et Choix Traduisant la REalité (ELEC+ain coefficient for network ranking. It contains the follmg
TRE), etc. steps [16]:

SAW is widely used by most studies of the network selec- 1) identifying attributes of different networks as a deatisi
tion problem using cost or utility functions, generally giv matrix;
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For weighting the attributes in a network selection scheme,
AHP structures attributes into a hierarchy. For exampl8] [2
structures all the QoS-related attributes into five groues, (
throughput, timeliness, reliability, security and costaach
group has one or multiple attributes (e.g., delay, resptinse
and jitter are in the group of timeliness). Therefore, Qo8ris
the first level, the five groups are on the second level, while

-
/ /
Structuring a hierarchy of | |
all the attributes I Classifying attributes
A 4
attributes in each group are on the third level. Then, on each
level in the hierarchy, weights are calculated based oraicert

|

I

I

I

|

| / Normalization of all the
| attributes

I weighting method, e.g., those in Table IV. Finally, weigbfs
|

I

I

I

|

I

I

I
I
I
I
I
I
I
I
3 | different levels are synthesized to achieve the overalpttei
I
I
I
I
I
I
|

Information gathering

e N

v
Pair-wise comparison
of attributes and
sub-attributes

[
I
I
I
I
I
I
I
I
| \ 4
I
I
I
I
I
I
\

Calculating weights on each
level of the hierarchy

\ 4

of each attribute.
Defining an ideal network

Note that MADM is not the only mathematical theory that
A 4

combines multiple attributes together. Theories in theeoth
sections also prefer to combine multiple attributes foriglen,

using usually SAW. Moreover, weighting and normalization
Synthesizing the hierarchy Calculating coefficients of . . .
: are common operations for schemes using all kinds of mathe-
o get the weights \ networks . . . "
N SEAERN -/ matical theories, not only for MADM. We present them in this

section since they are mainly studied in the scope of MADM-
Fig. 2.  An example of combining MADM with AHP-based subjeeti pased network selection.

weighting.
C. Case study
2) defining an ideal network; We consider the unified scenario presented in Section |
3) calculating the absolute difference between each n&twayith Tables | and Il. Similar to the case study in Section
and the |de§\I .network; . I, attribute ‘traffic’ is not considered in this case study.
4) normalizing the absolute difference; Based on the above studies, we choose the widely used
5) multiplying weights of attributes; MADM algorithm, SAW, for this case study. Enhanced

6) calculating concordance and discordance matrices; angax-Min method is used for normalization. Eigenvector
7) making decision based on concordance and discordafgéthod is used for calculating the subjective weights. For
matrices. each user, a pair-wise comparison matrix is obtained by the
Among them, the key step is 6), in which concordanagecision maker based on user-side properties. For example,
and discordance matrices are calculated based on concerdahe pair-wise comparison matrix of usercould be
and discordance sets, denoted#yand 2, respectively%},

contains the attributes on which netwotk is better than Lo1y7 11 17
network!, and 2, is inverse. T 1 7 7 1
Then, the elements in concordance and discordance matrices B=|1 17 11 1/7
are calculated as follows: L 1y7 1 1 17
7 1 T 7 1
Chkl = Z | € Cr . . :
Ej J— @) Weights are calculated as the eigenvector of the above pair-
dyl = % wise comparison matrix corresponding to the largest eigen-

value, given by {0.0588,0.4118,0.0588,0.0588,0.4118}.

Among all the MADM algorithms, [7] pointed out that Sometimes, the eigenvector could be negative, so we should
MEW is the only one that satisfies all the requirementdways normalize the obtained eigenvector to avoid trgatin
indicated by (1), while [6] argued that GRA is more suitablthe worst network as the best.
than others in the scenarios when some attributes have none can see from this matrix that two attributes are key
monotonic utilities. [21] showed that SAW, MEW and TOPSI$actors for the decision, i.e., price (as the user preferenc
have similar performance to all traffic classes, while GR#&s ‘money first’) and power consumption (as the terminal
provides a slightly higher bandwidth and lower delay foproperty is ‘battery first’). For the other three attribytes
interactive and background traffic. [24] showed that MEW is really difficult for us to say which one is the most
gives larger probability to select WPAN than other algorith important one, so we give them equal weights. For the sake of
due to its multiplication operation. Moreover, it is easy teonciseness, we are not going to list the pair-wise comparis
combine compensatory MADM algorithms with the eigenveanatrices for all the users, but we would like to remind that
tor subjective weighting method based on analytical h@mar pair-wise comparison matrices are different from user &r us
process (AHP), such as the scheme shown in Fig. 2 [23]. AHRd from scenario to scenario.
is a procedure to divide a complex problem into a number of Network selection results of thé6 users are given in
deciding factors and integrate the relative dominancesef tTable VI, together with the results from schemes using othe
factors with the solution alternatives to find the optimakon mathematical theories for comparison. Notice that thectiele
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y 5 Fuzzy rule base
Large

o Fuzzy
‘, v \_ inference engine

A “High” “High”
“Low” “Low”

Attributes

Fuzzifier

< Defuzzifier >—>< Rank >
/ Recursion module (neuram‘

network, kernal learning, ety N

Fig. 3. A combined framework of fuzzy logic based networkesgbn.

results by using other MADM algorithms are quite close tB. Fuzzy logic in network selection
SAW. For example, with TOPSIS, the only difference in the

results is that uses selects WLAN instead of WMAN. There are different ways to use the fuzzy logic theory in a

network selection scheme: some studies use it as the core of
the selection scheme, some combine fuzzy logic with MADM
algorithms, while some use the fuzzy logic with recursion
(neural network, kernel learning, etc.).

Humans usually think in terms of linguistic descriptions, A very basic framework without combining with any other
so giving these descriptions some mathematical form helfeory is used by [27] for fuzzy logic based network selegtio
exploit human knowledge. Fuzzy logic utilizes human knowks shown in Fig. 3, eliminating the recursion part. In their
edge by giving the fuzzy or linguistic descriptions a deéinitscheme, three input fuzzy variables are considered (he., t
structure. probability of a short interruption, the failure probatyiliof

handover to radio, and the size of unsent messages), while we
could surely consider more attributes as input fuzzy véemb
A. Fuzzy logic basics for network selection. At the beginning of the procedure, th
] o fuzzy variables are fuzzified and converted into fuzzy sgts b

To understand well this section, it is necessary to know thegingleton fuzzifier. Then, based on the fuzzy rule base, the
following concepts [25]: fuzzy inference engine maps the input fuzzy sets into output

Fuzzy seta fuzzy set is a class of objects with a confyzzy sets by the algebraic product operation. Finally, the
tinuum of grades of membership, which is characterized Ryitput fuzzy sets are defuzzified into a crisp decision point
a membership function assigning to each object a grade OfMany studies proposed schemes by combining fuzzy logic
membership ranging between zero and one [26]. Fuzzy set)ish MADM algorithms [2], [22], [28], coinedfuzzy MADM
considered as an extension of the classical notion of set.#Re idea is to use MADM for the fuzzy interference engine
the classical set theory, the membership of elements inia setnq defuzzifier parts. Fuzzy MADM is particularly interesi
assessed in binary terms, which means either belongs or dRﬁ'Sthe case when some attributes cannot be precisely @otain
not belong to the set. By contrast, the fuzzy set theory germi \when some attributes are better to be set with fuzziness du
the gradual assessment of membership using a memberghighe complex HWNs environment in an MADM scheme.
fupction yalued within0, 1]. The classical set is usually Ca”edAccording to the data type of the alternative’s performance
crisp setin the fuzzy logic theory. fuzzy MADM can be categorized into three groups: data being

Fuzzifier the module to map a crisp point into a fuzzy sefq|| fuzzy, all crisp, and either fuzzy or crisp [22].

Fuzzy rule basethe module consisting of a collection of Since some dynamic factors change frequently, the recursio
fuzzy IF-THEN rules. A typical form of a rule is is used to combine the latest information with previous iagk

result to obtain the latest rank. In the literature, there ar

IF X1 is .#] and ... and¥y is F};, THEN YV is %', (8) several proposals combining fuzzy logic with a recursion

. ) procedure. The recursion procedure can be a simple reaursio
wherel denotes the index of the rule in the fuzzy rule basgithout any further operation or certain learning procegur
X; represents thgth input variable,y represents the outputgych as neural network or kernel learning, as shown in Fig.
variable, andﬁf_} and¥' are corresponding fuzzy sets faf, 3 [29] proposed a fuzzy logic based scheme using simple
and), respectively. recursion, which considers the requirements of both operat

Fuzzy inference enginéhe module which uses fuzzy logicand user. The rank produced by the fuzzy module is fed back
principles to combine the fuzzy IF-THEN rules in the fuzzyo this module, so that it could produce a new rank when some

IV. Fuzzy LoaGicC

rule base. factors change. [30] combined the fuzzy logic with neural
Defuzzifier the module to map a fuzzy set into a crisp pointetwork for network selection. Elman neural network is used
(the opposite of fuzzifier). to predict the number of users using certain network after th

Membership functionrepresenting the degree of truth inselection and feeds it back to the fuzzifier. And, [31] pragzbs
fuzzy logic theory. a scheme to combine the fuzzy logic with kernel learning for
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Fig. 4. Membership functions of different attributes in tingified scenario.

similar purpose. ignores trivial difference, there is a non-negligible pabbity
that several networks might have the same priority. Theegfo
C. Case study in Table VII, we mark all the best networks when we could

We consider the unified scenario presented in Section | wiiet distinguish them.
Tables | and Il. For the same reason as the case studies in
previous sections, attribute ‘traffic’ is not consideredtlins V. GAME THEORY

case study. We consider two fuzzy sets for each attribule, €. Game theory is related to the actions of decision makers
bandwidth has ‘large’ and ‘small’ fuzzy sets. Thus, with fivgyn, are conscious that their actions affect each other. The
attributes, there are maximugni fuzzy rules in the fuzzy rule gggential elements of a game include [32]:
base. For example, a basic fuzzy rule couldibedandwidthis  piayer. the individual who makes the decision. The goal of
large & price is low & cell radius is large & security is high & o5 player is to maximize his/her own payoff by a choice of
power consumption is low, THEN utility is highMembership strategy.
function of each att.rlbute is carefuIIy_ des_|gned based @n th Strategy setthe set containing all the strategies a player can
property of the attribute, as shown in Fig. 4. For examplepgose. In each round, the player chooses one strategy from
bandwidth is an attribute which has some kind of threshojfa et
to guarantee QoS, so the slope of its membership function ispayoff. the utility that a player can receive by taking certain
large. . _ o strategy when all the other players’ strategies are decided

In order to combine the user-side properties into the scheme-jjjiprium; the combination of strategies containing the
and to simplify the fuzzy rule base, each user maintaifgg; sirateqy for every player. Nash equilibrium (NE) is the
his/her own bunch of fuzzy rules and each fuzzy rule contaigg| tion of a game, in which no player can achieve more
only some of the five inputs. For example, USBrUses ... qfts by unilaterally changing his own strategy.
conversational applications with money first and batterst fir 11,0 techniques of game theory are widely adapted in
properties, so one of his fuzzy rules could i price is Iow o5q,rce management mechanisms in HWNs. We categorize
& power consumption is low, THEN utility is highFor the oo me theoretical network selection scheme into three group

sake of conciseness, we are_notgomg to I|_st all the f_uzzgsrul ame between users, game between networks and game be-
For each network, the fuzzy inference engine combines all t, can users and networks.

fuzzy rules in the user’s fuzzy rule base and the defuzzifier

transfers the fuzzy output into a crisp value to represeat th

utility of the network. In the end, the network with the highe A- Game between users

utility is selected. The game between users considers the problem in which
Network selection results of this users are given in Table users selfishly select their believed best network, henas-ca

VII, together with the results from schemes using other mating network congestion and performance degradation. [33]

ematical theories for comparison. Since fuzzy logic moduhlaodeled the network selection problem into a non-cooperati
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game belonging to the class of congestion games betwegnas. In this game, users in the same area collaborate with
selfish users. In this game, the users are the players who takeh other to compete for bandwidth with other groups ofauser
their actions on selecting one network among the availabieother areas. A strate?y is the proportion of users chgosin
ones. Analytical upper bounds for the price-of-anarchy amdtwork i, denoted by i“). The payoff of a player is the
price-of-stability are derived, which are considerablyhter total utility from all users in the group choosing all diféert
than well known bounds for generic congestion games. Thetworks, denoted by (p(®, p(~%)), wherep(® denotes the
cost of each user depends on the congestion of the seleatedtor of proportion of users choosing different netwonks i
network, given bycy(i, >, , mi), wherei indicates that service area;, andp(~® denotes a vector of the proportion
userk selects network. n; is a binary variable representingof users in all service areas except This game is similar
whether useit selects network, so )", m; indicates the to the congestion game presented above, except it is a game
total number of users selecting netwarklhis game becomes between groups of users in different service areas, instéad
a problem in which all the users try to choose the netwosingle users.
with minimum cost, whose NE can be indicated as Another idea is to model network selection as a Bayesian

. " . ame with incomplete information since it is usually difficu
Guirmricn(i, D mi) < exi's Yy m), ¥isi' € N Wk € A, tgo inform all the pﬁayers about the required inforng/tionnﬁro

et text (9) other users. In a Bayesian game, the incomplete information

where.# and .4 represents the sets of users and network&onsidered as private information of players before theegam
respectively(.; is a binary variable representing whether usétegins, called theype of the player. [35] modeled network
k is within the coverage of networK. selection into a Bayesian game by defining the type of player
Another game model used for network selection is tHe @s its minimum bandwidth requiremest, < By, where
evolutionary game, which extends the formulation of a noft IS the type space of player. By is a variable obeying
cooperative game by including the concept of populatian, jcertain probability distribution function. Then, the exped
a group of players. In an evolutionary game, there couRyoff 7, is defined as bandwidth utility minus connection
be a single or multiple populations, and the players frofge, where bandwidth utility is the benefit the user gets from
one population may choose strategies against players fréflecting certain network, which could be zero if the alteda
another population. In a word, an evolutionary game define®andwidth is smaller tha’;,. In a Bayesian game, for every
foundation to obtain equilibrium for the game of population type of playerk, the best response can be obtained by
Beside the concept of population, there are two other
important concepts in an evolutionary game: replicator and
rephqator dynam|c§. A rgphcator is a player from a popiolat ‘where 2 is the set of Bayesian strategies.
who is able to replicate itself through the process of maitati S . . .
and selection. This replication process can be modeled by a& A NE is indicated by strategy{q;, q”,}, if and only if

— * ok —= *
of ordinary differential equations, called replicator dymics, ' 9% € 2, Vk € A, Trlqf, o k) > Tr(ar, d”,). Moreover, a
given by combination of Bayesian game and evolutionary game is also

. . _ tried for the network selection issue by [35].
pi(t) = pi()[m () = 7 (1)) (10) In the above studies of game between users, they assume

where p;(t) = K;/K denotes the proportion of playersthat multiple users are waiting for service at the time ofidec
choosing strategy, with X; is the number of players choosingsion. However, we all know that users usually come for servic
strategy: and K is the total number of players in the gameone by one. [36] studied a WLAN access point selection
m;(t) is the payoff of the players choosing stratég@ndz(¢) is case where selection requirement of multiple terminals are
the average payoff of the entire population. Based on theeabamot coming concurrently and all the terminals in the WLAN
replicator dynamics, the evolutionary equilibrium is defin coverage area are informed immediately with the network
as the set of fixed points of the replicator dynamics that aselection information of each terminal. It was proved that
stable. In other words, none of the players wants to chasgethe outcome of a one-by-one optimization process of these
strategy since its payoff is equal to the average payoff ef tiherminals corresponds to the NE of a one-shot game with
population. multiple terminals’ concurrent selection.

[34] studied the evolutionary game for network selection. One special scenario where multiple users might do network
In this game, users are players, users in a service area fosakection at the same time is called group handover in [37].
a population, the selection of one network is considered @hkis happens when multiple users move together, e.g., in a
the strategy and utility of a user is its payoff. For servieeaa bus, or when certain network has some sudden problem. Three
a, the evolutionary equilibrium is obtained by solving thé septions were proposed:
of equations indicated b\]pl(“) =0i =1,..,N}, whereN 1) if each mobile terminal knows the traffic loads of the
is the total number of candidate networks in service areaother terminals, a NE based algorithm can be used. In this
and pf.“) denotes the proportion of users choosing networdgorithm, the selection of each terminal is the correspand
1 in service arear. The evolutionary equilibrium is stable if strategy of the computed NE;
all the eigenvalues of the Jacobian matrix correspondirtggo  2) another algorithm is to separate terminals’ handovers
replicator dynamics have a negative real part. [34] alsdistli by using random delays, similar to the algorithm avoiding
a non-cooperative game between users in different servitendover synchronization in [38]. In this algorithm, each

B (d—x, Br) = arg max 7% (qx, d—&, Bk), (11)
qE2
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terminal that has decided its selection should announdddhaselect their favorable users to maximize their payoffshsuc

the others or to an independent function entity, so thatrethas the revenue [40]. If NE exists, the users and the networks

know its selection; and correspondingly select each other. Otherwise, a sub-aptim
3) sometimes, a terminal decides to select a target netwadution will be used.

and announces its selection to others, but it may not be able t At the end of this section, we would like to mention that, for

really handover to it due to failure or rejection by that netkv ~ studies using game theory, it is important to not only intiica

In this case, other terminals get incorrect informationualtbe NE but also study how to reach the NE. Studies on network

handover of this terminal. Therefore, the third algorittsrta  selection have utilised different approaches for this paep

announce its selection after the terminal has already Budlishsuch as a centralized approach called population evolution

its handover to the target network. in [34], and some decentralized approaches in which users
could independently adapt themselves to reach the equilib-
B. Game between networks ria, e.g., Q-learning in [34] and no-regret learning in [41]

In an HWNs environment, different networks might bé\/loreover, in the literature of game theory, there are nunmero

. . . . .. algorithms for NE searching, e.g., Lemke-Howson algorithm
managed by different service providers, so their competitd . . :
. . 42] searching for one NE and Dickhaut-Kaplan algorithm][43
attract and get more users become an important issue. Gam

between networks does not provide us a network selectiS%arChlng for the support of all NE. However, explanation of

scheme for users, but it indirectly guides users to thinkuabo ese algorithms is out of the scope of this tutorial.
their corresponding schemes for network selection undsr th
network competition environment. D. Case study

One model is to consider pricing strategies as the strategie

f networks. F i th blem i We consider the unified scenario presented in Section | with
Of NEworks. For hon-cooperaive case, the problem 1S eLrabIes | and Il. First and foremost, we emphasize that the

as a Bertrand game [13].’ Wh'Ch describes interactions amAAdiure and result of a game is largely related to the defimiti
sellers that consider their prices and buyers that choase t f the utility in the game. If the utility is defined highly

pr(iduclt( at_:gzitthprlce. Assummgfthat each uster i_hOO;?:SR Yrelated to the average bandwidth obtained by selecting
network wi € maximum performance-cost ratio (_ ertain network, the equilibrium of this game has the trend
each network chooses the pricing strategy that maximizes % uniformly distribute users into different networks. Hever,
O\an payoffh (relgtedtrfp thetv\p:nclf off .servlﬁe a?ﬁ the ?umﬁsyrhen networks are all with enough resource at certain moment
of users choosing this network), fixing the other networ Yhis kind of equilibrium is apparently not a good solution.

pricing strategies, which indicates the NE. However, Sﬂs"‘Vef'herefore, we define the utility of the game as follows in this

fompe';:pohn_mayt result |tnkl)(|)Wfprlcetandkshrlnkttotal _Il?sgmf;'case study: when the selected network could support all its
urn, Which Is not acceptablé for network operators. & users, the utility of each user is calculated as the totéityuti

coopelration betwegn several or all network opgrators MY §Cthe five normalized attributes by SAW algorithm, similar
established to provide the same QoS to users with the cmahtb the case study in Section IIl; otherwise, we assume that

price. . . congestion in this network occurs, so the utility of eachruse
Another model is to consider the strategy of a network 33 this network is zero

the selection of a user for service, in which the users aatiyot With the above utility function, the equilibrium providesst

passive and have no right to decide which network he Wantsé[é)me result as SAW algorithm when networks have enough
;S:deﬁ\zg?oﬁé\?gple’ [39] described such a multi-round 94l ource. In order to show the difference between this game
: . . rpodel and MADM, we consider the situation when networks’
1) a bunch of users send service requests to multiple .. o
networks: capacities are quite limited and we could not let all the siser
’ . . select their favorite networks as in MADM-based schemes. We
2) a centralized entity gathers requests and put the users 'Cet each network a limited capacity for thdgeusers. In other
a waiting list. Networks calculate payoffs based on galdj]er$vords you could imagine that these networks’ car.)aciti@/xe ha
information; ' .
. ' already been largely occupied by other users at the moment
3) in each round, each network selects one user for service . ,
and this user is removed from the waiting list of the coming of thesé6 users. For fairness, we assume that
' the 4 networks have the same limited capacity, given1By

Seérl\ae;nultlple rounds are performed until all the users & that we could avoid the case where the previous traffic of

; . n%tworks dominates these users’ selection. Moreover,deror
In this game, the best strategy for each network is to selec . .

. : . : ?o let all the users being served by the end of the selection
the user with the maximum payoff from the waiting list o d h : f h based
users that have not been served procedure, we set the capacity cost of each user, based on

' their applications, aq1,1,1,1,5,5,5,5,1,1,1,1,2,2,2,2}.
We intentionally set the whole capacity of thenetworks (i.e.
C. Game between users and networks 48) larger than the total required capacity of thigusers (i.e.
The set of users and the set of networks are considered3é} so as to see the possibility of some networks having more
two players. The users’ strategies are to select their &ébler users than others.
networks to maximize their payoffs, such as quality of ser- Based on Nash’s theorem in [44], this game has at least
vices and price. Meanwhile, the networks’ strategies are eame NE. We could definitely use certain algorithm mentioned
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above to find the NE, but the usage of these algorithms couttbdel [46], given by

not show us the difference between using game theory of N M N
this network selection issue or other mathematical theorie  maxtf =Y > ypizni, s.t. Y cnizni < Ci, (12)
In order to show an intuitionistic comparison between game el im1 el

theoretical network selection scheme and other schen®s, §yherei/ is the total profit,yy; is the profit of itemk placed
MADM-based schemes, we use the following method 1§ knapsacki, c;; is the capacity cost of itent placed in

simply find a pure strategy NE: First, we put all the usefg,apsack;, 2, is a binary variable representing the placement
into their favorite networks based on the calculated id#it o, not) of itemk in knapsacki, and C; is the capacity of

using SAW. Second, we check if there are some networ, Sapsack.

getting congested. If so, we choose the user with minimumpanpings between network selection and the knapsack
capacity cost from this network and put it into the networksplem are given as follows:

with maximum utility among all the networks with enough 1) Applications map to the items,

capacity. We continue this procedure until no network isamd  2) Networks map to the knapsacks,

Congestion. Thlrd, in the obtained allocation State, weacea 3) Resource constraint of a network maps to the Capacity
and switch for each user if there is a better network ungf a knapsack,

no user could increase its utility by unilaterally changeg  4) Cost of an application in a network maps to the cost of
another network. Finally, we reach a pure strategy NE.  an item in a knapsack,
We can see that the objective of the first and second step%) User utility maps to the profits, and
in the above method is just to get to an initial state for the 6) Utility of an application in a network maps to the profit
third step. We use SAW in the first step instead of a randoof an item in a knapsack.
initial state, so that we could compare the results with MADM It is worth mentioning that the knapsack model fits for
based schemes. We find that the allocation in the first stepthe case when networks’ capacities are quite limited and
quite similar to that of MADM-based schemes without traffitoad balancing is strongly demanded. When the capacity of
consideration in Section III. networks is large enough for a coming application, the above
Network selection results of thes users using the abovemodel becomes a SAW algorithm presented in Section IlI.
game theoretical scheme are given in Table VII, togethdn wit Another NP hard model used to solve the network selection
the results from schemes using other mathematical theorgeblem is bin packing. The classical bin packing probles is
for comparison. With the above configuration of networkeell studied optimization problem: giveli' objects with sizes
and users, these results are actually obtained by the fidst @, ..., cx belonging to(0, 1], find a packing in unit-sized bins
the second steps. When we check for the possibility of atfyat minimizes the number of bins used. In the off-line vansi
user could unilaterally increase its own utility by changio  of this problem, it is possible to consider all the objects an
another network, we find that the allocation state obtained bhoose the order of assignment. In the online version howeve
the first two steps is coincidently already a pure strategy NEach object must be assigned in turn without knowledge of the
next objects. That is, giveA — 1 already packed objects with
sizescy, ..., cx—1 belonging to(0, 1], the new objectk” with
V1. COMBINATORIAL OPTIMIZATION size cx belonging to(0, 1] must be packed in such a manner

Combinatorial optimization searches for an optimum objegi'al\f tg; nlijmbler t(')f used btl)nsfls m|r|1|rtn|czjed. bounded
in a finite collection of objects. The number of objects grows etwork selection can be lormuialed as a bounded-space

exponentially in the size of the collection, so scanning a\(ralrlabl_e—sme qnhne bin paf:klng problem: in which the nmm_b
f available bins at any time is a restricted to a predefined

objects one by one and selecting the best one is not h : . )
option [45]. Based on the time complexity, combinatori Iumber (i.e., bounded-space) and the capacities of bins can

optimization problems can be classified into several grpu < different (i.e., variable-size). The objective is to fith

e.g., NP-hard problems which are considered at least as h ?ét way of allocating applications into the networks ineprd

as NP problems. NP is short fapn deterministic polynomial to minimize the. _number of reJ(_act_eq applications, i.e., tr]e
time blocking probability, hence maximizing the whole system’s

capacity. Moreover, one obvious difference from the ctadsi
bin packing problem is that the bandwidth required by one
application is determined by the selected network, so we use
cri to denote the size of applicatiégnin networki. In [47], the
Two NP hard models, i.e., knapsack and bin packing, hay@thors mapped the problem of network selection into the bin
been considered for the network selection prOblem. packing pr0b|em in this way and Compared five a|gorithms1
Knapsack problems are a family of optimization problemacluding FirstFit, BestFit, WorstFit, LessVoice and Rand
that require a subset of some given items to be chosen so thiaé selection rules of these algorithms are summarized as
the corresponding profit sum is maximized without exceedifigllows:
the capacity of the knapsack(s). FirstFit: the first randomly selected network that has enough
A generalized knapsack model fitting for the network sespace for the application.
lection problem is a combination of the 0-1 knapsack model BestFit the network with minimum free space left after
and the multiple choice multiple dimension knapsack (MMKRPerving the application.

A. Combinatorial optimization in network selection



WANG AND KUO: MATHEMATICAL MODELING FOR NETWORK SELECTION IN HETEROGENEOUS WIRELESS NETWORKS — A TUTORIAL 13

WorstFit the network with maximum free space left afteA. MDP-based scheme

serving the application. In many situations in the optimization of dynamic systems,
LessVoicethe network with minimumty; /cyoice,i- a single utility for the optimizer might not suffice to dedugi
Random a totally random network, rejecting to serve thehe real objectives involved in the sequential decision ingk

application when no enough space for it. A natural approach is to optimize each objective with con-

Based on the above studies, [35] proposed a greedy heuristi@ints on others. MDP can be used to handle this kind of
algorithm to match between the users and the networks. Eor thulti-objective dynamic decision making problem [49]. hret
case ofK users allocating t&V networks, the algorithm startsliterature, several network selection schemes based on MDP
with an K x N utility-to-resource ratio list where a utility-to- theory have been proposed.
resource ratio is between the utility of a user and the resour An MDP is defined through the following objects [50]: a
that a network could allocate to this user. In each round 8fate spacé, sets.«/(s) of available actions at statese S,
the algorithm, the user-network pair with the largest wytili transition probabilitieg(Y|s, @) and reward functions(s, a)
to-resource ratio is picked and all the ratios for this uger adenoting the one-step reward using actiom states.
removed from the list. The time complexity of this algorithm The above objects indicate a stochastic system with a state
is bounded byO(K? x N). This greedy heuristic algorithm spaceS. When the system is at state € S, a decision
was compared with three bin-packing algorithms (includinglaker selects an action from the set of actions#(s).
FirstFit, BestFit and WorstFit) and was shown that it outfter an actiona is selected, the system moves to the next

performs them on both total utility and blocking probakilit States according to the probability distributip(’|s, a) and
the decision-maker collects a one-step rewafs, a). The

selection of an action may depend on the current state of the
B. Case study system, the current time, and the available informatioruabo
the history of the system. At each step, the decision maker
We consider the usage of the MMKP knapsack model iay select a particular action or, in a more general way, a
the unified scenario presented in Section | with Tablespkobability distribution on the set of available actions(s),
and Il. Similar to the case study in Section V, this modeihich are called nonrandomized and randomized decisions,
also fits for the situation when networks’ capacities are¢equirespectively. An MDP is callediscreteif the state and action
limited. Otherwise, it becomes a SAW algorithm of MADM,sets are discrete, which is the case for network selection.
as explained in the case study of Section Ill. Thereforgor discrete MDP, we denote the transition probabilities by
in order to show the difference between schemes with tf}j%s’a)_
mathematical model and others, the capacity of networks and [51], [52] provides an idea for modeling the network
the capacity cost of users are set in the same way as explaigeféction problem into an MDP. They put many decision
in the case study of Section V. epochs during the lifetime of a session with either equal or
The profit of each user is obtained as the combination wériable time intervals, represented by= {1,..., T}, where
the normalized values of the five attributes based on théirdenotes the time that the session terminates. At decision
weights obtained by the eigenvector method, similar to oepocht¢ € t, s; and a; are used to represent the current
configuration in the case study of Section Ill. Finally, wes usstate and the chosen action, respectively. The state ticansi
simulated annealing (SA) algorithm [48] to find a sub-oplimarobability is denoted by(y|st, a:). The reward is defined
solution for this problem. by r(s¢, ar) = f(st,at) — g(st, ar), wheref(s¢, a;) represents
We state the algorithm from an initial state withthe benefit from using another network rather than the ctirren
a total profit of 6.16, given by {W,M,L,P, W, one andg(s:,a;) represents the signalling cost (may also
M,L,P,W,M,L,P,W,M,L,P}, in which network serves consider packet loss) for handing-over to that network. For
one user of each application. With 000,000 rounds, we the whole session period, a poliey = (41,...,07) € O,
finally find a sub-optimal solution with a total profit afl.67 © = %/(s1) x ... x &/(sr), is defined as a sequence of
and the allocation in Table VII. Based on the selection tesubction rules at all the decision epochs, whére € {1, ..., T}
of MADM in Table VII, we predicted that users should firstepresents the action rule at decision titésiven an initial
occupy the capacities of WMAN and WPAN as much astates;, the objective of this MDP is to determine an optimal
possible, then choose WWAN or WLAN. This is proved trugolicy ¢ to maximize the expected total reward, denoted by
by the results, in which the four networks’ capacities are(si) = rglagve(&)- v (s1) is calculated as the mean value
occupied ag2, 12,10, 12}. of the total reward of all epochs with respect to the policy
f and the initial states;. To satisfy the Bellman optimality
equation, the above equation could be further written as
v(s1) = max | {r(s1,a) +7)_ [p(ylsi,a)v(y)]}  (13)
Markov chain is a common tool for decision making. e yes
In this section, we present three types of Markovian ap¢herey is the discount factor mapping the future reward to the
proaches for network selection: Markov decision processirrent state. The future reward is less reliable and piailie,
(MDP) based scheme, permutation-based scheme and raokit is less important than the current reward, denoted by
aggregation based scheme. v < 1.

VII. M ARKOV CHAIN
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One key feature of MDP model is that it considers whereR; = Z?il vijw; is the combination of all the other

bunch of consecutive decision epochs and makes a combiadttibutes except VHO cost for networik hy; is the average
decision at the beginning, but this also requires an amlstioHHO cost, h{; and h,, represent the average VHO cost of
assumption that we need to predict, at the beginning ofoving into a network better than the current one and the
a session, the state information for all the future decisi@verage VHO cost of moving out of the first available network,
epochs during this session. Another feature is that MDP iodespectively.
solves network selection and VHO decision at one time by Markov chain is used to help calculat§. andhy,. A state
considering both benefjt(s;, a;) and handover cogt(s, a;). S(-) in the Markov chain is defined as the state of a terminal
If we only considerf(s:,a;), this model tells us the beststaying in an area covered by a certain bunch of networks.
network at all the decision epochs. For exampleS({n1 > n2 > ng}) represents that the terminal
Moreover, [53] used MDP for user/operator negotiationraftés covered by networla;, n, and ns, while S({ns > ns})
network ranking. State is defined by the number of ongoingpresents that the terminal is covered by netwagkand
calls and the events, e.g., new call arrival, handover callaa network ns3. Symbol >’ represents the left-side network is
and call departure. Action is defined as admitting a caletter than the right-side one. Therefore, when the termina
rejecting a call and no action for call departure case. Réwds moving fromS({n; > na > n3}) to S({n2 > nsz}), this
is defined as the benefit for the operator from the acceptamsevement leads to a VHO, contributing tq, .
of a call, which is related to service class. Based on theie de Since the number of permutations is the factorial of the
nitions, an operator could find the best strategy for a sezpiemumber of networks, a permutation-based scheme could take
of calls, which satisfies the Bellman optimality equatiomeD too much time on the calculation of all the permutationsatot
to the fact that [53] is mainly about user/operator negimigt Ccosts, which causes a problem of slow decision. One idea to
not network selection, we are not going to discuss more onsimplify the scheme is to divide all the networks into a few
groups. As an example, [55] used sigmoidal utility funcson
for attribute adjustment, hence dividing all the netwonk®i
B. Permutation-based scheme two groups. One group is small-scale networks, while the

To select the best network, an important task is to distiin€r group is large-scale networks. Using the above madel,

guish between networks. Since we consider network setectigréshold could be obtained for this two-group case, given b

for mobile terminals, one important type of attributes to T(ww) = Ri-s (15)
distinguish between networks is the mobility-relatedibitites, WH) = Rr-s+hissr1—{L>s}/ps’

such as .qell rad|u.s, coverage p_ercentage,_ VHO pmpert'ﬁﬁ‘fere the subscripts and.S represents large-scale and small-
etc. Traditional attributes, e.g., price, bandwidth, ,etisually scale networks, respectively. Hende, s is the difference

lead to the discovery of the best network, but mObi"tyBetweenR and R<. and h represents the
related factors show us the priorities of networks. For gxam difference Lbetween S;verage {r?z;nLé(;\Eéfii)sts of the two per-

noticing that certain nomadic terminal's VHO cost betweeIQ] : :
. utations{S > L} and {L > S}, respectively. Seen from
3G and WLAN is acceptably small, a strategy caldLAN the above threshold, the decision is dependentugn If a

first for this terminal should be used. This strategy does NOlheme uses a weight smaller thwy), {S > L} is the
mean the terminal always connects to WLAN, but WLAN haBest permutation. Otherwisél, > S} islih’e best

a h|gh§r pr|0r-|ty than 3G. , Beside the consideration of mobility-related factors,thro

In th|s F‘,“O”a" we use the concepelrmutatmnto_represgnt key advantage of permutation-based scheme is that it dsssea
the_pr|(_)_r|t|es of all f[he networks, without consldenng _'thethe scheme trigger rate. When the best permutation is autain
availability. At anytime and anywhere, the first avaﬂablgve do not have to trigger the scheme by terminal movement,

network in the permutation should be selected. When there g(;; 4| the other schemes have to trigger network selection
N networks, we havéV factorial permutations, so the networ hen the terminal moves to a new place where network

selection issue becomes the selection of the best perl]’m't""[%overage is different (i.e. from state to state in the Markov
for usage, while the definition of the ‘best’ permutation i%hain of permutation-based scheme).
largely related to the VHO cost between networks. In our
previous work [54], the total cost of a permutation wa
modeled as follows:

With N networks andM attributes, we use;; to denote

. Rank aggregation based scheme

Network selection can be formulated into a rank aggregation
the value of thejth attribute of theith network,s; to denote prob_lem, in which a_better rank_cgn be derived by combining
the probability that network is available,wy to denote the m”'t'P'e ranks of dlffergnt decision factors. [5,6] propdsg
weight of average handover cost angdto denote the weight of a We|ghted.MarI.<ov chain (WMC) scheme_, falling into th|s
theith attribute except the average handover cost, respactivéranch. which finds the best network with the following

The total cost of each permutation can be written as algorithm: . _
1) Based on each attributg a rank of all the networks is
Cprrm = (hg + by + hy) - wp+ obtained, given by; = {n] > ... > n},}, wheren] represents

N i1 14 theith network in the rank by this attribute ard represents
Z [Rio; H(1 — ;)] - (1 —wp), (14) the number of candidate networks.(i) denotes the rank of
i—1 =0 networks in 7;. w; denotes the weight of attribute
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2) An N x N weighted Markov chain transition matriX  networks have quite similar values for certain attribufesd,

is initialized and updated with certain method below. we give them the same position in the rank. For each user, the
3) The stationary distribution vectér= { f1, ..., fv }, where stationary distribution vector is obtained and the bestvask

sd; is the preference index of netwoik calculated byf = is selected as shown in Table VII.

fxY.
4) The best networky is the one satisfyin§ = arg max f;. VIIl. | NTEGRATED SCHEME

The key step of this algorithm is step 2 to upda{te Ye
matrix. [56] proposed two methods for this task:

Method I for each attributg and for each entryy; in
matrix Y, yu = ym + —2— if Tj(”’;i) > Tj(n{)_ A general comparison of using the above mathematical

Method 1I: for each Jattkribut@' and for each entry, in theories for the network selection issue is provided in &abl
j VI. We compared eight aspects as follows:

; _ wi(N=7j(n)+1) o G5\ o j
Matrix Y, yr = yrr + - N if 7 (ny) = 75(ny), or Objective different mathematical theories have different

vk =y + 1 75 (ny) = 75(ny). _functionalities, which lead to different objectives foreth

Another Mar_kowan appro_ach r_elated to network Selec“%”sage in network selection. To sum up, utility theory evedsa
was propqsed in [57]. State IS deflngd based on th? nu.mbelm)g utility of the value of each attribute. For example, a
users of different services (e.g., voice and data) in Gi€r e change of the value of an attribute, that passes some
candidate netwqus. Transitions betwgen states within t S threshold, leads to greatly change of its utility. MADM
Mz?\rkov chain will oceur due to the arrlva_l and_ de_par_ture rovides a comprehensive theory for the combination of mul-
voice call or data Session. Giving the _?”'Va' distributioot tiple attributes for a decision, although most studies gisin
voice calls and dat_a sessions, thetransmon rates bematm;. other theories also consider SAW by default. Fuzzy logic
in the Markov_chaln will be decided by the network selec'uo[‘heOry is especially helpful to adjust the values of dynamic
policy. The original authors showed that this model could By jtes since the information of these attributes cdudd
used to evaluate the performance of many types of netWqpg, e isely collected. Game theory tells us the equiliriu
selection sch_emes, e.g., random selection and load b_aginodetween networks, between users, or between networks and
based selgctlon. However, based on our understandlngZ hhé%rs, which helps us to balance benefits among multiple
approach is more related to call admission control and it i$yities Combinatorial optimization provides us a sulirogl
difficult to be used as a scheme to dynamically select the bgghation of users to networks, which could be quite close
ngtwork in various scenarios. Therefore, we are not going {9 the optimal solution. For the three types of Markovian
discuss more on this model. approaches, the functionalities and objectives are yodfier-

ent. MDP-based scheme is to optimize a series of consecutive

D. Case study decisions with prediction, permutation-based schemeigesv

MDP is an important mathematical model for decisiothe priorities of networks instead of the best network, enhil
making. An important feature of studies in [51], [52] is thatank aggregation based scheme is to aggregate the ranks of
MDP enlarges the importance of handover cost, so sometworks obtained by different attributes.
state information, e.g. the current used network, becomedDecision speedschemes using utility theory, MADM or
very important for the decision. By ignoring VHO cost, thes&zzy logic are all fast to make a decision. Schemes using
consequent decisions become totally independent, and thignbinatorial optimization are really slow. For exampfeour
model provides actually an MADM-based network selectiorase study of the knapsack problem using simulated angealin
By considering VHO cost, this model provides actually a VH@ takes dozens of seconds to complete a search of 1,000,000
decision scheme not a network selection scheme. Howevewinds, which is definitely too late for making the decision o
since MDP-based scheme becomes an MADM-based schehm best network. For game theory, the learning process take
by removing the VHO decision part, we are not going tsome time. For Markovian approaches, the combination of
do any comparison between MDP-based scheme and otbensecutive decisions in MDP-based scheme, the calcnlatio
schemes. For similar reason, we are going to compare thfethe total costs of all the permutations in permutatiosduh
permutation-based scheme with other schemes. Instead, ssbeme and the update of the MC matrix in rank aggregation
select the WMC-based scheme wittC update method | for based scheme all take some time. Therefore, schemes using
this case study. game theory and Markov chain are not as fast as the first three

We still use the unified scenario presented in Section | witheories, but definitely faster than combinatorial optistian.
Tables | and Il. Weights are calculated by eigenvector nistho Implementation complexityschemes using utility theory,
as explained in Section Ill. As we assumed in Table |, soMADM or fuzzy logic are all simple to be implemented.
features of different networks are totally the same. If weegi Schemes using combinatorial optimization are complex. The
them different positions in the rank, it is unfair. For exdejp complexity of Markovian approaches is between them due to
we assume cell radius of WWAN and WMAN are ba00, the fact that the algorithms and calculations in Markovian
if we give WWAN the first place in the rank and WMAN theapproaches are more complex than the first three theories
second place in the rank, WWAN dominates WMAN based aand definitely less complex than combinatorial optimizatio
the rank of cell radius for most ‘mobility first’ users, whith For the implementation of a game-theoretic scheme, a dis-
wrong. Therefore, in our study, we specifically check if somiibuted algorithm by each player is usually used to get & th

A. Comparison of using different mathematical theories for
network selection
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TABLE VI
COMPARISON OFUSING DIFFERENTMATHEMATICAL THEORIES FORNETWORK SELECTION

Combinatorial

Utility theory MADM Fuzzy logic = Game theory Markov chain

optimization

Combination Imorecision Equilibrium Allocation of Consecutive decisions / rank

Objective Utility evaluation of multiple pre between multiple applications aggregation / priority evalu-
. handling - ?

attributes entities to networks ation
Decision speed Fast Fast Fast Middle Slow Middle
Implementation . . . .
complexity Simple Simple Simple Complex Complex Middle
Precision Middle High Middle High High High (but Low for WMC)
Decentralized Yes Yes Yes Yes No Yes
User-centric Yes Yes Yes No No Yes
Mobility-oriented No No Yes No No Yes
Traffic-oriented No No No Yes Yes No

equilibrium, which is largely more complex than Markoviajudge all these schemes as mobility-oriented due to the fact
approaches. that network selection and VHO decision might be processed

Precision schemes using MADM, game theory or combitogether.
natorial Optimization are precise_ For Markovian apprmh Traffic-oriented similar to our eXpIanation on whether the
MDP-based scheme and permutation-based scheme are pgBemes are user-centric, schemes using game theory or com-
cise, but rank aggregation based scheme is really imprecigatorial optimization take traffic load as a quite impatta
due to the fact that rank only provides networks’ prioritiefctor for the decision, which even degrades other atethut
not the exact difference between their quantitative vallias Therefore, the two are considered as traffic-oriented enthié
precision of schemes using utility theory and fuzzy logic igthers are not.
difficult to judge. Utility functions in utility theory and em-

to adjust attributes, i.e. enlarge or diminish the diffegn We studied th ¢ . h tical theori

between networks on certain attribute, but this adjustmentthe. Stut '€ r etrlljsaget 0 kvarli)u? ma ema;\ca eones

could loss precision. For example, in our case study of fuzgy " tutorial Tor the network Selection Issue. As you can
e from the above studies, they have different features and

logic, we utilized some simple membership functions an . e ; .
some simple fuzzy rules, so some networks are found with t gferent functlongllt_les. To g\_et all their beneflts_, we wu
ink about combining them in the way shown in Fig. 5 to

same total utility. Therefore, the precision of schemeagisi achieve an intearated solution:
utility theory and fuzzy logic is lower than MADM, game . 9 . . . i
Utility theory: network attributes, including traffic load,

theory and combinatorial optimization. 4 o . ) )
. _ o _ are adjusted by utility functions, but traffic load, which is
Decentralizedwithout considering the problem of mforma-high'y related to combinatorial optimization and game ireta

tion gathermg,_all the theories could be U_SEd f(_)r dec_e_fml operations, may be adjusted in a different way from others.
network selection schemes except combinatorial optinazat Fuzzy logic when there are many access networks, we

Combinatorial optimization provides centralized algumits to classify all the networks into severai groups to decrease th

optimize the allocation of applications to networks. time cost on the comparison of all the permutations. This

User-centric schemes using game theory or combinatorigperation is based on some key factors, such as cell radius,
optimization consider too much on the traffic load of netvgorkbandwidth and price, using fuzzy logic.
which benefits operators a lot but degrades the user's benefif\yADM: after the adjustment of the network attributes,
Schemes using the other theories do not have this featygsDM algorithm is used to combine these attributes based
which are user-centric. on their weights.

Mobility-oriented as we explained in Section VI, it is diffi-  Combinatorial optimization before MADM, we might
cult to take mobility-related attributes, especially VH€&ated check whether many networks’ available capacity become
attributes, into account for the decision of the best networdimited. If so, instead of MADM, we could use certain
In the literature, only schemes using fuzzy logic and sonadgorithm of combinatorial optimization for the allocatiof
Markovian approaches considered VHO-related attribubes fhew services. Note that this theory is used in a centric manne
the decision. Among these schemes, only permutation-basedthe network-side, not by terminals.
scheme used VHO-related attributes for network selection,Markov chain MDP might be used in the tradeoff of VHO
while the others used them for VHO decision. In Table VI, wdecision after the networks are ranked
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Fig. 5. Relationship between various mathematical thedie network selection.

Game theory after the tradeoff of VHO decision, manyamong different networks due to the fact that traffic load is
simultaneous (or technically considered as simultaneous)ly one of a number of attributes, usually even not a degisiv
handing-over terminals might select the same best netwoaktribute, except when at least one network does not havé muc
which causes congestion. We might use game theory fesource.
an opportunistic decision, so that these terminals could beBased on the above analysis, we do not use game theory

distributed into different networks. or combinatorial optimization for a specific load balancing
Instead, we adjust traffic load in a different manner fromeoth
C. Case study of an integrated scheme attributes in our integrated scheme. First, since the ralales

are more important than the relative difference between the

For this case study, we take our previous design which w fic loads of the t work d i lize th
very briefly presented in [24] as an example of the integrati&l Ic 10ads of the two NEWorks, we do not normalize them.

scheme. As shown in Fig. 6, the solution contains four step gcond, we use a special sigmoidal utility fL_mction with mid

1) monitor the triggers and gather the required informatioxaIue equ_alsl andla 2 2 t(l) caflulate;he Ut':j'“t/' Based on

2) preparations before combining all the attributes, idirig our e>c<jper|ten::e%fg Iargde [;/a| ue forcan be used to overcome
weighting procedure and attribute adjustment procedure. immogerate trafiic 'oad balancing. . . .

3) combine multiple attributes as a single rank. The left par F_or this case study, th_e unified scenario presentgd n $EC.“°
of this step, which could be any traditional network sel@cti | with 'I_'ables _I and 1l is used. In order fo provide a _falr
scheme, gives the best network. The right part of this stegsgi comparlson_wnh.other .s_chemes_, we use the same attributes,
the best permutation, as explained in Section VII.B. since!l® s.ak:ne_&grgmdal utility functlo;]]s anﬂ t?e” same MADfM
takes more time to get the best permutation than to get the b%lgont ml.e., SAW. Moreover, we have the following specifi

network, we use the best network until the best permutatiGRnfiguration to guarantee fairness in this comparison:
is obtained. e fuzzy logic theory for network grouping is not considered

4) make VHO decision. If the best network or the firs{? this study. Otherwise, some networks are going to belfotal
available network of the best permutation is better than tHae Same after the adjustment of utility functions and fuzzy
current network, this step makes a simple decision on whetffg8mPership functions, which hides the load balancing featu
the benefit is worth the one-shot VHO cost. of this integrated scheme. _ o

We believe that the network selection procedure imple- ® Other schemes do not consider VHO decision, so we
mented in the future terminals should be simple and fast, af® NOt going to use VHO decision step in this case study,
the main goal of network selection is to always select tifdther. Otherwise, the comparison is unfair for other sasem
best network for serving the given application, not to paﬂ/'herefore, the networks indicated in Table VII are the best
too much attention to load balancing. A network selectio’hetWO.rkS for those users. Whether those users _vv_iII handover
scheme paying too much attention to this attribute degrad@stheir best networks still depends on VHO decision.
other attributes’ importance. Taking two networks bothtwit The difference between the integrated scheme in this study
low but totally different traffic loads as an example, th@nd other scheme presented in previous sections is as follow
normalization process will ignore the two networks’ lowffim  ® our solution combines utility theory and MADM.
loads but retain only the relative large difference, whiehds e the sigmoidal utility function for ‘traffic load’ is specifi-
to immoderate traffic load balancing between the two networkally designed as explained above.
and compromises the importance of other attributes. Thezef e weights are calculated based on our trigger-based method.
traffic loads are usually not required to be strictly balahce e Markov chain is used for best permutation selection.
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Fig. 6. An example of integrated scheme for case study.

e the best network is the first network (because all the fobe totally different if you combine multiple theories in a
networks are available) in the best permutation obtainethéy different way.
right side of step 3, not from a best network selection scheme In this study, we also consider the case where each network
e traditional network selection scheme is integrated for lzas a limited capacity for these users, as explained in the
fast decision before the best permutation is found. case study of game theory. We rank theetworks based on
o the difficulty of implementation comes from the calculathe integrated scheme as shown in Fig. 6, but at the beginning
tion of total costs of all permutations. of the last step, we check if the network has enough resource
e the precision is high as long as we do not use the ‘netwoblefore VHO decision. We will show that our integrated scheme
grouping’ functionality. could achieve a similar load balancing functionality witho
e the solution is decentralized, user-centric, mobilityusing game theory or combinatorial optimization.
oriented and traffic-oriented. Network selection results of thé6 users are given in
Note that Fig. 6 is just one example of integrating multipl&@able VI, together with the results from schemes using othe
theories, and the features and network selection resultlll comathematical theories for comparison.
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TABLE VI
SELECTIONRESULTS OFDIFFERENTSCHEMES IN THE CASE STUDIES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Sigmoidal utility M M M M L M L M M M M M P M P M
SAW with AHP P M P M P M P M P M P M P M P M
Fuzzy logic L M L WM IP L M M P WM WMP WM P L P WM

Game between users L L W W P M P M W W W W L L P M

Knapsack with SA P M P M L L P M P M M M P M P w
WMC P M P M P M M M P M M M P M P M
Integrated scheme P M P M L L P M M M M M L P P W

Note: W = WWAN, M = WMAN, L = WLAN and P = WPAN

D. Observations on the selection results of different se@semtotally different way to evaluate the total utility. Signdail

For the selection results of different schemes in the cadlllity scheme uses sigmoidal functions to adjust thetidiof
studies in this section and previous sections, summarizeddttributes, so it assumes that the best network should e wit

Table VII, we have the following important observations: he maximum adjusted utility, not the maximum unadjusted

« different types of users have some general preferences. Eijy- The integrated scheme combines traffic into thealtot
example, WLAN is selected by a lot of streaming users prIlty, so the def|n|thn of t.he_.total utility is dlfferentr_cb.m
not selected by interactive users at all; interactive upesger Oters: If we use this definition to evaluate the utility of
WMAN and WWAN for security reason; conversational usef@'ﬂe,rent sch_emes, the mtegr{;\ted spheme is surely with .the
also prefer WMAN and WWAN but for continuity reason:MaXimum utility, bu_t we feel it unfair for other sqhemes in
money-first users prefer WPAN and WLAN; mobility-firstiS Kind of comparison. That is also why we provide general
users prefer WMAN and WWAN:; and battery-first users pref&emparison of different schemes’ total utilities, instead
WPAN. demonstrating them in figures.

e since we design WWAN as a dominated network by ® with the integrated scheme, traffic loads of different
WMAN, users basically prefer WMAN to WWAN. For ex- petworks arg(2, 11, 1.2,_11}. Qonsidering that WWAN is dom-
ample, with the first two schemes, no user selects WwAN #@ted by WMAN, it is quite correct to not select WWAN
all. With schemes using fuzzy logic, WMAN is better tharyNtil there is not enough space in WMAN. Traffic loads of
WWAN for most users, but equally good as WWAN for Somglﬁerent networks using game between users and _knapsack
users for the sake of imprecision of fuzzy logic. With schemdVith SA are {6,12,6,12} and {2,12,10,12}, respectively.
using the other four theories, traffic is considered, so wwaHnerefore, considering traffic load balancing, we can seé th
might be selected when WMAN is full. our integrated scheme is equally good as kna_psack wth SA,

« if we consider battery low as an important event, WPAN iwhile we do not have to use a slow optimization algorithm,
obviously preferred. A few exceptions with utility theorpca  SUCD @s SA, in our integrated scheme.
fuzzy logic are due to the imprecision reason, while a few
exceptions with the last four theories are due to the reafon o
traffic load balancing.

e SAW with AHP, fuzzy logic, game between users, knap- Network selection has been widely studied by using various
sack with SA and WMC all define total utility in the samemathematical theories in the literature. The employedrtheo
way, i.e., summing up multiple attributes based on linegityut is extremely important because it decides the objective of
function. Among these five schemes, SAW with AHP providegptimization, complexity and performance, but there laaks
higher utility than fuzzy logic and WMC since it is precisefutorial on the mathematical models used for the network
while knapsack with SA provides higher utility than gameelection problem. Therefore, this paper filled the blank by
between users since it takes much more time to search émnducting a serious survey and providing a systematicialito
the network with the maximum utility. However, it is unfairon the main mathematical theories used for this problem,
to compare the total utilities of all the schemes togetheeesi including utility theory (cost function), MADM, fuzzy logi
they are actually suitable for different situations: SAWttwi game theory, combinatorial optimization, Markov chain. A
AHP, fuzzy logic and WMC are suitable for the case wheunified scenario was used to explain and compare selected
traffic is not a key factor, while game between users ammtwork selection schemes using these theories. In the end,
knapsack with SA are suitable for the case when resourtte integration of multiple of these theories was discussed
of some networks becomes tight. For the scheme sigmoidad an integrated scheme combining the advantages of sev-
utility and the integrated scheme, it is unfair to comparthwieral mathematical theories was proposed and compared with
other schemes on the total utility since they use actuallysalected schemes.

IX. CONCLUSION
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X. NOTATIONS 2: set of Bayesian strategies
Br(q—k, By): best response of playérin Bayesian game
K:: number of users choosing network
p(@: vector of proportion of users choosing different networks
in service area
qi: Bayesian strategies of all the players except
Bg: minimum bandwidth requirement as the type of player
in Bayesian game
ck(+): cost of userk in the congestion game
p;(t): proportion of users choosing netwoik
pl(.“): proportion of users choosing netwoikn service area
qr: Bayesian strategy of playér
Cri- binary variable representing whether ugeis within the
coverage of network’
. binary variable representing whether uskr selects
network
m;(t): payoff of the users choosing network in the
j evolutionary game

N - 7 (t): average payoff of the entire population
efj: network elimination factor for applicatiok, network i ﬁi:)expectgd Sa§0ﬁ of playek aspbffndwidth utility minus

connection fee

C: total coefficient of combining multiple attributes
K: number of users or applications

M: number of attributes

N: number of networks

;. capacity cost of applicatioh in networki

n;. networks

v normalized value of attributg in network

wk: weights of attributej for applicationk

J
x;;: value of attributej in network:

Utility Theorey (Cost Function):

N (-): normalization of certain utility

F;: total cost of network

U: total utility of all the attributes

f]’?(~): weighting function of attributg for applicationk

ufj: utility of applicationk in network: in terms of attribute

and attributej

MADM :

%u: concordance set including the attributes on whickombinatorial Optimization :

network k is better than network U: total pfOflt '

i discordance set including the attributes on whicf’i: capacity of network

network k is worse than network zk;. binary variable representing whether applicatiogelects
D“: Euclidean distance from certain network to the wordtetwork:

reference network Y- profit of applicationk selecting network

DP: Euclidean distance from certain network to the best

reference network Markov Chain :

V& value of thejth attribute of the worst reference networks. state space
Vf value of thejth attribute of the best reference network </ (s): set of available actions at state
B: pair-wise comparison matrix between all the attributes R,: combination of all the other attributes except VHO cost

R: relationship matrix between events and attributes S(-): state denoted by the area covered by a certain bunch of
d: binary vector denoting true or false of events networks
e: weights of all the events 7 threshold between the selection of different permutation
I identity matrix Y: weighted Markov chain transition matrix
w: weights of all the attributes f: stationary distribution vector: decision epochs
E: number of events T: number of epochs during a session lifetime in an MDP
b;;: comparison value between thith and thejth attributes ,: action at epoch
in B f (s, ar): benefit of using actiom, from states;
r;;: strength of the effect from theéth event to thejth  ¢(s,, a,): cost of using actiom; from states,
attribute hrr: average horizontal handover cost
z;: mean value of all the networks in terms of attribyte 5 average cost of vertical handover to a better network
A: eigenvalue ofB hy,: average cost of vertical handover from the current best
A;: nominal value of attributg network

r(s¢,at): one-step reward using actien from states;
Fuzzy Logic sy state at epoch in an MDP
Z: fuzzy set for thejth input in fuzzy rulel yri: element inY, representing the difference between net-
@' fuzzy set for the output in fuzzy rule work k& and!
A;: the jth input of a fuzzy logic system 0;: epoch ¢t during a session lifetimey: discount factor
Y: output of a fuzzy logic system mapping the future reward to the current state

o;: probability that networki is available
Game Theory: p(y|s,a): transition probability from state with actiona in
By type space of playet in Bayesian game discrete MDP
¢ set of users p(Y|s,a): transition probability from state with actiona in

. set of networks continuous MDP
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7;: rank of networks based on attribuje [8]
0: policy indicating the network selection for each epoch
during a session lifetime in an MDP [9]
O: policy space

XI. GLOSSARY [10]

AAA : Authentication, authorization and Accounting
ABC: Always Best Connected

AHP: Analytical Hierarchy Process

BER: Bit Error Rate

ELECTRE: ELimination Et Choix Traduisant la REalité
GRA: Gray Relational Analysis

GSM: Global System for Mobile communications
HHO: Horizontal HandOver

HWNSs: Heterogeneous Wireless Networks

MADM : Multiple Attribute Decision Making

MCDM : Multiple Criteria Decision Making

MDP: Markov Decision Process

MEW : Multiplicative Exponential Weighting

MMKP : Multiple Choice Multiple Dimension

MODM : Multiple Objective Decision Making

NE: Nash Equilibrium

NP: Non deterministic Polynomial

PCR: Performance-Cost Ratio

QoS Quality of Service

RSS Received Signal Strength

SA: Simulated Annealing

SAW: Simple Additive Weighting

SIR: Signal-to-Interference Ratio

SNR: Signal-to-Noise Ratio

TOPSIS: Technique for Order Preference by Similarity to an
Ideal Solution [21]
TRUST: TRigger-based aUtomatic Subjective weighTing
UMTS: Universal Mobile Telecommunications System
VHO: Vertical HandOver

WIMAX : Worldwide interoperability for Microwave Access
WLAN : Wireless Local Area Network

WMAN : Wireless Metropolitan Area Network

WMC : Weighted Markov Chain

WPAN: Wireless Personal Area Network

WWAN : Wireless Wide Area Network
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