
A Software Agent Architecture for Network Management:

Case Studies and Experience Gained

Morsy M. Cheikhrouhou, Pierre Conti, Karina Marcus and Jacques Labetoulle
Institut Eurécom, Corporate Communications Dept., BP 193, 2229 Route des Crêtes

06904, Sophia Antipolis Cedex - France.

{Morsy.Cheikhrouhou, Pierre.Conti, Karina.Marcus, Jacques.Labetoulle}@eurecom.fr

Running header

A Software Agent Architecture for Network Management

Abstract:

Current Network Management paradigms are rigid and lack flexibility. This makes the task of

managing a highly evolving and dynamic network difficult to cope with. This paper presents the

results of our work on Agent technology as a new paradigm for developing Network Management

applications. First we present our agent architecture that is built in a way that allows the agent to

acquire new capabilities at runtime. Second we present two case studies implemented with a

prototype of this agent architecture. The first one consists of an agent system in which faulty agents

are automatically detected, their tasks then being reallocated to other agents, thus providing a fault

tolerant management system. The second case study deals with the configuration of heterogeneous

ATM networks to establish end-to-end permanent virtual channels. Finally, we evaluate our agent

architecture and the agent paradigm in general when applied to Network Management.

Keywords

Skill-based Agents, Domain Management, Reliability, ATM Management.

1. Introduction

We are observing an increasing interest in software agents in the context of Network

Management (NM). This mainly appears through the standardization efforts of some agent

aspects such as inter-agent communication [1] and mobility [2], the increasing number of

research projects using agent technology in NM [3,4] and the involvement of major industrial

companies [5]. Classical NM paradigms, architectures and platforms currently face several

challenges, such as the increasing complexity in size and heterogeneity, the highly rapid

evolution of networking technologies, and the need for interoperability and cost reduction.

Proponents of the application of agent technology to the NM field maintain that agent

properties [6,7] are particularly suitable and have the potential to overcome the NM challenges.

Agent autonomy allows the network administrator to delegate the most routine and time-

consuming tasks to the agents, and to focus on high-level management tasks requiring human

intelligence. Social ability and communication provide a better support for distribution and

reduce the management traffic by exchanging only concise messages between the agents.

Reactivity enables prompt reactions to be made to changes in network behavior, while pro-

activity enables these changes to be predicted, and preventive actions carried out to reduce their

impact or to seize the opportunity for achieving high-priority management operations. The agent

metaphor provides a high abstraction for handling NM problems and therefore both time and cost

of application design [8] should be reduced. Finally, agents are particularly suitable for process

control applications [9], which can be adequately adopted in the case of NM problems [10,11].

However, in contrast to mobile agent applications, which already have begun to flourish, NM

applications using the concept of static software agents are still limited in number. Whether this

is due to the lack of standardization or to the overwhelming literature on agent theories and

architectures, the result is that no long-term view has been taken of the real benefits of agent

technology and of how problems have been successfully dealt with in the context of NM. Thus in

this paper, our objective is to describe the work that we have done with software agents applied

to network management.

The structure of the paper is as follows:

The next section (Section 2) presents a rapid overview of the main trends, architectures, and

principles of the agent paradigm.

Section 3 describes the agent architecture that we designed and implemented as a full Java

prototype. It also presents the inter-agent communication mechanism as well as the initial

proposal of an agent development life-cycle.

Section 4 presents our first case study, which describes how agents may improve the reliability

of a NMS.

Section 5 presents the second case study. Its purpose is to apply the agent prototype in the

provision of Permanent Virtual Circuits (PVC) in heterogeneous ATM networks. The approach

is based on cooperative agents located on the ATM switches.

The case studies are followed in Section 6 by a discussion that evaluates the added value of our

agent framework and presents the major issues that we faced.

Section 7 concludes the paper.

2. Software Agents

It is admitted that the term ``agent'' has been excessively ascribed to many different concepts in

several domains. However, it is easy to distinguish between two major trends that make use of

the term. The first trend originated from works on code mobility which led to mobile agents, i.e.

agents that are able to move from one host to another during their lifetime (e.g. [12,13,14,15]).

The second trend originated from the domain of Distributed Artificial Intelligence (DAI), which

focuses on computational entities which have some kind of intelligent behavior, and which may

accomplish complex tasks by cooperating together. Such agents are often referred to as

intelligent agents.

We are committed to the second trend, and focus the remainder of this paper on ``(software)

agents''. We consider an agent as a ``reactive [16] computational entity that is capable of

autonomously accomplishing tasks and of communicating with other agents''. There are excellent

papers describing general aspects of agency [6,7,17]. What follows is a brief summary of the

most relevant aspects of agent technology: architecture, communication, and coordination.

An important way to characterize agents issued from DAI is their internal architecture. The

deliberative architecture relies on a logical model of the external world, mostly using mental

notions such as beliefs and intentions [6,18]. The reactive architecture does not reason on a

model of the world and uses a stimulus-response type of programming instead. The hybrid

architecture combines both architectures. While deliberative agents are capable of reasoning on

the world’s past, current and expected states to plan for long-term actions, reactive agents are

suitable for building agents with prompt reactions. Hybrid agents benefit from the advantages of

both kinds.

Another aspect to consider is inter-agent communication. A structured communication protocol

can be used such as KQML (Knowledge Query and Manipulation Language [19,20]) or the FIPA

(Foundation for Intelligent Physical Agents) ACL (Agent Communication Language [1]). Such

agent communication protocols are based on the speech act theory [21] that attributes intentions

or performatives to the messages exchanged between the agents. Some communication

languages include negotiation and cooperation mechanisms such as those included in

COOL [22]. Other agent applications may use proprietary communication languages, but this

option does not allow for interoperability between agents from different systems. Finally in some

applications agents exchange information indirectly by modifying the status of the world, for

example, using a shared external blackboard.

Cooperation is also an important aspect of agency. Intelligent cooperation means that agents are

able to perform global planning and to infer cooperation scenario on the fly. In general, such

agents are able to accomplish explicit global goals. In a less powerful cooperation mechanism,

cooperation scenarios are hard-coded into agent behavior. It is also possible to conceive of an

agent system in which agents do not interact at all, but this is not common in a distributed

application. Finally, there are self-interested agents which do not cooperate. Instead, they act in a

selfish way trying to maximize their own profit without any consideration for the overall agent

system.

We believe that different NM applications can benefit from different agent cooperation models.

Therefore, instead of committing to a particular type of agent, we favor a modular agent

architecture in which agent cooperation can be designed to fit a particular NM problem. This will

be presented in the following section.

3. Our Agent Architecture

Nowadays NM systems must manage networks that use rapidly evolving networking

technologies. Therefore they need to be able to adapt their behavior and functionality seamlessly

whenever needed. This directed our design decision to an agent architecture that is composed of

two parts. The first part is a common kernel that encodes the basic yet evolvable agent

functionality. The Brain of the agent is the ``headmaster'' that governs its overall behavior. The

second part is composed of Capability Skill Modules, which provide the agent with the specific

and necessary capabilities to ensure particular management functions, which can be acquired at

runtime. In addition, agents are endowed with a communication mechanism that allows them to

communicate and cooperate in an easy and efficient way. A prototype of the proposed agent

architecture was fully implemented in Java. We detail these elements in the next subsections.

3.1 Capability Skill Modules

A Capability Skill Module (or skill for short) is a set of Java classes that can be instantiated into

the agent to provide it with a new management role or function. It defines new information

elements called Beliefs and the necessary Capabilities that bring the required know-how.

3.1.1 Beliefs

The term Belief is borrowed from the Intelligent Agent research community and is defined in [9]

as ``the agent's expectations about the current state of the world and about the likelihood of a

course of action achieving certain effects''. In the context of network management, agent beliefs

hold the management information the agent has, as well as information about the other agents it

knows about. For example, the status of a switch that the agent is managing can be expressed as

a belief: (switch :name sw301 :ipAddr 197.48.55.63 :status Ok).

Each skill must define the beliefs related to its management functionality. For example, a skill

that manages ATM switches must define and instrument the necessary beliefs on the managed

switches, including the statuses of the virtual paths and virtual channels created. The skill is

responsible for ensuring the coherence and integrity of the beliefs it generates. In addition, it is

the skill which defines the complete syntactic and semantic properties of its beliefs.

The beliefs brought by the skills are all made available to the agent's brain and are centralized in

the Belief Database presented later in Section 3.2.

3.1.2 Capabilities

A capability is a type of action that the agent may invoke from a specific skill to achieve a

certain management task or operation. Capabilities allow the agent to either interact with the

managed network or perform higher-level management functions such as fault diagnosis or

performance analysis. Capabilities that allow the agent to interact with the managed network can

be either sensors or effectors. Sensors enable the status of the network to be captured by using a

management protocol such as SNMP. Effectors enable the managed elements to be configured.

In general, a capability may invoke another capability within the same or another skill. In

addition, a capability may involve either a long-term activity, like monitoring the job queue of a

certain printer, or a function-like action, like adding a route entry on a certain router.

3.1.3 Skill Declaration

To allow the Brain to make use of a loaded skill, a declarative interface is provided within each

skill. This interface allows the brain to discover the beliefs and capabilities offered by each skill.

For the beliefs, only the syntax aspects including the name of the belief and its attributes are

declared. And for each capability, the skill indicates the following:

• The preconditions that must be satisfied before it can be invoked.

• The other capabilities that it may invoke for its different execution instances. These

prerequisite capabilities can be defined either in the same or in another skill.

• The beliefs that are used as input for its execution instances. These beliefs can be

provided by other skills.

• The beliefs that are produced or updated during the achievement of the invoked

capability.

3.2 The Brain

The Brain offers basic and innate facilities necessary for the agent operation. In Figure 1, we

distinguish the four functional parts of the agent's brain: the belief manager, the skill manager,

the inter-agent communication mechanism, and the skill interface.

[Place for Figure 1: The agent architecture]

3.2.1 Belief Management

The Belief Database centralizes all the beliefs produced by the skills which have been loaded

into the agent. In this way, beliefs can be accessed concurrently from any skill. The Belief

Manager allows the skills to query and modify the agent's belief database. Besides the usual

database operations, the belief manager allows the skills to ``subscribe'' as listeners to specific

changes in the database. For example, a skill that is responsible for monitoring the printing

service would subscribe to the creation and deletion of beliefs corresponding to printing devices

(which in turn could be supplied by a discovery skill for example).

3.2.2 Skill Management

The Skill Base holds the declarative information that describes the beliefs and capabilities

brought by each skill known to the agent. Using this knowledge the agent can make efficient use

of the functionality offered by each skill, the Skill Manager determining which skill can provide

a certain capability that is required for the achievement of a particular management task, and

which beliefs result from its invocation.

The Skill Manager is also responsible for searching, loading, and unloading agent skills. If a

local search fails, the Skill Manager sends search requests to the other agents. If an agent has the

requested skill, it can serialize its code to the requesting agent.

Finally, the Skill Manager can automatically forward the relevant belief changes brought about

by the execution of a requested action to a skill or to another agent.

3.2.3 Inter-agent Communication

The Brain offers inter-agent communication facilities that allow skills from different agents to

interact in a transparent way. Skills deal only with the symbolic names of the distant agents they

want to interact with, and they are not aware of distribution-related details in the agent system.

The Communication Module is responsible for sending requests to and receiving requests from

other agents; whereas the Social Manager holds information (records) about the other agents,

such as the host on which they run as well as their network addresses. These records maintained

by the Social Manager are mapped into beliefs in the belief database. These beliefs allow skills

to make use of the knowledge acquired about the other agents. For example, they allow an agent

registration skill to be built that makes it possible for an agent to insure the role of an agent

directory server.

The Communication Module enables agent messages to be sent and received. Many network

protocols can be supported including raw TCP, UDP, HTTP, and SMTP. Therefore, the

communication network protocol can be chosen according to the size and the nature of the

information to be exchanged between the agents. The agent communication primitives are

detailed in Section 3.3.

3.2.4 The Skill Interface

The Skill Interface allows for the dynamic plugging of skills during the agent operation. It also

ensures the important role of managing the skill-brain interaction. This interaction can be:

• Belief queries which are forwarded to the Belief Manager, or

• Task invocations and skill loading orders which are forwarded to the Skill Manager, or

• Communication acts which are forwarded to the Communication Module.

The brain-to-skill interaction concerns either notifications for relevant belief changes or requests

for skill declarative information.

3.3 Agent Communication

Agent messages are organized into performatives [19] that indicate the intention behind the

content of the message. This kind of message format, which adopts Speech Act Theory [21]is

widely used in the agent community. We defined a set of ten performatives:

• Tell: Allows an agent A to inform another agent B of a subset of A's beliefs.

• Ask: Allows an agent to query the beliefs of another agent. Replies are contained in tell

messages.

• Insert, delete, update: Allows respectively the addition, removal, or modification of a

belief or a set of beliefs in the receiver's belief database.

• Subscribe: Allows an agent A to inform another agent B that A requires to be notified of

specific changes in B's belief database. In this case, B must send tell messages for each

relevant change in its beliefs.

• Unsubscribe: Allows the effect of a preceding subscribe message to be stopped.

• Achieve: Allows the receiver to reach a certain state on the managed network. The

content of an achieve message is an abstract goal that forces the agent to look for the

necessary actions to achieve it.

• Request Action: Allows the execution of a specified action to be delegated to the

receiver agent.

• Stop Action: Allows an action that has been launched due to a preceding

requestAction message to be stopped.

As can be noticed, the first eight performatives concern beliefs, while the last two performatives

concern capabilities. But the belief-related performatives may also lead the receiver agent to

execute consequent actions.

3.4 Developing Agents

This section provides an overview of the agent development process that is proposed for our

skill-based agent architecture. The process is divided into three phases: macro-design, micro-

design and agent deployment.

1. Macro-design

In this phase, the developer identifies the major agent roles needed for the system to be

developed. Each role is a specialization of some aspect of the overall management system.

We wish to emphasize that the roles of an agent can be changed dynamically during its

lifetime according to the skills that the agent has at any given moment.

Once the agent roles are identified, the behavior of the agent system can be described using

interaction scenarios between these roles.

2. Micro-design

This phase is a refinement of the Macro-design. It focuses on the skills that implement the

identified roles instead of the agents themselves. A set of skills must be designed to ensure

each of the roles identified in the first phase. A new skill can be based on the beliefs and

capabilities of other existing skills.

A skill is completely specified when all its beliefs and capabilities are fully defined. This

specification includes the integrity constraints that must be ensured for the beliefs, and the

possible relation of these beliefs with other beliefs from other skills. The specification also

includes the relationship between each capability and its prerequisite beliefs and capabilities.

The output of the micro-design allows the scenarios described in the first phase to be refined

to the level of detail of the interaction between the skills themselves.

3. Implementation and Deployment

The skills can be written without paying attention to distribution-related issues (thanks to the

brain inter-agent communication facilities). The problem of agent distribution among the

available network hosts can be handled just after the skills are developed. At this stage,

parameters such as CPU load balancing, and the placing of agents appropriately throughout

the network can optimize response time and bandwidth usage. Furthermore, the attribution of

skills can be handled and tailored during the operation of the agents.

3.5 Discussion

We had two design concepts for our agent architecture. The first was that agents have to be

highly flexible so that their behavior could evolve dynamically at runtime. This is mandatory

because current networks evolve at a rapid pace in their technology, topology, and supported

services. For this reason, we built our architecture on dynamically pluggable skills, which are

perfectly supported in Java.

The second design choice was to have no commitment to any particular agent technology.

Instead, we favored an approach that offers the basic functionality of a NM oriented software

agent, but that in addition can support supplementary agent techniques when needed. We think

that agent technology as a whole is valuable in the NM field, but different NM functions may

require completely different agent techniques. Accordingly, our agent followed a horizontally

layered agent architecture [23] similar to that used in [24]. A major advantage of this layered

architecture is modularity. Moreover, the fact that horizontal layers, or skills in our case, have

direct and concurrent access to the agent sensory information and effectory capabilities is a

valuable support to the flexibility and extendibility required in state-of-the-art management

paradigms.

KQML and FIPA ACL have largely inspired the adopted agent communication language we

adopted. The main advantage of such languages is that they dissociate the content of the message

from the intention behind it. This allows for enhanced interoperability and support of multiple

languages for the message content. The implemented communication language differs from

KQML in two aspects. First we chose to encode agent messages in a more concise format so that

the generated traffic is reduced and messages are easily parsed. Second we adopted a different

set of performatives more suitable for NM purposes. We included the requestAction and

stopAction message types, which allow us to have direct control over the agent activity. This is

very practical in NM and allows the direct mapping of task delegation between agents.

The next two sections detail the case studies implemented so far using this agent architecture.

Both sections are organized according to the three phases of the proposed development process.

4. Ensuring the Reliability of Autonomous

Domain Agents

4.1 Rationale

The problem of the reliability of management agents has never been a major issue in classical

management paradigms. Classical agents did not have major management responsibilities and all

the decisions were taken at the manager level. Also the management protocol used to

communicate with these agents intrinsically ensured the reliability of the agent. For example, the

SNMP protocol mainly uses confirmed communication for SET operations, or polling-based

monitoring in which each GET operation expects a reply.

However, these factors are no longer ensured when a distributed NMS (Network Management

System) based on highly autonomous agents is used, where agents are capable of taking high-

level decisions and have the authority to execute sensitive management operations, without

direct control from the network administrator. Furthermore, the agents themselves make use of

the managed network, which is fault prone.

Therefore the agent-based NMS must be able to promptly detect the unreliability of the

management agents. Furthermore, when an agent is detected to be unreliable, the other agents

should be able to cooperate together in order to ensure the management tasks that were

previously assigned to the unreliable agent. This requires agents to be capable of dynamically

undertaking new management tasks during their operation.

The purpose of this first experiment is to build a prototype of an agent-based NMS in which

intelligent agents, each of which is allocated to a distinct domain of the network, are able to

mutually test each other and to detect the agents that become unreliable due to network or system

failures. These domain intelligent agents are able to dynamically redistribute their management

tasks in the case of an agent failure, so that all the tasks continue to be ensured.

As an example of a distributed management task, we choose the monitoring of network elements

for fault detection purposes. Each agent is allocated to a network domain in which it performs

the monitoring sensitive network components. To detect the unreliability of the autonomous

agents a distributed diagnosis algorithm is used, which will be presented later in this section.

In the following we present the way we proceed to identify the required agent roles and

correspondent skills. Each identified skill is then presented, with the intra/inter-agent interaction

involved. The experimental results and conclusions about this case study close the section.

4.2 Role Identification

We propose a scenario in which a human network administrator requests a monitoring of

sensitive network elements, e.g. routers, hubs and switches, to detect faults that may occur. The

administrator connects to a particular agent that displays the required data. The managed network

is divided into domains, which are assigned to the agents. Each agent performs detailed

monitoring of the network elements of its domain and comes up with the high-level status of

each element, which is then reported to the agent to which the administrator is connected.

The monitoring and fault detection activities must be performed, even if one of the agents is

faulty. To ensure that only reliable agents send the information, an SLD algorithm [25] is used.

A Manager Agent is designated to centralize the monitoring information, and other agents, called

Domain Agents, wait for the Manager commands. The Manager is in charge of assigning

domains to domain agents, to delegate the task of monitoring, and to verify the reliability of each

agent before displaying the monitoring information. If one agent is found to be faulty, then the

Manager will reassign the domains, so that the monitoring may reliably continue; if one

unreliable agent recovers from its failure, then the Manager reassigns the domains to balance the

global workload of the domain agents. The agents execute all these tasks through skills, which

will be presented in the next section.

4.3 Skill Design

In the description of each skill the reader will find indications (e.g. ¬) about the information

flow between the skills. They refer to the arrow numbers in the diagram presented in Figure 2. In

this diagram we depict the hierarchical composition of our application, and detail in each agent

the skills that are involved in the information exchange. Bold arrows represent inter-agent

communication acts, while the thin arrows are simple brain notifications about belief changes.

The proposed implementation relies on six different skills: four that run in the manager agent and

two in the domain agents. The Manager agent runs an Interface skill that provides a GUI through

applets. The Agent Management skill is responsible for the domain, and the Fault Management

skill uses this designation to delegate monitoring tasks. The SLDM (SLD for the Manager) skill

is the centralized part of the SLD algorithm. It uses the SLD skill that runs on each domain agent

and that uses in its turn the Monitoring skill. The following subsections detail these skills.

[Place for Figure 2: Skill interaction diagram]

We wish to emphasize that being a Manager does not require a dedicated agent. Indeed, thanks to

the possible dynamic loading of skills, any agent can potentially ensure the role of the Manager

by loading the necessary skills. As a result, a domain agent may ensure the functions of the

Manager agent.

4.3.1 Domain Management Skill

This skill is loaded into the Manager Agent to make it responsible for domain management. The

Domain Management skill is notified whenever a change in the beliefs about the actual set of

domain agents occurs. This change may be produced either by introducing and removing agents

dynamically or by a reliability analysis done using the SLD method ¯. If this is the case, the

Domain Management performs a domain redistribution in a way that ensures that all the

requested management tasks are still performed. The domain allocations change, and this in turn

provokes the brain into notifying the fault management skill ± and the interface skill ².

The following is an example of a belief corresponding to the domain allocation.

(AgentDomains :agent Ironman :domain (hub101 hub102 hub201)

 :agent Hulk : domain (sw101)

 :agent Batman :domain (hub301 hub303 sw202))

4.3.2 Fault Management Skill

The Fault Management skill is loaded into the Manager agent. It is responsible for delegating the

monitoring tasks to the domain agents. The delegation process is based on the domain allocation

ensured by the Domain Management skill ±. The domain agents send the monitoring

information ¬ to the Manager agent, which then verifies the reliability of the agent before

making its information available to the Interface skill ­ - that is, the agent name must be in the

set of domain agents.

4.3.3 Monitoring Skill

The monitoring skill is responsible for the instrumentation of the necessary beliefs about the

monitored hosts. This information is then used by the SLD skill ³ and the Fault Management

skill ¬.

The general scope of the monitoring skill is to monitor network element information in a

protocol-independent way. It looks for the best way to instrument these parameters and decides

the best way of getting this information (polling and polling frequency, traps, SNMP requests or

RPC commands, etc.). The monitoring skill is able to produce a summary of the global status of

a network element from a detailed monitoring.

4.3.4 System Level Diagnosis Skills

This skill module has been designed to allow a system of agents to ensure reliable behavior from

each agent in the system, using a well-known method called system level diagnosis

(SLD) [26,27].

A Manager SLD skill (SLDM) is responsible for deciding which agents are reliable [25]. Every

other domain agent executes a local SLD skill, which is in charge of the testing.

The SLD theory stipulates that a correct diagnosis about the agents can be established, whenever

no more than half of the agents is faulty [28]. (We consider that this assumption is always

fulfilled.)

Based on a test graph, the SLDM skill assigns to each domain agent a set of neighbor domain

agents. To execute the testing, the SLD skill accesses beliefs produced by the monitoring skill ³

about some chosen network elements - the representative elements - in the agent domain and in

the domains of its neighbors. The domain agents exchange the collected information about the

representative elements and compare them to their own beliefs, in order to diagnose their

neighbors. Afterwards, each SLD skill sends the test conclusions to the SLDM skill ®, which

runs the diagnosis algorithm on the conclusions and updates the set of domain agents,

eliminating the unreliable one(s). The Interface skill ° and the Domain Management skill ¯ are

then notified of this modification.

4.3.5 Interface Skill

The interface is mainly developed for the demonstration. The network manager uses a Web

browser to access the Manager agent, establishing goals and receiving results or notifications.

In this experiment the Interface skill provides:

• Multiple access to the Manager agent from any standard Java-enabled browser

• The demands of agent predefined management goals

• The display of the Manager agent information on the execution of the goals

• Network monitoring information per domain agent

• The status of each agent

The interface skill allows many applets to connect at the same time.

4.4 Deployment and Results

The local network of Institut Eurécom was used as a testbed for the experiment. It was

decomposed into five domains, each of which was allocated to one domain agent. The Manager

role was allocated to a different agent.

The experiment was composed of two stages. In the first stage, the monitoring was launched on

the five domain agents that started to forward the results to the Manager agent. A domain agent

called Hulk crashed. The crash was not detected by the agent system, and the monitoring of the

network elements in Hulk's domain was no longer ensured. The results displayed on the GUI

about Hulk's domain were out-of-date and even incorrect: one network element in Hulk's domain

was switched off and the manager did not detect this.

In the second stage, the SLD mechanism was enabled. As before, the monitoring was launched

on the domain agents and the applet started to display the monitoring results. Afterwards, the

domain agent Hulk crashed. In this case, the crash was detected by the SLDM skill, which

updated the beliefs describing the set of the available domain agents. The brain notified the

domain management skill, which performed a domain redistribution. The network elements that

had been previously monitored by Hulk were allocated to the other domain agents in a balanced

way. So the network administrator was able to receive the monitoring information despite the

failure of a part of the agent system. The system became fault tolerant.

Notice that the Monitoring, Fault Management and Domain Management skills offer the basic

functionality of the system that was used in the first stage. The SLD skills were added later

without causing any change in the basic modules. This shows the evolution and dynamic

properties that the modularity of our agent framework offers to Network Management.

The next case study targets other aspects in NM including configuration and ATM management.

It makes use of different properties of our agent framework.

5. Provision of Permanent Virtual Circuits in

ATM Networks

The second case study dealt with the configuration of Permanent Virtual Connections (PVC) in

ATM networks. From an ATM operator stand point it is very useful to automate the provision of

PVCs, which is a tedious task in heterogeneous ATM networks. The presentation of this case

study requires an ATM background, which is outside the scope of this paper (see [29,30,31]).

5.1 Rationale

PVCs are unidirectional end-to-end connections that are manually established on a switch-by-

switch basis. The establishment of a PVC is not a simple task. First, a physical end-to-end route

between the source and the destination must be selected. Each node in the route is a triplet that

identifies a switch and its selected input and output ports that are going to be used. There might

be several physical routes and one of them must be chosen.

The next step is to plan through which Virtual Paths (VP) the PVC will be bundled. Several

strategies can be adopted leading to different levels of optimization and implementation

difficulties. The approach generally adopted by ATM operators consists in creating Virtual Paths

between each consecutive switch on the route. Though it is far from being an optimal solution in

terms of the number of supported VCCs, it is an easier solution.

Next one needs to attribute Virtual Channel Identifiers (VCI) on each switch and to create the

necessary entries in the switch routing tables. On each switch, a VCI is needed for the input port

and another for the output port. The output VCI of an intermediate switch must be the same as

the input VCI of the next switch. In cases where local VPs are created on each switch to

transport the PVC, the outgoing VPI (Virtual Path Identifier) of a switch must also be the same

as the incoming VPI of the next switch. If one of these constraints is not satisfied, then data

transmitted on this PVC will not reach its destination.

Finally, the different fragments of a PVC must be configured with the same Usage Parameter

Control (UPC) contract. If a UPC parameter is wrongly configured at a switch, then the whole

traffic on the PVC could be affected. Troubleshooting such problems is particularly hard.

But what can complicate the task of PVC creation even more is heterogeneity. Until now, every

ATM fabric provider has elaborated its proper management interface with a proprietary

configuration and administration interface. Moreover, if SNMP is supported, each provider uses

a different MIB (Management Information Base). Therefore, the human network operator must

know all these management interfaces to be able to appropriately create an end-to-end PVC.

In summary, the establishment of a PVC between end systems needs to consider a lot of

parameters, and to satisfy some constraints that are hard to check, especially in a heterogeneous

environment. Therefore, a management application that automates the provision of PVCs can

really help ATM network operators in providing a more rapid service to their customers.

In the next section we describe the identified roles and the necessary skills for these roles, and

specify their interactions. We then provide details on the implementation and deployment of the

agent system.

5.2 Scenario and Agent Roles

We consider an ATM network operator offering end-to-end connections to its customers. Two

distant users may want to establish a connection channel, for example to initiate a

videoconference session. User Agents (UA) represent the network users, while Switch Agents

(SA) that configure the network devices represent the network operator.

The role of the UA is to capture the user's requirements and the PVC parameters including the

destination and the quality of service. The UA may automatically suggest the best suitable

quality of service required for the type of connection that the user wants to establish. Once the

parameters of the PVC are fully determined, the UA sends the request to the nearest SA on the

operator side. If the PVC is successfully created, the UA is informed of the chosen PVC

identifiers and may configure by itself the user equipment to make use of the new PVC.

The role of the SAs is to configure the switches in the ATM network. They accept the PVC

creation requests from the UAs and cooperate together in order to satisfy these queries. Each

switch in the ATM network has a dedicated and unique SA to configure it and to coordinate its

configuration with that of the other switches. Any SA may potentially accept a request from a

UA to establish a PVC. The SA that accepts the request for an end-to-end PVC is responsible

vis-a-vis the demanding UA for the creation process of this PVC. We call such an SA, an End-

to-end Agent regarding that particular PVC. The other SAs involved in the creation of that PVC

are called Local Agents. The Local and the End-to-end roles are sub-roles of the Switch Agent's

role. We emphasize that the same SA can be at the same time the End-to-end Agent for a

particular PVC, and a Local Agent for another PVC.

5.3 Agent Skills

5.3.1 User Agent Skills

According to the description of its role, the UA behavior can be implemented using two skills.

The Contract Negotiation Skill is responsible for sending PVC requests to the SA and

negotiating the service contract as well as the price. The User Interface Skill is responsible for

capturing user requests for a connection establishment and formulating them for the Contract

Negotiation Skill.

The current implementation of this case study provides a simplified version of these two skills.

The User Interface Skill is only composed of a Graphical User Interface that allows the user to

specify the destination of the connection and the desired QoS contract. This request is then

forwarded to the Contract Negotiation Skill which in turn delegates the task of PVC

establishment to the SA, which manages the ATM switch that the user equipment is connected

to.

5.3.2 Switch Agent Skills

The switch agent role is ensured by four skills: the Switch Skill, the Local Skill, the End-to-end

Skill, and the Topology Skill.

5.3.2.1 The Switch Skill

A switch agent is responsible for PVC configuration operations of the switch it is allocated to.

The Switch Skill is therefore designed to provide services to create and delete VPs and VCs using

the SNMP management protocol. There is a switch skill for each different ATM equipment

family. For example, the current implementation runs on FORE ATM switches, and therefore, a

FORE ATM Switch Skill is developed. Actually, the switch skill is the unique part of the whole

system that should be adapted for each product family.

In addition, the switch skill provides information related to the status of the current VPs and

PVCs existing on the ATM switch. This information is used by the Local Skill to decide on the

local parameters for establishming a new PVC.

5.3.2.2 The Local Skill

The Local Skill is responsible for the local configuration operations that create or delete a PVC

fragment on the switch managed by the corresponding SA. For example, it is up to the local skill

to decide whether to create a new local VP in order to convey the PVC within, or to use an

already existing VP with sufficient available bandwidth. Also, it determines which VPI/VCI

couples are to be assigned to the newly created VPs and PVCs.

5.3.2.3 The End-to-end Skill

The End-to-end Skill is responsible for the global supervision of the PVC establishment. Once a

physical end-to-end route is found between the source and destination users, the end-to-end skill

contacts the local switch agents on that route, and asks them to perform the necessary operations

to create the PVC. The End-to-end Skill is also responsible for handling creation errors that

might occur on switches.

5.3.2.4 The Topology Skill

Finally, the Topology Skill helps the end-to-end skill to identify a physical route between the

source and the destination. The physical route identifies which switches the PVC must use, and

the input and the output ports that shall be used.

Finding a physical route is of a minor concern for us since we are more interested in the PVC

configuration problem than with the routing issues. In our demo the topology of the network is

hard-coded inside the topology skill source.

5.4 Results

The creation of an end-to-end PVC requires three major steps that are coordinated by the End-to-

end Skill. These steps are detailed in Figure 3 that shows the interactions between all the skills of

a user agent (on the left) and two switch agents (respectively identified as ``Baltazar'' and

``Douchka'').

[Place for Figure 3: PVC creation scenario]

1. Finding a physical route. The end-to-end skill queries the topology skill for a physical route

that links the source to the destination. The topology skill indicates which is the set of switches

to be traversed and which input and output ports are to be used. The interaction between the end-

to-end and topology skills is performed through the second and third messages in Figure 3.

2. PVC reservation. In this phase, the end-to-end skill asks the local skills on the SA (including

its own agent) to reserve the PVC (messages 4 and 5). Each local agent then checks whether it is

possible to accept the PVC (messages 6 and 7). If it can be accepted, then all the parameters of

the PVC are determined at this phase.

3. PVC creation. If the SA that is responsible for the global creation of the PVC receives positive

acknowledgments from the other SAs, then the PVC can be effectively created. Again, the end-

to-end skill sends creation commitments to the switch agents where the local skills execute the

commitment using the services of the switch skill.

Finally, when all the positive acknowledgments for the PVC creation are received, the end-to-

end skill can send back a message to the UA indicating that the PVC is now created and ready.

6. Discussion

Though many people intuitively believe in the potential of software agents as a new paradigm to

tackle NM problems, there are only a few case studies that concretely allow evaluating agent

technology. The case studies presented allowed us to make some conclusions about the actual

advantages of agent technology as well as to identify some weak points or challenges.

6.1 Flexibility

Flexibility is defined as the ease with which a system can be extended or adapted to new

environments. From an NM point of view, it evaluates the degree to which the administrator is

not limited by constraints imposed by a certain deployed technology. For example, typical

SNMP agents are not flexible because the administrator is limited by the SNMP protocol

primitives and by the degree of instrumentation offered by the agents.

Our developed agent architecture allows for an enhanced degree of flexibility. From an

organizational standpoint, agents are initially considered as peer-to-peer entities. It is possible

however to design an agent application with a different agent organization. The SLD case study

is designed with a hierarchical organization, while the PVC case study is designed rather with a

Client/Server paradigm. Push and Pull models can be used. In no case is the developer

constrained to a specific paradigm or model, but is, instead, able to select the most efficient and

suitable organization model.

Importantly, our agents can be developed so as to dynamically select the best interaction scenario

according to the actual behavior of the network. Agent roles can also be easily changed, evolved,

and re-assigned during the operation of the agent system. In the SLD case study for example, the

role of the Manager Agent could be ensured by one of the Domain Agents.

As a general rule, any agent architecture or framework targeted to NM should allow for the

dynamic change and evolution of the agent behavior. Java technology helps to support these

features through the dynamic loading of classes that can encapsulate new behavior patterns.

6.2 Dynamism

The capability of our agent architecture to handle dynamic aspects is proved on several occasions

in the case studies. At the agent level, it is easy to introduce or remove agents from the agent

system. In the SLD case study, a new domain can be re-assigned simply by modifying the

corresponding belief provided by the Domain Management Skill. For the PVC provision case

study, adding a new switch asks only for the introduction of a new Switch Agent into the system.

Except for the physical routing part (which was not considered in the case study, see the

Topology Skill in Section 5.3), there is no change required for the Switch Agents.

Our agent architecture allows also for the dynamic attribution and change of agent roles. This

only requires the plugging of the necessary skills that implement the new role.

6.3 Distribution and Efficiency

The agent paradigm inherently allows gains to be made from distribution. Agents deployed close

to network elements take advantage of the processing capabilities of the hosts on which they are

installed. In the PVC configuration case study, Switch Agents are allowed both to run reservation

and configuration operations in parallel, and to perform all the SNMP interactions locally to the

switches. These two factors reduce significantly the response time for PVC creation compared to

a centralized approach in which tasks are performed serially, and the SNMP interactions are

carried out remotely from a central NMS.

Another factor that allows for an enhanced performance is the high-level interaction between the

Switch Agents. The messages exchanged between Switch Agents are concise and expressed in a

high-level way. This leads to reduced traffic generated for the PVC creation compared to a

centralized approach in which a large number of SNMP packets must be exchanged with every

ATM switch in order to parse the routing tables and to set the PVC parameters.

6.4 Delegation and Cooperation

Delegation is an important concept both in NM and in software agents. In NM, delegation

implies distributing management responsibilities amongst autonomous entities. Software agents

inherently support the dynamic delegation of management tasks. This appears clearly in the first

case study in which management responsibilities are assigned to agents dynamically during their

operation. Moreover, it is possible to change this assignment without interruption.

In the second case study delegation was used to improve the efficiency and to facilitate the

design of the management application.

Delegation is only a single aspect of agent cooperation. Another aspect is how the agents are

organized among themselves. In both case studies there is a coordinator agent. A peer-to-peer

approach could be used but is more difficult to design (from a distribution viewpoint) than using

a central coordinator. However, we note that in both case studies, the central coordination

organization was not hard-coded. In the SLD case study it is possible to select another agent at

runtime as a Manager by loading the necessary skills. The PVC case study presents a dynamic

coordination, because the role of the coordinator (i.e. the end-to-end agent) is only related to a

particular PVC, and the same agent can insure at the same time the end-to-end role for a certain

PVC and the local role for a different PVC. In this case, the burden of a central management

station is avoided in favor of a cooperative approach.

Negotiation is another aspect of cooperation that was only partially considered in the case

studies. In the PVC provision case study the User Agent may negotiate the PVC parameters,

Quality of Service and price with the End-to-end Switch Agent. A negotiation skill may be

developed and deployed without modifying the previous skills.

6.6 Protocol Independence and Support for Heterogeneity

The software agents handle management information using beliefs. Belief instrumentation is

ensured by sensor capabilities independent of management protocols. For example, in the PVC

provision case study, the Switch Skill provides the necessary capabilities for managing a specific

type of ATM switch, but a different ATM switch may require a new Switch Skill. However, at

the belief level, the agent has a unified view of all types of switches.

Also communication between the agents is achieved through communication acts that provide a

high-level mechanism to exchange management information and tasks. In this way, agent

communication does not depend on any network management protocol.

6.7 Agent Programming

A major problem when designing an agent-based NM application is the lack of awareness of

agent paradigms and the immaturity of agent technologies. An agent developer is faced with a

tremendous amount of agent theories, frameworks, and languages, and so design decisions are

very difficult to make. This often means that the developer has a restricted view of the agent

concept.

The lack of a clear design methodology tends to lengthen the development phase. For this

reason, we proposed a development process that helped to develop the two case studies. The

improvement of this process could be the subject of future work.

6.8 Agent Control

Controlling large distributed applications is by itself a complex problem. The control of an

agent-based application is amplified by the non-deterministic behavior of the agents and their

deliberative capabilities. This is a major challenge to the agent paradigm especially when agents

are supposed to assume important responsibilities, which is the case in NM. Testability and proof

of good behavior is also a major issue that motivated the development of our first case study.

In our case, to help deal with the problem of controllability, we provided a built-in Graphical

User Interface for each agent. This interface allowed us to watch and control the agent operation

by accessing its belief database, and to load and inhibit skills. In addition, both cases were

developed using mainly reactive programming. Every agent generated a detailed trace of all the

activities performed, which helped to debug the SLD and PVC agent applications.

7. Conclusion

The contribution of our paper is threefold. First, it presented an agent framework based on the

notion of ``pluggable'' capability skills that allow the agent's brain to seamlessly integrate new

capabilities and pieces of information. A prototype of this framework was fully implemented

using the Java programming language. The second contribution consists in presenting two case

studies tackling different aspects of NM. Through these case studies we were able to evaluate on

a concrete basis the real advantages and challenges of our agent framework and the agent

paradigm in general, which is the third contribution of our paper.

Our future work will deal with both the architectural and application aspects of our agent

framework. On the one hand, we are studying how to include intelligent features such as

planning and learning in our agent framework, and how to provide tools to ease the development

of agent skills. On the other hand, we are looking for new case studies, which provide the best

way to test and improve the concepts included in our agent prototype.

We believe that further similar studies will soon emerge and highlight other interesting aspects of

static software agents applied to the network management domain. Such concrete applications of

the agent paradigm are urgently needed to bring this new technology to a mature phase and to

help elaborate agent standards.

Bibliography

[1] ``Agent communication language.'' http://www.fipa.org/spec/fipa9712.pdf, 1999.

[2] ``Mobile agent facility specification,'' June 1997. OMG TC Document cf/xx-x-xx.

[3] A. L. Hayzelden and J. Bigham, ``Agent technology in communications systems: An

overview,'' Knowledge Engineering Review, vol. 14, no. 4, 1999.

[4] M. Cheikhrouhou, P. Conti, R. T. Oliveria, and J. Labetoulle, ``Intelligent agents in network

management, a state of the art,'' Networking and Information Systems, vol. 1, no. 1, pp. 9-38,

1998.

[5] S. Albayrak and F. J. Garijo, eds., Proceedings of the Second International Workshop on

Intelligent Agents for Telecommunications Applications, IATA'98, no. 1699 in Lecture Notes

in Artificial Intelligence, (Berlin), Springer, June 1998.

[6] M. Wooldridge and N. R. Jennings, ``Intelligent agents: Theory and practice,'' Knowledge

Engineering Review, vol. 10, no. 2, pp. 115-152, 1995.

[7] H. S. Nwana, ``Software agents: An overview,'' Knowledge Engineering Review, vol. 11, pp.

205-244, October/November 1996.

[8] M. Plu, ``Software technologies for building agent based systems in telecommunications

networks,'' in Agent Technology: Foundations, Applications and Markets (N. R. Jennings and

M. J. Wooldrige, eds.), Springer-Verlag, 1998.

[9] J. P. Müller, The Design of Intelligent Agents - A Layered Approach.

LNAI State-of-the-Art Survey, Berlin, Germany: Springer, 1996.

[10] R. Oliveira and J. Labetoulle, ``Intelligent agents: a new management style,'' in Proceedings

of the Distributed Systems and Operations Management Workshop - DSOM'96, (L'Aquila,

Italy), October 1996.

[11] M. M. Cheikhrouhou, ``BDI-oriented agents for network management,'' in Proceedings of

Globecom'99, (Rio de Janeiro, Brazil), IEEE, December 1999.

[12] T. Magedanz, ``On the impact of intelligent agents concepts on future telecommunication

environments,'' in Third International Conference on Intelligence in Broadband Services

and Networks, (Crete, Greece), October 1995.

[13] C. Bäumer and T. Magedanz, ``Grasshopper - a mobile agent platform for active

telecommunication networks,'' in Intelligent Agents for Telecommunication Applications (S.

Albayrak, ed.), no. 1699 in Lecture Notes in Artificial Intelligence, (Stockholm, Sweden), pp.

19-32, Springer, August 1999.

[14] T. White, B. Pagurek, and A. Bieszczad, ``Network modeling for management applications

using intelligent mobile agents,'' Journal of Network and Systems Management , pp. 295-321,

September 1999.

[15] P. Bellavista, A. Corradi, and C. Stefanelli, ``An open secure mobile agent framework for

systems management,'' Journal of Network and Systems Management, vol. 7, pp. 323-339,

September 1999.

[16] M. Wooldrige, ``Barriers to the industrial take-up of agent technology,'' in The Pratical

Application of Intelligent Agents and Multi-Agent Technology, (London), p. 11, The Practical

Application Company Ltd, April 1999.

[17] G. Weiss, ed., Multiagent Systems: A Modern Approach to Distributed Artificial

Intelligence.

Cambridge, MA: The MIT Press, 1999.

[18] M. P. Singh, A. S. Rao, and M. P. Georgeff, Multiagent Systems: A Modern Approach to

Distributed Artificial Intelligence, ch. Formal Methods in DAI: Logic-Based Representation

and Reasoning, pp. 331-376. The MIT Press, 1998.

[19] Y. Labrou and T. Finin, ``A proposal for a new KQML specification.'' Computer Science

and Electrical Engineering Department, University of Maryland Baltimore County,

Baltimore, Maryland, USA, February 1997. http://www.cs.umbc.edu/kqml/papers/.

[20] T. Finin and G. Wiederhold, ``An overview of KQML: A knowledge query and

manipulation language,'' 1991. Available through the Standford University Computer Science

Dept.

[21] J. R. Searle, Speech Acts: An Essay in the Philosophy of Language.

Cambridge University Press, 1970.

[22] M. Barbuceanu and M. S. Fox, ``The design of a coordination language for multi-agent

systems,'' in Intelligent Agents III. Agent Theories, Architectures, and Languages, pp. 341-

355, Springer, 1996.

[23] M. Wooldridge, ``Intelligent agents,'' in Multiagent Systems: A Modern Approach to

Distributed Artificial Intelligence (G. Weiss, ed.), Cambridge, MA: The MIT Press, 1999.

[24] N. Skarmaeas and K. L. Clark, ``Process oriented programming for agent-based network

management,'' in ECAI96 Workshop on Intelligent Agents for Telecommunication

Applications (IATA96), (Budapest, Hungary), August 12 - 16 1996.

[25] J. Meinkohn and S. Albayrak, ``Future IN-platforms with agent technology,'' in Albayrak

and Garijo [5], p. 80.

[26] G. Berthet, Extension and Application of System-level Diagnosis Theory for Distributed

Fault Management in Communication Networks.

PhD thesis, École Polytechnique Fédérale de Lausanne, Lausanne, CH, 1996.

[27] S. Hakimi and K. Nakajima, ``On adaptive system diagnosis,'' IEEE Transactions on

Computers, vol. c-33, pp. 234-240, March 1984.

[28] F. P. Preparata, G. Metze, and R. T. Chien, ``On the connection assignment problem of

diagnosable systems,'' IEEE Transactions on Electronic Computers, vol. EC-16, pp. 848-854,

December 1967.

[29] M. M. Cheikhrouhou, P. O. Conti, and J. Labetoulle, ``Flexible software agents for the

automatic provision of PVCs in ATM networks,'' in Second IFIP WG 6.1 International

Working Conference on Distributed Applications and Interoperable Systems, (Helsinki,

Finland), 1999.

[30] B. Pagurek, Y. Li, A. Bieszczad, and G. Susilo, ``Network configuration management in

heterogeneous ATM environments,'' in Intelligent Agents for Telecommunication

Applications - IATA'98 (S. Albayrak and F. J. Garijo, eds.), no. 1437 in Lecture Notes in

Artificial Intelligence, (Paris, France), July 1998.

[31] K. Tesink and T. Brunner, ``(Re)Configuration of ATM virtual connections with SNMP,''

The Simple Times, vol. 3, August 1994.

Biographies

Morsy M. Cheikhrouhou received his Engineering Diploma in Computer Science in June 1996

from the École Nationale des Sciences de l'Informatique, Tunis. He joined the Corporate

Communications Department of the Institut Eurécom in April 1997 where he started his Ph.D.

thesis. His research activities are focussed on Network Management, Intelligent and Mobile

Agents, Java technology and distributed systems. His homepage is at:

http://www.eurecom.fr/~cheikhro

Pierre Olivier Conti is a research engineer with more than 17 years of software development,

QA management, project management and consulting experience in the Telecoms and Network

Management area. He mainly worked for Digital Equipment Corporation within the Telecom

Engineering Group. He joined Institut Eurécom in 1997 to lead a research project on Intelligent

Agents for Network Management, and to pursue a PhD thesis in parallel.

Karina Marcus received her Ph.D. in Operations Research from the Université Joseph Fourier,

France, in 1996. She then spent a post-doctoral year in Canada, and in September 1997 she

joined the Institut Eurécom. She has published several papers in distinct areas such as matroid

theory, parallel algorithms network design and fault detection for distributed systems using

intelligent agents.

Jacques Labetoulle obtained his Ph.D. from the Université Paris VI (1974) and a ``Doctorat

d'Etat'' from the Université Paris IX Orsay (1978), in computer science. He joined the `Institut

National de Recherche en Informatique et Automatique' in 1970 where he mainly worked on

queuing theory and applications. In 1981, he joined the CNET (Centre National d'Etudes des

Télécommunications) to lead the teletraffic department. In 1989, he created the new center of

CNET in Sophia Antipolis, where he headed the Corporate Network Management department.

He joined the Institut Eurécom in September 1992 to lead the Corporate Communications

Department and the network management research group.

