
Application-Specific Instruction-Set Processor for
Digital Front-End Processing in Wireless

Communications
Carina Schmidt-Knorreck∗ , Renaud Pacalet† , Andreas Minwegen‡ , Uwe Deidersen‡,

Torsten Kempf‡, Raymond Knopp∗ , Gerd Ascheid‡

∗ Mobile Communications Department, EURECOM, Sophia Antipolis, France,
carina.knorreck@eurecom.fr, raymond.knopp@eurecom.fr

† TELECOM ParisTech, Sophia Antipolis, France, renaud.pacalet@telecom-paristech.fr
‡ Institute for Communication Technologies and Embedded Systems, RWTH Aachen, Germany, name.surname@ice.rwth-aachen.de

Abstract—High computational demands and multimodal pro-
cessing of wireless communication standards rise the need of
flexible Software Defined Radio (SDR) platforms. A key part
is the Front-End Processor responsible for the computation of
different air-interface algorithms at the receiver and transmitter
side. In this context, Application Specific Instruction-set Proces-
sor (ASIPs) allow to tradeoff the flexibility of General Purpose
Processors against the performance of ASICs. In this paper we
present a flexible high performance ASIP for front-end processing
that has been designed for the OpenAirInterface Platform using
the LISA language. Architectural details are given as well as
synthesis results for different target technologies. Besides the
runtime performance of the ASIP is analyzed for different air-
interface operations.

I. INTRODUCTION

Since the 1880ths when the first wireless telephone service
was patented, the number of different wireless communication
standards has grown rapidly. Today, smartphones provide more
and more applications and a high data-rate access has become
of major importance. The requirements of these applications
embrace different wireless communication standards like
GSM, 3GPP UMTS, WLAN 802.11a/b/g. Important criteria
in design are not only cost, power, area or speed but also
the easy adaptation to future wireless standards like LTE.
Besides, the evolution of existing standards is still in the
focus of research and leads to improved algorithms, smaller
designs and a better performance. To deal with all these
issues is a complex task and still a hot topic. One solution can
be found in the concept for Software Defined Radio (SDR)
[1]. The key idea is the support of multiple standards by just
one flexible platform. One of them is the digital baseband
processing platform being developed by Eurecom and
TELECOM ParisTech [2] whose multimodal design supports
a high number of different air interfaces. In contrast to
other platforms, the baseband processing is split over several
independent processing engines which are synchronized by a
32-bit Sparc processor. The partitioning between HW and SW
follows a general cost-and-complexity versus speed trade-off.
All processing engines are parameterizable and meet the

latency requirements of the computationally most intensive
task.

In this paper we focus on the implementation of an
Application Specific Instruction-set Processor (ASIP) for
flexible front-end processing that has been designed using the
Language for Instruction-Set Architectures (LISA) [3]. The
Front-End Processor (FEP) processing engine is designed
to deal with the different air-interface operations at the
receiver and transmitter side. Today, air interfaces used by the
different standards include Orthogonal Frequency Division
Multiplexing / Multiple-Access (OFDM/A), Single Carrier
FDMA (SC-FDMA), Wideband Code Division Multiple
Access (W-CDMA) and Space-division multiple access
(SDMA). The set of air-interface operations to be performed
by the FEP comprises Channel Estimation, Synchronization,
Carrier Frequency Offset Estimation, Data Detection and
Coarse Frequency Offset Estimation.
The ASIP design approach is an attempt to find a compromise
between two extremes. ASICs on the one side are optimized
architectures for a specific application with high performance
and low power consumption. General Purpose Processors
(GPPs) on the other side are very flexible and fully
programmable, but with high power consumption and low
performance. ASIPs still exhibit a high degree of flexibility
in combination with a higher performance. In addition, a
tool-based design comes with and a shorter design time
when compared to the conventional RTL design flow. As
stated in [4], the flexibility of ASIPs allow fast design
modifications to respond to the evolution of standards,
world-wide compatibility, changes of user requirements
depending on the quality of service, etc. as their hardware
design flow provides a fast and efficient way to generate
VHDL or Verilog code from a High Level Language (HLL)
tool. For our design, the LISA language has been chosen,
which has gained commercial acceptance over the last years.

After a short overview of the entire system in section II and
a brief introduction of the different air-interface operations

Control and MAC Interface
Pre−processor

VCIInterface

Interconnect (AVCI Crossbar)

b
rid

g
e

Custom

b
ri

d
g

e
A

H
B

/C
u

st
o

mC
u

sto
m

/V
C

I

VCIInterface

VCIInterface

processor

Front−end

VCIInterface

Interleaver /

deinterleaver

VCIInterface

Channel

encoder
Mapper

VCIInterface

LEON3

uprocessor

Peripherals

Ethernet,
UART,
JTAG ...

DDR,

Flash ...

PCI Express

Interface

Radio

Front−end

VCIInterface

Channel

decoder

Detector

GPIO

GPIO

GPIO

Baseband Processing

Fig. 1. OpenAirInterface Baseband Architecture

to be implemented at the transceiver side in section III,
the architecture of the ASIP is presented in section IV-B.
Frequency and area results for different targets are provided
and the ASIP is analyzed by comparing several air-interface
algorithms for different standards in terms of execution time
in section V.

II. SYSTEM OVERVIEW

The ASIP being presented in this paper is part of the
OpenAirInterface Platform (Fig. 1) which is a generic
prototype architecture for SDR applications. This platform
supports a wide range of different standards like 3GPP
UMTS, WLAN 802.11a/g/p, WiMAX, GSM and can easily
be adapted to future standards like LTE, meeting all their
throughput and latency requirements. As the current version
of the platform is a prototype architecture and not meant for
large-scale production, FPGAs have been chosen as target
technology, due to their reduced design cycle, their higher
flexibility and lower costs. In the future, ASICs will be
considered as the target of interest to minimize the required
area and to achieve a higher performance.
The baseband processing of the platform implements the
digital part of the physical layer and is split over several
independent processing engines, like Channel Decoder or
Front-End Processor (FEP), that are connected via a generic
Advanced Virtual Component Interface (AVCI) crossbar ([5],
[6]). Each processing engine is parameterizable, allowing the
reuse of the same architecture for different standards. The
advantages of this hardware configurability are the effective
use of the spectrum, mobility, increased network capacity,
cost reduction, faster deployment of new standards and
an easy improvement of existing standards. The baseband
processing is controlled by a Sparc LEON3 microprocessor
from Gaisler that programs all processing engines and that
reacts on interrupts set by them to signal their new availability.

The architecture of all processing engines follows the same
general structure that is shown in Fig. 2. It is composed of
a Control Sub-System (CSS), a processing unit (PU) and a
Memory Sub-System (MSS). The CSS is configured by a
set of parameters and the same for all processing engines. It
includes a DMA, a local micro-controller, a set of control and
status registers plus several arbiters and FIFOs for input-output
requests and responses. For signaling and synchronization with
LEON3, several interrupt lines are used. In contrast, MSS and
PU are custom defined and depend on the functionality of each
of the processing engines.
To keep this structure, the ASIP designed for the FEP has
to be part of the PU whereas its program memory is part of
the MSS. The other elements remain unchanged and allow an
update of the program code as well as the transfer of input
and output samples while the ASIP is running.

IP core (processing unit)

Control and
status registers

AVCI initiator
interface

AVCI target
interface

Micro-
controller

Micro-
controller
memory

Direct
memory
access
engine

MSS
(Memory Sub-

System)

...

UC memory

64
VIA

DMA

UC

UCA

64

CTRL
8

CSS

Arbiter

Interrupts

AVCI requests FIFO

AVCI responses FIFO

DSP unit

64 bits AVCI crossbar

: custom component / interface

: standard component / interface

Arbiter

Fig. 2. DSP Unit

III. FRONTEND PROCESSING ALGORITHMS

The air-interfaces of todays standards include Orthog-
onal Frequency Division Multiplexing / Multiple-Access
(OFDM/A), Single Carrier FDMA (SC-FDMA), Wideband
Code Division Multiple Access (W- CDMA) and Space-
division multiple access (SDMA). The resulting set of air-
interface operations to implement at the receiver and transmit-
ter side comprise Channel Estimation, Sychronization, Carrier
/ Coarse Frequency Offset Estimation or Data Detection. As
these operations depend on the standard, a flexible design
requires a parameterizable architecture that does not change
when switching to another standard. In literature it already
been shown (among others in [7]), that all air-interface oper-
ations can be build up from a DFT/IDFT unit and a set of
functions which are

• Component-Wise Addition of Vectors
• Component-Wise Division
• Component-Wise Product of Vectors
• Dot Product
• Energy Calculation
• Maximum / Minimum, Argmax / Argmin Calculations

IV. ASIP DESIGN

A. Functional Specification

The ASIP has been designed to replace the existing vector
processing unit of the FEP [8]. As shown in Fig. 3, the
DFT/IDFT is kept as a separate unit inside the processing
engine. The interface between the ASIP and the MSS is
custom defined and establishes the connection between the
ASIP, the Program Memory with a size of 4kBytes and
the input-output data space. Values read from the MSS are
available after a delay 3 three cycles. This delay results from
three registers inside the MSS that are used to separate the
arbiter logic from the memory access. Besides, the MSS is
output registered to avoid a critical path between MSS and
PU.

To increase the flexibility and thus the programmability of
the design, the instruction set of the ASIP should not contain
complex operations like Energy Calculation or Dot Product
(please refer to section III). Instead, these air-interface oper-
ations have to be split into a set of different vector operation
instructions. It can be seen that the Energy Calculation of a
vector X[i], which is defined as

E(X) =
N−1∑
i=0

|X[i]|2

can be computed by a vector square modulus and a vector
sum. Similarly, the Dot Product of two vectors X[i] and Y [i]is
defined as

X.Y =
N−1∑
i=0

X[i]× Y [i]

DFT/IDFTASIP

AVCI initiator
interface

AVCI target
interface

MSS
(Memory Sub-

System)

...

UC memory

64
VIA

DMA

UC

UCA

64

CTRL
8

CSS

Interrupts

64 bits AVCI crossbar

: custom component / interface

: standard component / interface

Fig. 3. FEP DSP Unit including the ASIP

and can be computed by a component wise vector
multiplication and a vector sum.

The resulting instruction set comprises nine different vector
operation instructions that operate over vectors with a length
of maximum 4096 elements:
• Component-Wise Addition:

Z[i] = X[i] + Y [i]
• Component-Wise Product:

Z[i] = X[i]× Y [i]
• Component-Wise Square of Modulus:

Z[i] = |X[i]|2
• Copy a vector from one MSS location to another:

Z[i] = X[i]
• Component-Wise Filter by a Lookup Table (CWL):

Z[i] = Y [X[i]]
• Component-Wise Square:

Z[i] = X[i]2

• Vector Sum:
Z =

∑
X[i]

• Vector Right/Left Shift:
Z[i] = X[i] >> l, Z[i] = X[i] << l

• Vector Max/Argmax or Min/Argmin:
Z = max(X[i]), Z = min(X[i])

Based on the vector operation that is processed, one or
two vectors are read in from the MSS and one vector is
written back. The obtained throughput of the design is two
samples per cycle. Supported data types are 8- or 16-bits
signed integer vectors and complex vectors whose real and
imaginary part are 8- or 16-bits signed integers. It is possible
to process two input vectors with different types and to
write back the result in a third type. The type conversion
depends on parameters that are part of the vector operation
instruction word. Furthermore, pre- and post-processing value

Generation Unit

Execute 2 Execute 3 Execute 4 Execute 5 Execute 6 Writeback

Memory SubSystem (MSS)

ALU EX3

mult

extend

Writeback

value

modification

ALU WB

Execute 1FetchPre−Fetch Decode Execute 0

Cntrl

Program

Memory

instruction

decode

AGU

(read)

(config)

AGU

AGU

(read)

ALU EX1

value

modification

ALU EX2

force to 0

negate

extend

absolute

ALU EX4

max/argmax

min/argmin

shift right

shift left

invert

(write)

AGU

(write)

AGU

(write)

AGU

ALU EX5

truncate

ALU EX5

extend

add

Instruction

Decoding

Vector Operation

Processing

Address

Fig. 4. Pipeline of the ASIP for FEP

modifications are applied. The first one comprises absolute
value calculation, negation, zeroing and rescaling while the
latter supports downscaling and saturations.
Using a programmable addressing scheme, input vectors can
be read from non-contiguous addresses in the MSS. The same
applies to the result vector. Supported are skipping or repeti-
tion of addresses. Besides, addresses can be periodic or may
wrap around boundaries inside the MSS. These boundaries
can divide one bank of the input-output data space (size of
4096x32bit) into a half, a quarter or an eighth and allow to
turn these sections into circular buffers.
With this design, additional functions like a component-wise
subtraction of vectors or a component-wise division can easily
be implemented by using the provided instruction set. To
program a vector division, the CWL and the component-wise
multiplication instruction are needed: performing the CWL
instruction a value of vector X is first read in before its eleven
MSB are used to obtain the value Y [X[i]] from the MSS
where Y represents a Look-Up Table. The result is then stored
back in the MSS and can then be used for a component-wise
multiplication to get the division result.

B. Architecture

The pipeline of the ASIP consists of eleven stages to achieve
a high performance of the design (Fig. 4). Based on the
delay of the MSS, the instruction word stored in the Program
Memory is decoded after three cycles. Two different types of
instructions have been implemented: configuration instructions
for address generation and vector operation instructions. The
length of the instructions is set to 32 bit. Therefore the address
generation parameters have to be split over six different

instructions. The vector operation parameters can be provided
in one single instruction.
The instruction set of the ASIP comprises nine different mul-
ticycle vector processing instructions to fulfill the functional
requirements of the FEP that have been stated in section IV-A.
Except for the CWL instruction, the number of cycles required
for processing are l/2 + 14, where l is the length of the
vector.The CWL instruction (Z[i] = Y [X[i]]) introduces an
additional delay of four cycles as X[i] has first to be read
from the MSS before its 11 LSB are used to access the value
of Y [i].
Furthermore, the instruction set contains some configuration
instructions for the Address Generation Unit (AGU). The
number of these instructions (between 3 and 6) can vary and
depends on the amount of parameters to be updated. The AGU
operates in parallel, while a vector processing instruction is
executed.

V. RESULTS

A. Synthesis Results

The processor generator software tool (Synopsys Processor
Designer [9]) provides a fast and efficient way to generate
VHDL code out of the LISA description. This code can be
directly used as an input for synthesis tools for different
targets.
The tool generated code has first been synthesized with Preci-
sion RTF from Mentor Graphics for a Xilinx Virtex 5 LX330
FPGA with a speed grade of -2. The achievable frequency
when synthesizing the ASIP together with its MSS is 123

MHz after place and route. Area results are provided in Table
I.

Function CLB DFFs Block DSP48E
Generators Slices RAMs

ASIP 10269 2568 6408 17 8

TABLE I
AREA, FPGA TARGET

Furthermore the ASIP has been synthesized for a 65nm
CMOS standard cell target technology. The library is a low
power, high voltage threshold one and is characterized for
a typical manufacturing process at 1.2 Volts power supply
and 25C temperature. The required silicon area of the ASIP
(without MSS) is about 0.12mm2 with a frequency of 550
MHz.

B. Runtime Performance

The runtime performance for the ASIP is given for a
set of different air-interface operations of OFDM signals.
These operations comprise Energy Detection (ED), Time
Synchronization (SYNC) and Channel Estimation (CE). For
the calculation of the processing time it is assumed, that the
DFT has the same throughput than the one of the open-source
implementation of the FEP which is 2+ (13+2n/8)×dn/2e
clock cycles.

1) Energy Calculation: To compute the energy of a given
vector two vector operation instructions have to be performed:
vector square modulus + vector sum. These instructions take
284 clock cycles. For a frequency of f = 123MHz this would
result in a processing time of 2309 ns, while for a frequency
of f = 550MHz the processing time would be about 516 ns.

2) Time Synchronization: The Synchronization is achieved
by a sliding FFT window that is correlated with a know
waveform before the peak inside the window is detected.
Using the ASIP, the order of operations to be performed is as
follows: FFT, component wise product, IFFT, vector square
modulus, vector max/argmax. In best case, this algorithm
is performed three times which results in a total number of
2112 clock cycles. For a frequency of f = 123MHz this
would result in a processing time of 17171 ns (5728 ns
per iteration), while for a frequency of f = 550MHz the
processing time would be about 3840 ns.

3) Channel Estimation: The channel estimation is achieved
by a convolution of the received pilot sequencewith its known
reference. These instructions take 89 clock cycles. For a
frequency of f = 123MHz this would result in a processing
time of 724 ns, while for a frequency of f = 550MHz the
processing time would be about 162 ns.

Taking the example of the 802.11p receiver, the Short Train-
ing Symbol (STS) used for Synchronization has a length of

160 samples which corresponds to 16us for a 10MHz channel
spacing. The algorithm to be performed is a combination of
an Energy Detector and the Time Synchronization. The sliding
window has a size of 160 samples (16us). In worst case, En-
ergy Detection and two iterations of the Time Synchronization
have to be performed in one cycle. The resulting processing
time is 13.765us for the FPGA target which would leave some
time for other processes on the platform.

VI. CONCLUSION AND FUTURE WORK

In this paper we focused on an ASIP design of the Front-
End Processor processing engine for the OpenAirInterface
platform. The presented architecture is very flexible, exhibits a
high performance and complies to the real time requirements
of the latest wireless communication standards.

Our future work includes the extension of the instruction
set to run the ASIP as a stand-alone processing engine.
Furthermore this design will be compared to the open-source
custom implementation of the FEP in terms of flexibility, area
and performance for different target technologies.

ACKNOWLEDGEMENTS

The research leading to these results has received fund-
ing from the FP7-ICT ACROPOLIS (Advanced coexistence
technologies for radio optimization in licensed and unlicensed
spectrum) project.

REFERENCES

[1] J. Mitola, “The software radio architecture,” Communications Magazine,
IEEE, vol. 33, no. 5, pp. 26 –38, may 1995.

[2] N.-u.-I. Muhammad, R. Rasheed, R. Pacalet, R. Knopp, and K. Khal-
fallah, “Flexible baseband architectures for future wireless systems,” in
Digital System Design Architectures, Methods and Tools, 2008. DSD ’08.
11th EUROMICRO Conference on, sept. 2008, pp. 39 –46.

[3] A. Hoffmann, O. Schliebusch, A. Nohl, G. Braun, O. Wahlen,
and H. Meyr, “A methodology for the design of application
specific instruction set processors (asip) using the machine description
language lisa,” in Proceedings of the 2001 IEEE/ACM international
conference on Computer-aided design, ser. ICCAD ’01. Piscataway,
NJ, USA: IEEE Press, 2001, pp. 625–630. [Online]. Available:
http://dl.acm.org/citation.cfm?id=603095.603223

[4] J. R. Cavallaro and P. Radosavljevic, “Asip architecture for future wireless
systems: Flexibility and customization,” in Wireless World Research
Forum (WWRF), Jun. 2004.

[5] “VSIA consortium: http://www.vsi.org/.” [Online]. Available: http:
//www.vsi.org/

[6] “Vsi alliance virtual component interface standard version 2 (ocb 2 2.0).”
[7] K. van Berkel, F. Heinle, P. P. E. Meuwissen, K. Moerman, and M. Weiss,

“Vector processing as an enabler for software-defined radio in handheld
devices,” vol. 2005. New York, NY, United States: Hindawi Publishing
Corp., January 2005, pp. 2613 –2625.

[8] N.-I. Muhammad, K. Khalfallah, R. Knopp, and R. Pacalet, “Reconfig-
urable dsp architectures for sdr applications,” in Electronics, Circuits and
Systems, 2007. ICECS 2007. 14th IEEE International Conference on, dec.
2007, pp. 971 –974.

[9] “http://www.synopsys.com/systems/blockdesign/processordev/pages/de-
fault.aspx.”

http://dl.acm.org/citation.cfm?id=603095.603223
http://www.vsi.org/
http://www.vsi.org/
http://www.vsi.org/

	Introduction
	System Overview
	Frontend Processing Algorithms
	ASIP Design
	Functional Specification
	Architecture

	Results
	Synthesis Results
	Runtime Performance

	Conclusion and Future Work
	References

