
EDITE - ED 130

Doctorat ParisTech

T H È S E

pour obtenir le grade de docteur délivré par

TELECOM ParisTech

Spécialité « INFORMATIQUE et RESEAUX »

présentée et soutenue publiquement par

Marco BALDUZZI
le 15/12/2011

Mesures automatisées

de nouvelles menaces sur Internet

Directeur de thèse : Prof. Engin KIRDA

Jury
Refik Molva, Professeur, Institut EURECOM, Sophia Antipolis Examinateur et Président
Christopher Kruegel, Professeur, University of California, USA Rapporteur
Evangelos Markatos, Professeur, FORTH-ICS, Grèce Rapporteur
Herbert Bos, Professeur, Vrijie Universiteit, Pays-Bas Examinateur
Marc Dacier, Senior Director, Symantec Research Labs, USA Examinateur

TELECOM ParisTech
école de l’Institut Télécom - membre de ParisTech



2



Résumé

Pendant les vingt dernières années, Internet s’est transformé d’un réseau simple de taille
limitée à un système complexe de grandes dimensions. Alors que Internet était initialement
utilisé pour offrir du contenu statique, organisé autour de simples sites web, aujourd’hui il
fournit en même temps contenu et services complexes (comme chat, e-mail ou le web) ainsi
que l’externalisation de calculs et d’applications (cloud computing). En 2011, le nombre
d’utilisateurs d’Internet a dépassé deux milliards (un tiers de la population mondiale) et
le nombre de domaines enregistrés a atteint 800 millions. Les sites web sont accessibles
à partir d’ordinateurs personnels, de tablettes, smartphones en permanence et depuis
n’importe où.

Les attaquants ne sont pas indifférents à l’évolution d’Internet. Souvent motivées par
un florissant marché noir, les attaquants sont constamment à la recherche de vulnérabilités,
d’erreurs de configuration et de nouvelles techniques. Ceci afin d’accéder à des systèmes
protégées, de voler des informations privées, ou propager du contenu malveillant.

Les vulnérabilités traditionnelles comme les buffer overflows ou les injections SQL
sont encore exploitées. Toutefois, de nouveaux vecteurs d’attaque qui exploitent des
canaux non conventionnels à grande échelle (dans le cloud computing, par exemple) sont
également et régulièrement découverts. À ce jour, peu de recherches ont été réalisées
pour mesurer la prévalence et l’importance de ces menaces émergentes sur Internet. Or,
les techniques traditionnelles de détection ne peuvent pas être facilement adaptés aux in-
stallations de grandes dimensions, et des nouvelles méthodologies sont nécessaires pour
analyser et découvrir failles et vulnérabilités dans ces systèmes complexes.

Cette thèse avance l’état de l’art dans le test et la mesure à grande échelle des menaces
sur Internet. Nous analysons trois nouvelles classes de problèmes de sécurité sur ces
infrastructures qui ont connu une rapide augmentation de popularité: le clickjacking, la
pollution de paramètres HTTP et les risque liés au cloud computing. De plus, nous
introduisons la première tentative d’estimer à grande échelle la prévalence et la pertinence
de ces problèmes sur Internet.





Abstract

In the last twenty years, the Internet has grown from a simple, small network to a complex,
large-scale system. While the Internet was originally used to offer static content that
was organized around simple websites, today, it provides both content and services (e.g.
chat, e-mail, web) as well as the outsourcing of computation and applications (e.g. cloud
computing). In 2011, the number of Internet users has surpassed two billion (i.e., a third
of the global population [130]) and the number of Internet hosts are approximately 800
million. Websites are reachable via a wide range of computing devices such as personal
computers, tablet PCs, mobile phones. Also, users often have anywhere, any time access
to the Internet.

Attackers are not indifferent to the evolution of the Internet. Often driven by a flourish-
ing underground economy, attackers are constantly looking for vulnerabilities, misconfig-
urations and novel techniques to access protected and authorized systems, to steal private
information, or to deliver malicious content. Traditional vulnerabilities such as buffer over-
flows or SQL injections are still exploited. However, new alternative attack vectors that
leverage unconventional channels on a large scale (e.g. cloud computing) are also being
discovered. To date, not much research has been conducted to measure the importance
and extent of these emerging Internet threats. Conventional detection techniques cannot
easily scale to large scale installations, and novel methodologies are required to analyze
and discover bugs and vulnerabilities in these complex systems.

In this thesis, we advance the state of the art in large scale testing and measurement
of Internet threats. We research into three novel classes of security problems that affect
Internet systems that experienced a fast surge in popularity (i.e., ClickJacking, HTTP
Parameter Pollution, and commercial cloud computing services that allow the outsourcing
of server infrastructures). We introduce the first, large scale attempt to estimate the
prevalence and relevance of these problems on the Internet.





7

Table des matières

I Résumé 13

1 Introduction 15
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2 Récapitulatif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3 Organisation de la thèse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Principales Contributions 25
2.1 Détournement de Clic (Clickjacking) . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Pollution de Paramètres HTTP (HPP) . . . . . . . . . . . . . . . . . . . . . 27
2.3 Risques liés au Elastic Compute Cloud . . . . . . . . . . . . . . . . . . . . . 30

II These 33

3 Introduction 35
3.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Related Work 43
4.1 Large-Scale Internet Measurement . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Measurement of Internet Threats . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Web Vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 Cloud Computing Threats . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Clickjacking 51
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Clickjacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 Detection Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.1 Detection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3.2 Testing unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5.1 False positives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.5.2 True positive and borderline cases . . . . . . . . . . . . . . . . . . . 61
5.5.3 False negatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



5.6 Pages implementing protection techniques . . . . . . . . . . . . . . . . . . . 62
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 HTTP Parameter Pollution 65
6.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1.1 Parameter Precedence in Web Applications . . . . . . . . . . . . . . 65
6.1.2 Parameter Pollution . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2 Automated HPP Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2.1 Browser and Crawler Components . . . . . . . . . . . . . . . . . . . 70
6.2.2 P-Scan: Analysis of the Parameter Precedence . . . . . . . . . . . . 71
6.2.3 V-Scan: Testing for HPP vulnerabilities . . . . . . . . . . . . . . . . 73

6.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.4.1 Examples of Discovered Vulnerabilities . . . . . . . . . . . . . . . . . 81
6.4.2 Ethical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7 Elastic Compute Cloud Risks 87
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2 Overview of Amazon EC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.3 AMI Testing Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.4 Results of the Large Scale Analysis . . . . . . . . . . . . . . . . . . . . . . . 91

7.4.1 Software Vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.4.2 Security Risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.4.3 Privacy Risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.5 Matching AMIs to Running Instances . . . . . . . . . . . . . . . . . . . . . 98
7.6 Ethical Considerations and Amazon’s Feedback . . . . . . . . . . . . . . . . 101
7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8 Conclusion and Future Work 103
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



9

Table des figures

1.1 Nombre de hôtes Internet par an . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Histoire de la capacité des disques durs . . . . . . . . . . . . . . . . . . . . 16
1.3 Nombre de failles XSS et SQLi par an (MITRE) . . . . . . . . . . . . . . . 17
1.4 Exemple de attaque Clickjacking contre Twitter . . . . . . . . . . . . . . . . 20

2.1 Architecture de ClickIDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 Architecture de PAPAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Priorité des paramètres lorsque deux occurrences d’un même paramètre

sont spécifiés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 Taux de vulnérabilité pour chaque catégorie . . . . . . . . . . . . . . . . . . 30
2.5 Architecture de SatanCloud . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Number of Internet hosts by year . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 History of hard-disks capacity . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Number of XSS and SQLi flaws by year (MITRE) . . . . . . . . . . . . . . 38

5.1 Clickjacking attack against Twitter: The page rendering showing the two
frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1 Architecture of PAPAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2 PAPAS Online Service, Homepage . . . . . . . . . . . . . . . . . . . . . . . 77
6.3 PAPAS Online Service, Token Verification . . . . . . . . . . . . . . . . . . . 77
6.4 PAPAS Online Service, Report . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.5 Precedence when the same parameter occurs multiple time . . . . . . . . . 79
6.6 Vulnerability rate for category . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2 Distribution AMIs / Vulnerabilites (Windows and Linux) . . . . . . . . . . 94





11

Liste des tableaux

2.1 Statistiques des pages visitées . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 Résultats d’analyse clickjacking . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Les TOP15 catégories de sites analysés . . . . . . . . . . . . . . . . . . . . . 29
2.4 Les tests inclus dans la suite de testage . . . . . . . . . . . . . . . . . . . . 32

5.1 Statistics on the visited pages . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.1 Parameter precedence in the presence of multiple parameters with the same
name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2 TOP15 categories of the analyzed sites . . . . . . . . . . . . . . . . . . . . . 78

7.1 Details of the tests included in the automated AMI test suite . . . . . . . . 91
7.2 General Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.3 Nessus Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.4 Left credentials per AMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.5 Credentials in history files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.6 Tested Bundle Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.7 Recovered data from deleted files . . . . . . . . . . . . . . . . . . . . . . . . 99
7.8 Statistics of the recovered data . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.9 Discovered Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100





13

Première partie

Résumé





15

Chapitre 1

Introduction

Au début des années 90, Arpanet venait d’être mis hors service et Internet était limité
à une collection d’environ 500.000 hôtes [48]. En 1991, Tim Berners-Lee publia son pro-
jet appelé le World Wide Web qu’il avait développé au CERN à Genève. L’idée derrière
le projet World Wide Web était d’utiliser un programme spécifique, appelé navigateur
Web, pour permettre l’accès et l’affichage de contenu hypertexte en utilisant une archi-
tecture client-serveur. Deux ans plus tard, son projet World Wide Web est tombé dans
le domaine public sous la forme d’un système d’information collaboratif et indépendant
du type de plateforme matérielle et logicielle utilisé [42]. De nouveaux navigateurs avec
capacités graphiques, comme ViolaWWW et Mosaic, sont rapidement devenus la norme
pour accéder aux documents fournis par le service World Wide Web. Ces documents ont
été organisés autour de sites Web et distribués sur Internet. Ces premiers sites étaient
simples et petits, et les fonctionnalités offertes étaient limitées par le coût de la technolo-
gie. Le contenu multimédia comme les images et la vidéo étaient rarement employé car
le stockage de fichiers était lent et l’accès très cher. Par exemple, en 1989, un disque dur
coûtait en moyenne 36$ par mégabyte [59].

Vingt ans plus tard, le scénario a radicalement changé. La figure 1.1 montre com-
ment Internet s’est développé jusqu’atteindre environ 800 millions d’hôtes. Le nombre
d’utilisateurs d’Internet a dépassé deux milliards en début 2011, doublé au cours des
dernières cinq années, et approché un tiers de la population mondiale [130]. Dans le
même temps, la capacité des disques durs a augmenté linéairement sous l’influence du
marché dont la demande de stockage de données n’est jamais satisfaite [103] (Fig. 1.2).

90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11

0,00

100,00

200,00

300,00

400,00

500,00

600,00

700,00

800,00

900,00

Year

H
o

s
ts

 (
M

ill
io

n
s

)

Fig. 1.1: Nombre de hôtes Internet par an



Fig. 1.2: Histoire de la capacité des disques durs

Aujourd’hui le stockage est moins cher que jamais, par exemple moins de 10 cents par
gigabyte, et la puissance de calcul est disponible au prix des matières premières.

Alors que dans le passé, Internet était principalement utilisé pour accéder du contenu
provenant de sites Web sous forme de documents hypertextes, il permet désormais l’accès
à des services (comme le chat, l’e-mail ou le Web) ou encore à des capacités de calcul et
à des applications externalisées (cloud computing, par exemple).

Le Web est une des principales manières dont les gens utilisent Internet aujourd’hui.
On estime que les trois moteurs de recherche les plus populaires que sont Google, Bing et
Yahoo indexent aujourd’hui plus de 13 milliards de pages Web [49]. Les sites Web sont
accessibles depuis les ordinateurs personnels, les tablettes PC, les téléphones mobiles, les
points d’accès et les hotspots publics y compris les aéroports, les gares, les bars, ou places
de la ville qui offrent souvent un accès Internet gratuit. Les opérateurs de téléphonie
offrent des contrats pour l’accès Web en utilisant les réseaux mobiles partout et 24/7.
Toutes sortes de services, comme la réservation d’un vol ou l’accès aux comptes bancaires
sont maintenant disponibles sur le Web de façon confortable.

Les applications complexes qui étaient auparavant installées sur les ordinateurs des util-
isateurs sont maintenant déployées sur Internet sous forme d’applications Web. Celles-ci ne
sont désormais plus qu’une simple collection de documents statiques; elles ont maintenant
évolué vers des applications complexes qui fournissent des centaines de fonctionnalités via
des pages générées dynamiquement.

L’utilisation combinée de coté client et serveur a permis aux développeurs de fournir
des interfaces graphiques hautement sophistiquées avec un look-and-feel et des fonction-
nalités qui étaient auparavant réservés aux applications de bureau traditionnelles. Dans le
même temps, beaucoup d’applications web permettent également l’aggrégation de contenus
hétérogènes en combinant les informations et des fonctionnalités fournies par différentes
sources. Aujourd’hui, même de simples applications peuvent utiliser des architectures
multi-tiers et fournir un contenu multimédia riche via une interface graphique sophis-
tiquée. Elles peuvent impliquer un très grand nombre de lignes de code, une combinaison
de langues multiples et faire appel à des centaines de composants interconnectés.

Malheureusement, en raison de leur grande popularité et du nombre croissants d’utilisateurs,
les applications web sont également devenues la cible privilégiée des attaquants. Selon
l’étude menée par Christey et Martin sur la base de données CVE de Mitre [46] le nom-



2001 2002 2003 2004 2005 2006

0

200

400

600

800

1000

1200

1400

31

187

89

278

728

1282

6 38 36

142

588

944

Cross-Site Scripting SQL Injection

Fig. 1.3: Nombre de failles XSS et SQLi par an (MITRE)

bre de failles découvertes dans les applications web (par exemple, cross-site scripting et
injection SQL) est en constante augmentation (Fig. 1.3).

En Juillet 2001, Symantec [132] a identifié une moyenne de 6.797 sites Web par jour
hébergeant malware et autres logiciels potentiellement indésirables, y compris spyware et
adware. Selon l’IBM Managed Security Services [126], dans l’année 2010 nous avons assisté
au plus grand nombre de vulnérabilités divulgués dans l’histoire (8.562); un chiffre en
augmentation de 27 pour cent par rapport à l’année 2009. 49 pour cent de ces vulnérabilités
concernent les applications web, montrant que les attaquants déplacent leur attention vers
les applications en ligne. En fait, aujourd’hui les attaques contre les applications web
représentent plus de 60% des tentatives d’attaques totales observées sur Internet [76].

Lorsque nous analysons les comportements de ces attaques, il est possible d’observer
qu’elles augmentent en quantité mais également en complexité. Par exemple, si les failles
traditionnelles telles que le SQL injection et le cross-site scripting peuvent être utilisées
pour voler des informations sensibles (par exemple de bases de données) ou lancer des at-
taques de phishing, beaucoup d’applications web sont maintenant exploitées pour les con-
vertir en serveurs des logicielles malveillants. Selon SANS [76] la plupart des développeurs
ne vérifient pas leurs applications contre les vulnérabilités classiques, tandis que nombreux
outils simplifient aux attanquants la découverte et l’infection de plusieurs milliers de sites
Web.

Outre la fourniture de contenu sous forme de pages web accessibles via un navigateur,
Internet offre maintenant des services d’externalisation pour le calcul et des applications
à distance (Cloud Computing). Le Cloud Computing a rapidement changé la façon dont
les organisations gèrent leur infrastructure informatique et fournissent leurs services en
ligne. Les entreprises qui ne peuvent pas se permettre d’installer une grande infrastructure
chez eux, peuvent facilement louer un serveur sur le cloud et le gérer via des API. Les
ressources sont disponibles en ligne comme un service offert par des fournisseurs de cloud
computing. Ceux-ci louent aux organisations qui en ont le besoin leurs capacité de calculs
et de stockage.

Les serveurs peuvent être rapidement démarrés, accédés et fermés à la demande, offrant
à l’utilisateur un plus grand niveau de flexibilité par rapport aux serveurs traditionnels.
Amazon est probablement le fournisseur de cloud computing le plus connu avec un aug-
mentation de son activité de 375% en 2009 et 121% en 2010. Sur le blog de l’Amazon
Web Services [33], Jeff Barr a rapporté que, à compter de la fin du deuxième trimestre de
2011, l’Amazon Simple Storage Service (S3) stocke environ 450 milliard d’objets et traite



jusqu’au 290.000 clients par seconde. Ceci équivaut à 64 objets pour chaque personne sur
la planète.

Cet accroissement de popularité que les fournisseurs de cloud computing, comme Ama-
zon, ont attendu est une conséquence directe de l’évolution du Web. En pratique, différents
fournisseurs Internet offrant services d’hébergement (par exemple pour le stockage des
emails et fichiers) ont déjà déplacé leurs infrastructures vers le Cloud. En fait, l’énorme
quantité de données qu’ils traitent quotidiennement nécessite une réduction des coûts de
stockage. Un de ces fournisseurs, DropBox, utilise le cloud de Amazon pour stocker les
données personnelles de ses clients [74].

Les utilisateurs malveillants ne sont pas indifférents à l’évolution d’Internet. Les at-
taquants, souvent motivés par un florissant marché noir, sont constamment à la recherche
des failles, erreurs de configuration et nouvelles techniques pour accéder aux systèmes,
voler des informations privées, ou livrer du contenu malveillant. Même si les dépassements
de tampon (buffer overflow), les format strings ou les injections SQL (parmi d’autres) sont
encore exploitées, de nouveaux vecteurs d’attaque exploitant des canaux non convention-
nels à grande échelle (par exemple les réseaux de cloud computing) ont été découverts.
Récemment Amazon a mis en garde ses clients sur la présence d’images virtuelles cor-
rompues dans son service de Elastic Computer Cloud (EC2) [113]. Le problème identifié
par Amazon avec ces images est que certaines d’entre elles contiennent une clé SSH valide
transformant le service SSH en une faille de sécurité potentielle (backdoor). Amazon a
suggéré que toutes instances exécutant une image infectée devaient être considérées comme
compromises, et que les services correspondants devaient être migré vers une nouvelle in-
stallation.

Les systèmes Internet comme le Web et le Cloud Computing sont déployées à grande
échelle, ils sont complexes, et ils sont régulièrement exposés à de nouveaux risques de
sécurité. De nouvelles méthodologies sont nécessaires pour analyser et découvrir les failles
et les vulnérabilités de ces systèmes complexes. Les techniques classiques doivent être
adapté pour faire face aux infrastructures à grande échelle dans lequelles les applications
et les services sont déployés. En fait, les techniques traditionnelles utilisées pour évaluer
la sécurité des applications classiques, par exemple installées côté client, ne sont plus
suffisantes pour évaluer la sécurité de ces systèmes en ligne. Une des raisons, par exemple,
c’est que le code source d’un service en ligne n’est pas normalement accessibles. En
conséquence, ni les techniques d’analyse statique de code ([83, 131, 145]) ni les outils
d’analyse dynamique ([50, 129]) ne peuvent pas être appliqués.

L’analyse des systèmes déployés à grande échelle est rendu encore plus complexe en
raison de contraintes techniques liées au réseau, comme les problèmes de timing. Enfin,
alors que les applications critiques comme les systèmes d’exploitation ou les services réseau
(par exemple, SSH) sont normalement développés par des programmeurs conscients de
l’importance de la sécurité, le code source des applications Internet et Cloud est souvent
écrit par des développeurs avec très peu ou pas formés en sécurité informatique.

Comme les techniques existantes ne peuvent pas s’adapter facilement aux installa-
tions à grande échelle, peu de chercheurs font l’effort de mesurer l’extension de nouvelles
menaces Internet. Pourtant, la recherche de mesure, quand elle est menée avec diligence
et précision, peut avoir un impact significatif sur l’amélioration de la sécurité. La com-
munauté scientifique considère une méthode scientifique lorsque les phénomènes qui sont
étudiés peuvent être mesurés. La mesure devient donc le moyen permettant de quanti-
fier les résultats d’une expérience et de juger l’entité d’un problème. Par exemple, dans la



lutte contre les campagnes de spam, en mesurant combien d’emails contiennent un contenu
indésirable, on peut évaluer l’efficacité d’une solution anti-spam ou l’évolution du problème
sur une longue période. La recherche en mesure est donc utile pour déterminer quelles
classes de problèmes sont en augmentation et sur lequelles il est nécessaire d’investir. Les
mesures, ainsi que les enquêtes de recherche, sont utiles aux chercheurs travaillant dans le
même domaine; elles permettent la construction d’une base de connaissance commune.

1.1 Contributions

Cette thèse avance l’état de l’art dans le domaine des tests et de la mesure à grande échelle
des menaces sur Internet.

Nous avons identifié trois nouvelles classes de problèmes de sécurité affectant les in-
frastructures Internet qui sont de plus en plus populaires et nous avons tenté d’estimer la
prévalence et la pertinence de ces problèmes pour les utilisateurs d’Internet. En pratique,
si l’on considère la sécurité Web dans son ensemble, les menaces traditionnelles (comme
les XSS et SQLi) ont été largement étudiées [83, 131, 145] et décrites (par exemple par
le projet OWASP Top 10 [109]). Il n’en demeure pas moins que de nouvelles classes de
problèmes (telles que le clickjacking et la pollution des paramètres HTTP) font leurs ap-
paritions et nous ne savons toujours pas de manière précise le risque qu’elles représentent
pour les utilisateurs d’Internet.

Bien que ces menaces soient déjà connues, nous sommes les premiers à mener une
étude systématique permettant de définir leur prévalence sur Internet. Notre objectif est
de savoir si ces menaces sont connues des développeurs, si elles se produisent davantage
dans certaines situations et d’évaluer le nombre de systèmes impactés. Pour répondre à ces
questions, nous avons conçu et développé des outils automatisés permettant une analyse
à grande échelle sur des milliers (voire des millions) de cibles potentiellement vulnérables.

Le premier problème étudié est connu sous le nom de ”clickjacking” (ou détournement
de clic). Le clickjacking exploite certaines propriétés visuelles des navigateurs modernes
pour inciter l’internaute à fournir des informations confidentielles, à initier des transferts
d’argent, en cliquant par example sur des bannières publicitaires frauduleuse, ou encore à
effectuer toutes sortes d’action qui peuvent être déclenchées par un simple clic de souris. A
titre d’exemple, il est connu que des différents logiciels malveillants se propagent à travers
les réseaux sociaux (comme Facebook ou Twitter) en utilisant cette technique.

L’attaque fonctionne en présentant aux profils amis un lien avec un titre attractif (par
exemple “LOL This girl gets OWNED after a POLICE OFFICER reads her STATUS
MESSAGE” ou “Don’t click”). Les internautes qui cliquent sur le lien vont sans le savoir
“retwitter” le lien ou l’ajouter à la liste de leurs “J’aime”. La figure 1.4 montre une
attaque réelle de clickjacking utilisée pour propager un message parmi les utilisateurs de
Twitter [94].

L’idée derrière une attaque de clickjacking est simple: une page malveillante est con-
struite et insérée dans le contenu d’un site Web légitime dans le but d’inciter l’internaute à
cliquer sur un élément qui est à peine ou pas du tout visible. Le clic peut donc déclencher
des actions imprévues dans le contexte du site Web légitime. Le simple fait que ce soit
la victime qui effectue (sans le savoir) le clic rend l’action valide du point de vue du
navigateur.

La détection des tentatives de clickjacking n’est pas une opération triviale. Le défi
principal est de simuler le comportement d’un humain qui interagit avec le contenu de



Fig. 1.4: Exemple de attaque Clickjacking contre Twitter

la page Web testée. Les solutions existantes telles que Sélénium [7] et Watir [8] simulent
les actions de la souris à l’intérieur du navigateur lui-même en envoyant des événements
vers les éléments qui composent la page. Bien que cette approche soit pratique pour
tester l’aspect fonctionnel d’une application Web (on peut par exemple vérifier que les
liens fonctionnent correctement), elle n’est pas adaptée à nos besoins particuliers. En fait,
nous ne savons pas à priori sur quel élément l’utilisateur avait l’intention de cliquer et cela
est en définitive le pré-requis à une attaque de type clickjacking. Par conséquent, nous
ne voulons pas simuler les clics au niveau du navigateur lui-même (en utilisant une API
dédiée), mais plutôt en exploitant les évenements natifs du systèmes d’exploitation; en
d’autres termes la souris est contrôlée et déplacée au niveau de la fenêtre afin de simuler
un véritable clic aux coordonnées de chaque élément. Cette approche garantit que le code
JavaScript de la page est exécuté exactement dans les même conditions et le la même
manière que lorsque l’action est effectuée par un vrai utilisateur.

Le second défi a été de pouvoir afficher correctement les pages d’applications Web
qui (de plus en plus) construisent leur contenu de manière dynamique en exploitant les
possibilités de ”scripting” des navigateurs modernes (e.g. Javascript). Il aurait été possible
(comme le font d’autres scanners) de récupérer le contenu des pages Web sans vraiment
les afficher dans un véritable navigateur. Le défaut principal d’une telle approche est que
le contenu dynamique des pages reste pratiquement inexploitable. Il était donc primordial
d’afficher la page au sein même d’un vrai navigateur ceci afin de déclencher les mécanismes
de mise en page standard de son contenu. Cette approche nous permet d’analyser la page
telle qu’elle est censée apparâıtre à l’utilisateur; l’ensemble des son contenu dynamique
étant construit de façon normale.

L’implémentation de notre système automatisé de test et de détection de menaces ap-
pelé ClickIDS, a été utilisé pour mener une étude empirique sur un million de pages Web
afin d’estimer la prévalence des attaques de type clickjacking sur Internet.

Nous nous sommes ensuite concentrés sur une autre menace Web appelée pollution
de paramètres HTTP (ou simplement HPP). L’HPP, depuis sa première annonce en



2009 [110], n’a pas vraiment retenu l’attention de spécialiste en sécurité. En étant les pre-
miers à proposer une découverte automatisée des vulnérabilités HPP dans les applications
web, nous avons pu mesurer parmi 5.000 sites populaires combien sont potentiellement
vulnérables à cette nouvelle menace.

Les attaques HPP consistent à injecter dans les URL(s) des caractères qui sont nor-
malement utilisés pour séparer les paramètres de la requête quelle représente. Si une
application Web ne valide pas correctement ses paramètres, un utilisateur malveillant
peut compromettre la logique de l’application pour effectuer des attaques aussi bien du
côté client que du côté serveur. Ce type d’attaque permet donc d’altérer le comporte-
ment normal d’une application, en contournant les contrôles de validité, ou en permettant
l’accès et l’exploitation de données qui sont normalement non disponibles.

Les failles HPP peuvent être exploitées de différentes manières et leur détection n’est
pas facile. Le problème principal est lié à la complexité même des applications Web
modernes ; en effet, leur contenu dynamique peut varier même quand la page est consultée
avec les mêmes paramètres. Bannières publicitaires, flux RSS, statistiques en temps réel,
gadgets et bôıtes à suggestions ne sont que quelques exemples de contenus dynamiques
susceptibles de changer le contenu de la page et cela chaque fois que la page est consultée.

Un autre défi provient du fait que certains paramètres n’affectent pas la logique de
l’application, ils ne sont utilisés que pour stocker l’URL de la page Web. Ainsi, une
injection effectuée sur ces paramètres là à pour conséquence de faire pointer l’application
vers une autre URL. Même si cette technique est syntaxiquement très similaire à une
vulnérabilité HPP, ce n’est pas un cas d’injection à proprement parler.

Dans cette thèse, nous proposons la première approche automatisée permettant la
découverte des vulnérabilités HPP dans les applications Web. Notre approche comprend
un composant qui injecte des paramètres de test dans l’application et d’un ensemble
d’heuristiques permettant de déterminer si les pages générées par l’application contien-
nent de failles HPP. La faisabilité de notre approche a été démontrée grâce à un prototype
PAPAS, que nous avons développé; celui-ci a permis d’effectuer une analyse à grande
échelle de plus de 5.000 sites Web populaires.

Enfin, nous avons étudié les nouvelles menaces affectant le cloud computing à grande
échelle. Le cloud computing a changé radicalement les infrastructures informatiques; on
est passé de ressources logicielles et matérielles pré-payées à des services à la demande.

Plusieurs entreprises comme Amazon Elastic Compute Cloud (EC2) [19], Rackspace [21],
IBM SmartCloud [24], Joyent Smart Data Centre [26] ou Terremark vCloud [22] offrent un
accès à des serveurs virtuels, stockés dans leurs centres de données, sur une base horaire.
Les serveurs peuvent être rapidement démarrés et fermés via des API, offrant ainsi au client
davantage de flexibilité par rapport aux traditionnelles salles de serveurs. Ce changement
de paradigme a fait évoluer les infrastructures informatiques des organisations, permettant
aux petites sociétés qui ne pouvaient pas se permettre une grande infrastructure de créer
et de maintenir des services en ligne avec facilité.

Malheureusement, alors que le contrat de confiance entre utilisateur et fournisseur est
bien défini (l’utilisateur peut supposer que les fournisseurs de services comme Amazon et
Microsoft ne sont pas malveillants), la relation de confiance entre le fournisseur d’image
virtuelle et l’utilisateur n’est pas aussi claire.

Nous avons exploré les risques de sécurité associés à l’utilisation des serveurs virtuels
(appelé AMIs) qui sont fournis comme service par les fournisseurs de cloud (par exemple
Amazon). Sur plusieurs mois, nous avons conçu et effectué des tests de sécurité sur les



AMIs publiques afin d’identifier les failles et risques potentiels encourus aussi bien par les
clients que par les fournisseurs de services. Nous avons analysé sur une grande échelle
5.000 images publiques fournies par Amazon, et nous avons identifié trois domaines per-
tinents d’un point de vue la sécurité: sécuriser les images contre des attaques externes,
sécuriser les images contre des fournisseurs malveillants, et valider l’image afin d’empêcher
l’extraction et l’exploitation des informations confidentielles (stokées sur le disque virtuel
par le fournisseur).

Dans cette thèse, nous avons conçu un ensemble de nouvelles techniques permettant
la mesure à grande échelle des menaces sur Internet. Ces techniques ont en commun
l’utilisation de fonctionnalités tests et d’indexation permettant de traiter et d’analyser
efficacement un grand nombre de cibles potentiellement vulnérables. Nous avons utilisé
nos solutions pour mener des études à grande échelle de trois classes de problèmes qui
affectent les systèmes Internet les plus importants et les plus populaires - comme le Web
et le Cloud.

Nous croyons que dans l’avenir nos solutions resteront valables et permettront d’analyser
des classes similaires de problèmes. A titre d’exemple, nous avons introduit, pour l’analyse
des vulnérabilités Web, un système “browser-centric” permettant de prendre en charge le
contenu dynamique généré par les applications modernes. En utilisant un vrai navigateur
pour rendre ces pages, nous sommes capables de les analyser comme si ils seraient censés
apparâıtre au utilisateur après le contenu dynamique a été générée. Cette technique peut
facilement être adaptée et réutilisée dans l’analyse des classes de problèmes similaires,
tels que les attaques qui exploitent les nouvelles fonctionnalités de HTML5 (par exemple,
drag&drop).

1.2 Récapitulatif

Les contributions de cette thèse peut être résumées par les points suivants:

� Nous avons fait évoluer l’état de l’art dans le domaine des tests et de la mesure à
grande échelle des menaces sur Internet.

� Nous analysons trois nouvelles classes de problèmes de sécurité affectant les systèmes
Internet qui connaissent une augmentation rapide de leur popularité, comme par
exemple les applications Web et les services de cloud computing.

� Nous introduisons la première tentative d’estimation à grande échelle de la prévalence
et de la pertinence de ces problèmes sur Internet. Nous avons conçu et développé des
outils automatisés permettant d’analyser des milliers (voire des millions) de cibles
potentiellement vulnérables.

� Nous décrivons les défis auxquels nous avons été confrontés lors de nos tests effectués
sur des applications et des services réels.

� Enfin, lorsque nous avons été en mesure de trouver des contacts, nous avons com-
muniqué aux fournisseurs concernés les vulnérabilités découvertes et proposé des
solutions. Certains d’entre eux ont reconnu être intéressés et ont mis en ouvre les
contre-mesures que nous avons proposé.



1.3 Organisation de la thèse

Le reste de la thèse est organisé comme suit (les chapitres 4 et suivants sont rédigé en
Anglais):

� Le chapitre 2 présente les solutions qui ont été conçues et développées pour mener
l’étude de mesure décrite dans cette thèse. Ses sections (2.1, 2.2, 2.3) résument
respectivement les chapitres 5, 6 et 7.

� Dans le chapitre 4 nous présentons les travaux de recherche qui sont liés à cette
thèse.

� Dans le chapitre 5 nous proposons une nouvelle solution permettant la détection
automatisée des attaques clickjacking. Nous décrivons ClickIDS, le système que
nous avons conçu, mise en oeuvre et déployé pour analyser plus d’un million de
pages web. Nous avons publié cette recherche dans les actes du 5ème Symposium
ACM en Information, Computer and Communications Security (AsiaCCS 2010).

� Dans le chapitre 6 nous introduisons la première approche automatisée permettant
la découverte de vulnérabilités HPP dans les applications Web. Grâce à notre pro-
totype, appelé PAPAS (PArameter Pollution Analysis System), nous avons effectué
une analyse à grande échelle de plus de 5.000 sites Web populaires. Cette recherche
a été publiée, et a reçu le Best Paper Award dans la 18e édition annuelle de l’Annual
Network and Distributed System Security Symposium (NDSS 2011).

� Le chapitre 7 explore les risques de sécurité associée à l’utilisation des serveurs
virtuels (appelés AMIs) fournis par les fournisseurs de cloud (par exemple Ama-
zon). Nous décrivons la conception et la mise en ouvre d’un système automatisé,
appelé SatanCloud, que nous avons utilisé pour analyser la sécurité de 5.000 im-
ages publiques fournies par le service EC2 de Amazon. Nous avons publié cette
recherche dans les actes de la 11e édition de la Computer Security track au 27th
ACM Symposium on Applied Computing (SEC@SAC 2012).

� Enfin, dans le chapitre 8 nous concluons et discutons les limites et les possibilités
d’améliorations de nos contributions.





25

Chapitre 2

Principales Contributions

Dans ce chapitre, nous présentons les solutions conçues et développées pour mener les
études de mesure descrites dans la thèse. Les sections suivantes (2.1, 2.2, 2.3) résument
respectivement les chapitres 5, 6 et 7.

2.1 Détournement de Clic (Clickjacking)

Dans cette section, nous présentons notre approche pour simuler les clics des utilisateurs
sur les éléments d’une page web en cours d’analyse, et pour détecter la conséquence de ces
clics en termes d’attaque de clickjacking. Notre technique repose sur un vrai navigateur
pour charger et rendre une page Web. Lorsque la page a été rendu, nous allons extraire
les coordonnées de tous les éléments cliquables. De plus, nous contrôlons par programme
les souris et le clavier pour bien faire défiler la page Web et cliquez sur chacun de ces
éléments.

La figure 2.1 montre l’architecture de notre système. Il se compose de deux éléments
principales: une unité de test qui est en charge de effectuer les clics, et une unité de
détection qui est responsable d’identifier éventuelles tentatives de clickjacking sur la page
analysée.

L’unité de détection combine deux plugins qui fonctionnent parallèlement pour anal-
yser les clics effectués par l’unité de test. Le premier plugin que nous avons développée
détecte possibles elements cliquables qui se chevauchent. Pour compléter cette solution,
nous avons également adopté NoScript, un outil qui a récemment introduit une fonction
anti-clickjacking. Nos résultats expérimentaux montrent que la combinaison des deux
techniques de détection différentes réduit le nombre de faux positifs.

L’unité de test contient un plugin que extrait les coordonnées des éléments cliquables
rendu sur la page, et un composant browser-indépendant qui déplace la souris sur ces
coordonnées et simule les clics de l’utilisateur. En outre, l’unité de test est responsable de
la navigation web en tapant dans la barre d’adresse l’URL de la page web de visiter.

Résultats Nous avons organisé nos expériences pendant environ deux mois, en visitant
un total de 1.065.482 pages web avec une moyenne de 15.000 pages par jour. Environ 7%
de ces pages ne contiennent aucun élément cliquable - un signe que la page a été fermée ou
qu’elle est encore en construction. Les pages restantes contenait un total de 143,7 millions
d’éléments cliquables (soit une moyenne de 146,8 éléments par page).

37,3% des pages visitées contenaient au moins un IFRAME, alors que seulement 3,3%



Fig. 2.1: Architecture de ClickIDS

Valeur Taux
Pages visitées 1,065,482 100%
Inaccessibles ou vides 86,799 8.15%
Valides 978,683 91.85%
Avec IFRAMEs 368,963 37.70%
Avec FRAMES 32,296 3.30%
Avec (I)FRAMEs transparents 1,557 0.16%
Eléments cliquables 143,701,194 146.83 el./page
Performance de vitesse 71 jours 15,006 pages/jour

Tab. 2.1: Statistiques des pages visitées

des pages incluent un FRAME. Cependant, seulement 930 pages contenaient IFRAMEs
transparentes, et 627 pages contenaient IFRAMEs partiellement transparents. Ceci suggère
que bien que les IFRAMEs sont couramment utilisés dans une large fraction de sites Inter-
net, l’utilisation de la transparence est encore assez rare (en fait en représente que 0,16%
des pages visitées). Le tableau 2.1 résume ces statistiques.

Le tableau 2.2 montre le nombre de pages sur lesquelles notre outil a généré une alerte.
Les résultats indiquent que les deux plugins ont soulevé un total de 672 alertes (137 pour
ClickIDS et 535 pour NoScript) - en moyenne une alerte tous les 1.470 pages. Cette valeur
descend à 6 (une tous les 163.000 pages), si nous considérons les cas où les deux plugins
rapportent un attaque. Notez que NoScript a été responsable de la plupart des alertes.

Pour mieux comprendre les alerts qui correspondent aux attaques réelles ou faux posi-
tifs, nous avons analysé manuellement toutes les alertes en visitant les pages web corre-
spondantes. Les résultats de notre analyse sont rapportés dans les trois dernières colonnes
du tableau 2.2. Environ 5% des alertes soulevées au cours de nos expériences impliqués un
FRAME pointant vers le même domaine de la page principale. Comme il est peu probable
qu’un site serait tenter de tromper l’utilisateur en cliquant sur un élément caché du site
lui-même, nous avons marqué tous ces messages comme faux positifs. Nous avons décidé
de parcourir manuellement certains des ces pages pour avoir un aperçu des conditions



Total Vrais Borderlines Faux
Positifs Positifs

ClickIDS 137 2 5 130
NoScript 535 2 31 502
Les deux 6 2 0 4

Tab. 2.2: Résultats d’analyse clickjacking

DB

Stat GeneratorStat Generator

 Crawler Crawler

 V-Scan V-Scan

 P-Scan P-Scan

Browser
Extension

Instrumented
Browser

Reports

Fig. 2.2: Architecture de PAPAS

qu’ont tendance à provoquer faux positifs dans les deux plugins.
Nous avons ensuite analysé les pages contenant des FRAMEs inter-domaines. Dans cet

ensemble, nous avons identifié un certain nombre des cas intéressants. Nous avons décidé
de diviser ces cas dans deux catégories: les borderlines (pages difficiles à classer comme
clickjacking) et les vrais positifs (tentatives réelles de clickjacking).

2.2 Pollution de Paramètres HTTP (HPP)

Dans cette section, nous introduisons la première approche automatisée pour la découverte
de vulnérabilités HPP dans les applications web. Grâce à notre prototype, appelé PAPAS
(PArameter Pollution Analysis System), nous avons effectué une analyse à grande échelle
de plus de 5.000 populaires sites web.

PAPAS se compose de quatre principaux composantes: un navigateur, un robot et
deux scanners. La première composante, le navigateur instrumenté, est responsable de
aller chercher les pages web, de rendre leur contenu, et d’extraire toutes les liens et les
formulaires contenues dans la page. La deuxième composante est un robot qui communique
avec le navigateur à travers un canal bidirectionnel. Ce canal est utilisé par le robot pour
informer le navigateur sur l’URL qui doit être visités, et sur les formulaires qui doivent
être soumis. Le canal est également utilisé pour récupérer les informations recueillies à
partir du navigateur.

Chaque fois que le robot visite une page, il passe les informations extraites aux deux
scanners afin qu’ils puissent être analysé. Le scanner de priorité (P-Scan) est chargé de
déterminer comment la page se comporte quand il reçoit deux paramètres avec le même
nom. Le scanner de vulnérabilité (V-Scan) teste une page pour déterminer s’est vulnérable
aux attaques HPP; il injecte un paramètre de test dans l’un des paramètres existants et il



analyse la page générée. Les deux scanners communiquent avec le navigateur instrumenté
afin d’exécuter leurs tests.

Toutes les informations collectées sont stockées dans une base de données et en suit
analysés. L’architecture générale du système est représentée en figure 2.2.

Mise en ouvre Le navigation instrumenté est implémenté avec un plugin pour Firefox
et le reste du système est développé en Python. Tout les composants communiquent permi
eux via sockets TCP/IPs.

Le plugin a été développé en utilisant la technologie offerte par l’environnement de
développement de Mozilla: un mélange de Javascript et XML User Interface Language
(XUL). Nous utilisons XPConnect pour accéder aux composants XPCOM de Firefox. Ces
composants sont utilisés pour invoquer les requêtes GET et POST et pour communiquer
avec les composants d’analyse.

PAPAS offre trois modes de fonctionnement: le mode rapide, le mode étendu et le mode
assisté. Le mode rapide vise à tester rapidement un site Web jusqu’à des vulnérabilités
potentielles sont découverts. Quand une alerte est générée, l’analyse se poursuit, mais
la composante V-Scan n’est plus invoquée (pour améliorer la vitesse du scan). En mode
étendu, l’ensemble du site est testé de manière exhaustive et tous les problèmes potentiels
et les injections sont enregistrés. En fin, le mode assisté permet au scanner d’être utilisé
de manière interactive. Autrement dit, les pages ou les paramètres spécifiques peuvent
être testées par la préséance des vulnérabilités HPP. Le mode assisté peut être utilisé par
professionnels de la sécurité pour mener une évaluation semi-automatique d’un site web
ou pour tester pages HTML qui nécessitent d’authentification.

PAPAS est également personnalisable et tout les paramètres comme la profondeur,
le nombre d’injections, le temps d’attente entre deux requêtes, ainsi que le timeout sont
configurables par l’analyste. Nous avons créé une version en ligne de PAPAS qui permet
aux développeurs et mainteneurs d’applications web de scanner leur propre site. L’URL
de ce service est http://papas.iseclab.org.

Résultats Nous avons utilisé PAPAS pour analyser automatiquement une liste des 5.000
sites web recueillis dans la base de données publique d’Alexa [29]. Le but de nos expériences
a été de analyser rapidement le plus grand nombre des sites Web pour mesurer la prévalence
des vulnérabilités HPP sur Internet. Pour optimiser la vitesse des tests, nous avons con-
sidéré seulement ces liens qui contiennent au moins un paramètre. Nous avons limité
l’analyse aux cinq instances par page (une page avec une châıne de requête différente est
considérée comme une nouvelle instance). Le timeout global a été fixée à 15 minutes par
site et le navigateur a été personnalisé pour charger rapidement les pages et fonctionner
sans aucune interaction d’utilisateur. Par ailleurs, nous avons désactivé les popups, le
chargement d’images, et tout les plugins du contenu actif comme Flash ou Silverlight. Un
composant externe a été configuré pour surveiller et redémarrer le navigateur au cas où il
ne répondait plus.

En 13 jours d’expériences, nous avons scanné 5.016 sites Web, correspondant à un total
de 149.806 pages. Pour chaque page, PAPAS a généré une quantité variable de requêtes,
en fonction du nombre des paramètres détectés. Les sites ont été distribués sur plus de
97 pays et sur différentes catégories d’Alexa. Le tableau 2.3 résume les 15 catégories
contenant le plus grand nombre d’applications testées.

Pour chaque site, le P-Scan a testé chaque page afin d’évaluer l’ordre dans lequel les
paramètres GET sont examinés par l’application lorsque deux occurrences d’un même



Catégories # de applications Catégories # de applications
testées testées

Internet 698 Government 132
News 599 Social Networking 117

Shopping 460 Video 114
Games 300 Financial 110
Sports 256 Organization 106
Health 235 University 91
Science 222 Others 1401
Travel 175

Tab. 2.3: Les TOP15 catégories de sites analysés

Priorité # de sites
Dernière 2,237 (44.60%)
Première 946 (18.86%)

Union 381 (7.60%)
Incohérent 1,251 (24.94%)

Inconnu 201 (4.00%)
Total 5,016 (100.00%)

Erreurs dans le DB 238 (4.74%)

Last
First
Union
Inconsistent
Unknown

Fig. 2.3: Priorité des paramètres lorsque deux occurrences d’un même paramètre sont
spécifiés

paramètre sont spécifiés (figure 2.3). La première colonne indique le type de priorité:
dernière et première indiquent que toutes les les pages analysées de l’application con-
sidèrent le dernier (ou le premier) valeur. Union indique que les deux paramètres sont
combinés pour former une seule valeur, généralement par concaténation simplement, avec
espace ou virgule. La priorité est incohérent quand certaines pages favorisent le premier
paramètre et d’autres le dernier. Cet état, ce qui représente un total de 25% des applica-
tions analysées, est généralement une conséquence du fait que le site a été développé en
utilisant une combinaison de technologies hétérogènes (par exemple PHP et Perl).

Enfin, le scanner a découvert que 238 applications (prés de 5%) ont soulevé une er-
reur SQL lorsque deux paramètres dupliqués ont été spécifiés. Notez que l’utilisation de
deux paramètres avec le même nom est une pratique courante dans le développement
des applications web, et la plupart des langages de programmation fournissent spéciaux
fonctionnalités pour accéder aux valeurs multiples. Néanmoins, nous ont été surpris de
noter comme nombreuses sites (par exemple banques, sites gouvernementales ou éducatifs)
échouent à traiter correctement leurs paramètres.

PAPAS a découvert que 1.499 sites (29,88% du total) contenaient au moins une page
vulnérable au injection de paramètres HTTP. Qui est, l’outil a été en mesure d’injecter
automatiquement un paramètre (encodé) dans l’un ses paramètres, et de vérifier que sa ver-
sion décodée a été incluse dans l’un des URLs (liens ou formulaires) de la page résultante.
Cependant, le fait qu’il est possible d’injecter un paramètre ne révéle pas d’informations sur



Financial
Games

Government
Health

Internet
News

Organization
Science

Shopping
Social Networking

Sports
Travel

University
Video

Others

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

40,00%

45,00%

Vulnerable
Exploitable

Fig. 2.4: Taux de vulnérabilité pour chaque catégorie

les conséquences de l’injection (nous analysons en détail ces conséquences en section 6.4).
La figure 2.4 résume les résultats par catégorie.

2.3 Risques liés au Elastic Compute Cloud

Dans cette section, nous résumons le système automatisé, appelé SatanCloud, que nous
avons conçu et mis en ouvre pour explorer les risques de sécurité associées à l’utilisation
des serveurs virtuels (appelé AMIs) fournis par les fournisseurs de cloud (par exemple
Amazon).

L’architecture de notre système est mis en évidence en figure 2.5 et se compose de trois
éléments principaux.

Le robot est responsable de l’instanciation de l’AMI et la récupération de ces creden-
tials de login (Amazon n’est pas responsable des credentials configurés dans ses images
publiques). Après que un AMI a été correctement instancié par le robot, il est testé par
deux scanners différents. Le remote scanner recueille la liste des ports ouverts 1 en util-
isant l’util NMap, et télécharge la page d’index d’une éventuelle application web installée.
Le local scanner est responsable de le téléchargement et l’exécution d’un ensemble de tests.
Ces tests sont emballés dans une archive auto-extractible (la suite de testage) qui vient
téléchargé dans l’AMI et exécuté à distance avec de privilèges administratifs. En outre,
le local scanner analyse le système pour detecter vulnérabilités connues en utilisant l’outil
Nessus [125]. Pour les AMIs exécutant Microsoft Windows, les scripts d’automatisation
des tâches est compliquée par les limitées fonctionnalités d’administration à distance of-
frent par l’environnement Windows. Dans ce cas, nous avons monté le disque et transféré
les données en utilisant les sous-système SMB/NetBIOS. Nous avons ensuite utilisé l’outil
psexec [120] pour exécuter les commandes à distance et invoquer les tests.

La suite de testage transféré par le local scanner comprend 24 tests qui sont regroupés
en 4 catégories: général, réseau, confidentialité et sécurité. La liste complète de tests est
résumée en tableau 2.4.

La catégorie général recueille les informations généraux sur le système (par exemple
la version de Windows), la liste des processus, l’état du système de fichiers (par exemple
les partitions montées), la liste des paquets installés et la liste des modules chargés. Cette

1Parce que Amazon ne permet pas des scans de ports externes, nous avons d’abord créé un réseau privé
virtuel avec l’AMI et puis scanné le machine à travers ce tunnel.



DB

Robot

Instantiated AMI

Test Suite

Remote Scanner

Analysis

Results

Local Scanner

AMIs

Upload / Execute

Scan

Data

Instanciate AMI

Check Login

Credentials

Vulnerability
Configuration

Fig. 2.5: Architecture de SatanCloud

catégorie contient également des scripts qui permettent d’enregistrer une copie de fichiers
intéressants, comme les emails (par exemple /var/mail), les logs (par exemple /var/log
et %USER\Local Settings) et les applications web installées (par exemple /var/www et
HKEY LOCAL MACHINE\SOFTWARE).

Les tests de confidentialité se concentrent sur la recherche des informations sensibles
qui peuvent avoir été oubliées par l’utilisateur qui a publié l’AMI. Celles-la incluent, par
exemple, les clés privées pas protégées (sans mot de passe), les fichiers historiques (par
exemple de shell) et le contenu des répertoires sauvés par les tests généraux. Une autre
tâche importante de cette suite de tests est de scanner le système de fichiers pour récupérer
le contenu du fichiers supprimés (ou undeleted files, réf. section 7.4.3).

La catégorie réseau récupère les information de réseau, tels que les répertoires partagés
et la liste des sockets ouverts. Ces-ci peuvent être utilisée pour vérifier si l’image établit
des connexions suspectes.

Enfin, la suite test de sécurité contient un certain nombre des outils de sécurité pour
Windows et Linux. Certains de ces outils recherchent la preuve de rootkits connus, de
chevaux de troie et de backdoors comme Chkrootkit, RootkitHunter et RootkitRevealer.
Autres tests contrôlent l’existence de processus ou fischers cachées au utilisateur (PsTools/PsList
et unhide). Cette catégorie comprend également un antivirus (ClamAV) pour vérifier la
présence de malware dans l’image.

En fin, la suite test de sécurité recherche des credentials qui pourraient avoir été oublié
sur le système (par exemple des mots de passe pour bases de données et login, ou des clés
SSH publiques). En fait, ces credentials pourraient potentiellement être utilisés comme
backdoor pour s’authentifier et connecter à la machine à distance. Nous avons également
analysé la configuration de sudo pour vérifier si ces credentials permettraient l’exécution
de commandes avec privilèges administratifs.



Test Type Note SE

System Information Général - Windows + Linux
Logs/eMails/WWW Archive Général - Linux

Processes and File-System Général - Windows + Linux
Loaded Modules Général lsmod Linux

Installed Packages Général - Linux
General Network Information Réseau Interfaces, routes Windows + Linux

Listening and Established Sockets Réseau - Windows + Linux
Network Shares Réseau Enabled Shares Windows + Linux

History Files Confidentialité Common Shells + Browsers Windows + Linux
AWS/SSH Private Keys Confidentialité Loss of sensitive info Linux

Undeleted Data Confidentialité (Only on X AMIs) Linux
Last logins Confidentialité - Linux

SQL Credentials Confidentialité/Sécurité MySQL and PostgresSQL Linux
Password Credentials Confidentialité/Sécurité Enabled Logins Windows + Linux

SSH Public Keys Sécurité Backdoor access Linux
Chkrootkit Sécurité Rootkit Linux

RootkitHunter Sécurité Rootkit Linux
RootkitRevealer Sécurité Rootkit Windows

Lynis Auditing Tool Sécurité General Security Issues Linux
Clam AV Sécurité Antivirus Windows + Linux

Unhide Sécurité Processes/Sockets Hiding Linux
PsList Sécurité Processes Hiding Windows

Sudoers Configuration Sécurité - Linux

Tab. 2.4: Les tests inclus dans la suite de testage

Résultats Sur une période de cinq mois, entre Novembre 2010 et Mai 2011, nous avons
utilisé notre système automatisé pour instancier et analyser toutes les AMIs publiques de
Amazon et disponibles dans les quatre régions de Europe, Asie, États-Unis Est et Ouest.
Au total, le catalogue de ces régions contenait 8.448 AMIs Linux et 1.202 Windows.

Grâce à nos expériences nous avons identifié trois principales menaces liées, respec-
tivement, à assurer l’image contre des attaques externes, à assurer l’image contre des
fournisseurs malveillants, et à valider l’image pour empêcher l’extraction et l’abuse des
informations privées (par exemple emmagasinés sur le disque virtuel par le fournisseur).
Pour une discussion complète des nos résultats, s’il vous plâıt de consulter la section 7.4.



33

Deuxième partie

These





35

Chapitre 3

Introduction

In the early 90’s ARPANET had just been decommissioned and the newborn Internet
network was a collection of about 500,000 hosts [48]. In 1991 Tim Berners-Lee published
his project called the World Wide Web that he had developed at CERN in Geneva. The
idea behind the World Wide Web project was to use a special program, called browser, to
access and render the content of a hypertext document by using a client-server architec-
ture. Two years later, the World Wide Web project was released into the public domain
to provide a collaborative information system independent of the type of hardware and
software platform, and physical location [42]. Browsers with graphical capabilities such as
ViolaWWW and Mosaic rapidly became the standard to access the documents provided
through the World Wide Web service. These documents were organized in websites and
delivered over the Internet. These first websites were simple and small, and the func-
tionalities providing were limited by the cost of the technology. Multimedia content such
as images and video were rarely employed because storage was slow to access and expen-
sive. For example, in 1989 a hard-disk would have cost an average of 36$ per megabyte [59].

Twenty years later the scenario has radically changed. Figure 3.1 shows how the
Internet has grown over time to reach approximately 800 million hosts. The number of
Internet users surpassed two billion in early 2011, doubled in the last five years, and
approached a third of the global population [130]. At the same time, the capacity of hard
disks has grown linearly under the influence of the market whose demand for data storage
is never satisfied [103] (Fig. 3.2). Now storage is cheaper than ever, e.g. less than 10 cents
per GB, and computing power is available at commodity price.

As a consequence, while in the past the Internet was mainly used to offer content
that was organized around simple websites in form of hypertext documents, now the
Internet provides both content and services (e.g. chat, e-mail, web) as well as outsourcing
computation and applications (e.g. cloud computing).

The Web is one of the main ways in which people use the Internet today. Three
popular and important search engines such as Google, Bing and Yahoo are estimated to
index at least 13 billion unique web pages [49]. Websites are reachable using standard
personal computers, tablet PCs, mobile phones or Internet points, and public hotspots
including airports, train stations, bars, or town squares which often provide free wireless
access to the Internet. Phone operators offer low-cost contracts for accessing the Web by
using mobile networks everywhere and 24/7. Any sort of service from booking a flight to
online banking is now made available over the Web in a comfortable way.

Complex applications that before were installed on the user’s computers are now de-



90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11

0,00

100,00

200,00

300,00

400,00

500,00

600,00

700,00

800,00

900,00

Year

H
o

s
ts

 (
M

ill
io

n
s

)

Fig. 3.1: Number of Internet hosts by year

ployed over the Internet in the form of web applications. Web applications have evolved
from a simple collection of static HTML documents to complex, full-fledged applications
containing hundreds of functionalities and dynamically generated pages. The combined
use of client and server-side scripting allows developers to provide highly sophisticated user
interfaces with the look-and-feel and functionalities that were previously reserved to tra-
ditional desktop applications. At the same time, many web applications have evolved into
mesh-ups and aggregation sites that are dynamically constructed by combining together
content and functionalities provided by different sources. Today even simple applications
may use multi-tier architectures and provide sophisticated user interfaces with rich multi-
media content. They may involve an enormous number of lines of code, combining multiple
heterogeneous languages and hundreds of network-connected components.

Unfortunately, because of their high popularity and a user base that consists of millions
of users, web applications have also become prime targets for attackers. At the same time,
the number of flaws discovered in web applications (e.g. cross-site scripting and SQL
injection) have constantly increased over time (Fig. 3.3), as Christey and Martin have
reported in their study conducted over the MITRE’s CVE database [46].

In July 2001, Symantec [132] identified an average of 6,797 websites per day hosting
malware and other potentially unwanted programs including spyware and adware. Ac-
cording to the IBM Managed Security Services [126], 2010 witnessed the largest number
of vulnerability disclosures in history (8,562), equal to a 27 percent increase over 2009.
49 percent of these vulnerabilities concerned web applications, showing that attackers
are moving their attention toward online applications. Attacks against web applications
constitute more than 60% of the total attack attempts observed on the Internet [76].

When we analyze the behaviors of these attacks, it is possible to observe that they are
increasing in quantity and in complexity as well. For example, if traditional flaws such
as SQL injection and cross-site scripting may be used to steal sensitive information from
application databases and to launch authentic-looking phishing attacks, many web appli-
cations are now being exploited to convert trusted websites into malicious servers serving
content that contains client-side exploits. According to SANS [76], most website owners
fail to scan their application for common flaws. In contrast, from the attacker’s point of
view, custom tools, designed to target specific web application vulnerabilities simplify the
discovery and infection of several thousand of websites.

Beside providing content in the form of web pages accessible via a browser, the Internet
now offers outsourcing services for remote computation or storage under the name of



Fig. 3.2: History of hard-disks capacity

cloud computing. Cloud Computing is quickly changing the way organizations deal with
IT infrastructure and are providing online services. Companies which cannot afford a
large infrastructure to create and maintain online services with ease can quickly rent a
server on the cloud and manage it via application programming interfaces. Resources
are made available online as a service from cloud computing providers that rent them
to organizations that need computing power or storage. Servers can be quickly launched,
accessed and shut down on-demand, offering the user a greater level of flexibility compared
to traditional server rooms. Amazon, probably the most used cloud computing provider,
expected a grow of 375% in 2009 and 121% in the following year. On the Amazon Web
Service Blog [33], Jeff Barr reported that, as of the end of the second quarter of 2011,
Amazon Simple Storage Service (S3) stores about 450 billion objects and processes up to
290,000 requests per second at peak times. This is equivalent to 64 objects for each person
on planet earth.

This increment in popularity that cloud computing providers, such as Amazon, have
expected is a direct consequence of the evolution of the Web. In fact, different web
providers that offer hosting services (e.g. email accounting and file storage) have already
moved their infrastructures to the Cloud. The huge amount of data that they process
daily calls for a reduction of the storage costs. One of these providers is DropBox, a
well-known web-based file hosting service, that uses the Amazon’s cloud to store personal
data uploaded by its customers [74].

Malicious users are not indifferent to the evolution of the Internet. Attackers, often
driven by a flourishing underground economy, are constantly looking for bugs, misconfig-
urations and novel techniques to access protected and authorized systems, to steal private
information, or to deliver malicious content. Even if buffer overflows, format strings or
SQL injections (among many) are still exploited, new alternative attack vectors that lever-
age unconventional channels on a large scale (e.g. cloud computing networks) have been
discovered. Recently Amazon warned its customers about the presence of compromised
images in its Amazon Elastic Computer Cloud (EC2) service [113]. The problem that
Amazon identified with these images is that some of them contain a valid SSH key, turn-
ing the SSH service into a potential backdoor. Amazon suggested that any server instance
running an infected image should be considered compromised, and that the services run-
ning on those instances should be migrated to a new, clean installation.



2001 2002 2003 2004 2005 2006

0

200

400

600

800

1000

1200

1400

31

187

89

278

728

1282

6 38 36

142

588

944

Cross-Site Scripting SQL Injection

Fig. 3.3: Number of XSS and SQLi flaws by year (MITRE)

What Internet systems like the Web and Cloud Computing have in common is that they
are deployed on a large scale, they are complex, and they are exposed to new security risks.
Novel methodologies are required to analyze and discover bugs and vulnerabilities in these
complex systems, and conventional techniques must be adapted to cope with the large
scale infrastructures in which applications and services are deployed. In fact, traditional
techniques used to evaluate the security of classic applications installed on the user side are
not anymore adequate for evaluating the security of these online systems. One reason, for
instance, is that the source code of an online service is normally not accessible and neither
static code analysis techniques ([83, 131, 145]) nor fine-grained dynamic analysis tools
([50, 129]) cannot be applied. Moreover, the analysis of systems deployed on a large scale
is complicated by network constraints like timing issues. Finally, while critical applications
like operating systems or network services (e.g. SSH) are developed by security-aware
programmers, both web and cloud applications’ source code is often written by developers
with very little or no security training.

Since existing techniques cannot easily scale to large scale installations, not much re-
search has been conducted in measuring the extension of emerging Internet threats. Still,
measurement research, when it is conducted diligently and accurately, can have a great
impact to improve security as well. The scientific community considers a method scientific
when the phenomena that is studied can be measured, and the measure becomes the way
to quantify the results of an experiment or to judge the entity of a problem. For example,
in the fight against SPAM campaigns, it is only by conducting a measurement of how
many of the delivered e-mails contain unwanted content, that someone can evaluate the
efficiency of a SPAM solution or the evolution of the SPAM problem over a long period.
Measurement research is helpful to reveal which classes of problems are increasing and on
which solutions it makes sense to invest. Measurements, as well as research surveys, are
useful to researchers of the same fields to build a common understanding and knowledge
of the problems.

3.1 Contributions

In this thesis we propose three novel techniques to measure Internet threats on a large scale.
We identified three classes of problems that concern Internet systems which have recently



experienced a surge in popularity and we tried to estimate how prevalent and relevant
are these problems for Internet users. In fact, if we consider the Web, while traditional
threats like XSS and SQLi have been extensively studied [83, 131, 145] and described (e.g
by the OWASP Top 10 project [109]), for other emerging classes of problems, namely
Clickjacking and HTTP Parameter Pollution, it is still unclear how significant they are for
the security of Internet users. Although the problems we selected were previously known,
we are the first to conduct a systematic study that aims at defining how prevalent are
these problems over the Internet. Our goal is to understand if the types of problems we
selected are known by developers, if they occur more in certain situations, and how many
systems are affected by them. To answer these questions, we designed and implemented
automated tools to analyze on a large scale thousands to millions of possible vulnerable
targets.

The first problem we studied, Clickjacking, exploits some rendering properties of mod-
ern browsers to trick users into initiating money transfers, clicking on banner ads that are
part of an advertising click fraud, posting blog or forum messages, or, in general, to per-
form any action that can be triggered by a mouse click. For example, different web-based
malware have been reported recently in the wild to use Clickjacking to spread over social
networks (e.g. Facebook or Twitter). The exploit works by presenting people with friend
profiles that recommend links with attractive titles (e.g. “LOL This girl gets OWNED
after a POLICE OFFICER reads her STATUS MESSAGE” or “Don’t click”). Those who
click on the link, follow-up into retweeting the link or adding the link to his list of “Likes”.

The idea behind a Clickjacking attack is simple: A malicious page is constructed with
the aim of tricking users into clicking on an element of a different page that is only barely,
or not at all noticeable. Thus, the victim’s click causes unintentional actions in the context
of a legitimate website. Since it is the victim who actually, but unknowingly, clicks on the
element of the legitimate page, the action looks “safe” from the browser’s point of view;
that means the same origin policy is not violated.

Testing for Clickjacking attempts is not trivial. One main challenge is to simulate
the behavior of a human user that interacts with the content of the web page to test.
Existing solutions such as Selenium [7] and Watir [8] simulate the mouse actions from
inside the browser, sending events to the element that should be clicked. Although this
approach is convenient for testing the functional requirements of web applications (such
as the correctness of links and form references), it is not suitable for our purposes. The
reason is that we do not know on which element the user intended to click (this, in fact, is
the premise for a Clickjacking attack). Hence, we did not wish to “simulate” a user click
inside the browser, but to control the mouse at the window level, and to actually move it
over the interesting element, and click the left button on it. By doing this, we can also be
sure that every JavaScript code in the page are executed exactly in the same way as they
would if the user was controlling the mouse herself.

The second challenge is to efficiently render pages of modern applications that often rely
on dynamic content (e.g. Javascript) to generate their pages. Similar to other scanners, it
would have been possible to directly retrieve web pages without rendering them in a real
browser. However, such techniques have the drawback that they cannot efficiently deal
with dynamic content that is often found on Web 2.0 sites. By using a real browser to
render the pages we visit, we are able to analyze the page as it is supposed to appear to
the user after the dynamic content has been generated.

We implemented our testing and detection approach in an automated system called
ClickIDS that we used to conduct an empirical study on over one million unique web



pages to estimate the prevalence of Clickjacking attacks on the Internet.

We then focused on another threat for the Web called HTTP Parameter Pollution
that, since its first announcement in 2009 [110], had not received much attention. By
proposing the first automated approach for the discovery of HTTP Parameter Pollution
vulnerabilities in web applications, we looked at 5,000 popular websites and we tried to
measure how many of them may be vulnerable to HPP attacks.

HPP attacks consist of injecting encoded query string delimiters into other existing
parameters. If a web application does not properly sanitize the user input, a malicious
user can compromise the logic of the application to perform either client-side or server-
side attacks. One consequence of HPP attacks is that the attacker can potentially override
existing hard-coded HTTP parameters to modify the behavior of an application, bypass
input validation checkpoints, and access and possibly exploit variables that may be out of
direct reach.

HPP flaws can be abused in different ways but their detection is not easy. One problem
is that modern web applications are very complex, and often include dynamic content that
may vary even when the page is accessed with exactly the same parameters. Publicity
banners, RSS feeds, real-time statistics, gadgets, and suggestion boxes are only a few
examples of the dynamic content that can be present in a page and that may change each
time the page is accessed. Another challenge is that some parameters do not affect the
application logic, but are used to store the URL of the web page. Hence, performing an
injection in these parameters is equivalent to modifying their values to point to a different
URL. Even though this technique is syntactically very similar to an HPP vulnerability, it
is not a proper injection case.

In our prototype implementation called PAPAS, we integrated heuristics to make our
tool suitable for large scale analysis and we presented the first automated approach for
the detection of HPP vulnerabilities in web applications. Our approach consists of a com-
ponent to inject parameters into web applications and a set of tests and heuristics to
determine if the pages that are generated contain HPP vulnerabilities. In order to show
the feasibility of our approach, we used PAPAS to conduct a large scale analysis of more
than 5,000 popular websites.

We finally looked at emerging threats affecting the Cloud on a large scale. Cloud
computing has changed the view on IT as a pre-paid asset to a pay-as-you-go service.
Several companies such as Amazon Elastic Compute Cloud (EC2) [19], Rackspace [21],
IBM SmartCloud [24], Joyent Smart Data Center [26] or Terremark vCloud [22] offer
access to virtualized servers in their data centers on an hourly basis. Servers can be
quickly launched and shut down via application programming interfaces, offering the user
a greater flexibility compared to traditional server rooms. This paradigm shift is changing
the existing IT infrastructures of organizations, allowing smaller companies that cannot
afford a large infrastructure to create and maintain online services with ease.

Unfortunately, while the trust model between the cloud user and the cloud provider is
well-defined (i.e., the user can assume that cloud providers such as Amazon and Microsoft
are not malicious), the trust relationship between the provider of the virtual image and
the cloud user is not as clear.

We explored the general security risks associated with the use of virtual server images
from the public catalogs of cloud service providers. Over several months, we designed and
ran security tests on public AMIs that aimed to identify security vulnerabilities, problems,



and risks for cloud users as well as the cloud providers. We analyzed on a large scale over
five thousands public images provided by Amazon, and we identified three main threats
related, respectively, to: 1) secure the image against external attacks, 2) secure the image
against a malicious image provider, and 3) sanitize the image to prevent users from ex-
tracting and abusing private information left on the disk by the image provider.

In this thesis, we conceived a set of novel techniques for the measurement of Internet
threats on a large scale. What these techniques have in common is that they employ
sophisticated crawling and testing functionalities to process and analyze efficiently a large
number of possible vulnerable targets. We used our solutions to conduct large scale studies
of three classes of problems that affect important and increasingly popular Internet systems
- e.g. the Web and the Cloud. We believe that our solutions will remain valuable in the
near future to analyze similar classes of problems. For example, for the analysis of web
vulnerabilities, we have introduced a browser-centric system to cope with the modern
websites that often rely on dynamic content (e.g. Javascript) to generate their pages. By
using a real browser to render the pages we visit, we are able to analyze them as they
are supposed to appear to the user after the dynamic content has been generated. This
technique can easily be adapted and reused in the analysis of similar classes of problems,
such as attacks that exploit the new HTML5’s features (e.g. drag&drop).

3.2 Summary

The contribution of this dissertation can be summarized in the following points:

� We advance the state of the art in large scale testing and measurement of Internet
threats.

� We research into three novel classes of security problems that affect Internet sys-
tems which experienced a fast surge in popularity, e.g. web applications and cloud
computing services.

� We introduce the first, large scale attempt to estimate the prevalence and relevance
of these problems over the Internet. Our study is conducted on a large scale over
thousands to millions of possible vulnerable targets.

� We describe the challenges we faced to test real applications and services on a large
scale in an efficient manner.

� Finally, when we were able to obtain contact information, we informed the affected
providers about the problems we discovered. Some of them acknowledged our issues
and implemented the countermeasures we proposed to them.

3.3 Organization

The rest of the dissertation is organized as follows:

� In Chapter 4 we present the research works that are related to this thesis.



� In Chapter 5 we propose a novel solution for the automated and efficient detection
of Clickjacking attacks. We describe ClickIDS, the system that we designed, imple-
mented and deployed to analyze over a million unique web pages. We published this
research in the proceedings of the 5th ACM Symposium on Information, Computer
and Communications Security (AsiaCCS 2010)

� In Chapter 6 we introduce the first automated approach for the discovery of HTTP
Parameter Pollution vulnerabilities in web applications. Using our prototype im-
plementation called PAPAS (PArameter Pollution Analysis System), we conducted
a large scale analysis of more than 5,000 popular websites. This research has been
published, and received the Best Paper Award in the 18th Annual Network and
Distributed System Security Symposium (NDSS 2011).

� Chapter 7 explores the general security risks associated with the use of virtual ma-
chine images from the public catalogs of cloud service providers (e.g. Amazon). We
describe the design and implementation of an automated system called SatanCloud
that we used to analyze the security of 5,000 public images provided by the Amazon’s
EC2 service. We published this research in the proceedings of the 11th edition of
the Computer Security track at the 27th ACM Symposium on Applied Computing
(SEC@SAC 2012).

� Finally, in Chapter 8 we conclude and discuss the limitations and possible further
improvements to our contributions.



43

Chapitre 4

Related Work

4.1 Large-Scale Internet Measurement

A large number of papers have presented methods for measuring how the Internet has
evolved over the years. Already 10 years ago, Cho and Garcia-Molina [45] have selected
and analyzed over 720,000 web pages from 270 sites with the intent of understanding how
often a web page changes and what its lifespan is. The experiment has been conducted
using the Stanford WebBase crawler, a system designed to create and maintain large web
repositories, which was initially used for the Google search engine [38]. Cho’s dissertation
[44] analyzes the challenges in building a web crawler that can retrieve high quality pages
quickly, while maintaining the retrieved pages fresh. Fetterly et al. [54] expanded on Cho
and Garcia-Molina’s study, both in terms of coverage and in terms of sensitivity to change.
The authors crawled about 150 million web pages once every week, over a span of 11 weeks,
by recording the changing features such as the page’s checksum, the number of words and
the length.

Measuring the Web is important for research, but is not straightforward. One of the
main difficulties one faces are the dynamic mechanisms used by modern web applications
to render the content of their pages. For example, a server-side application that creates a
page after the request for the page is received from the browser, or a page that includes
code that executes on the browser to retrieve content from remote servers. Lawrence
and Giles [91] estimated that close to 80% of the content on the Web is dynamically-
generated, and that this number is continuously increasing. Recent papers [92, 43, 34, 99]
have focused on proposing crawlers that are either more efficient in coverage or faster
than traditional ones. For example, Raghavan et al. [114] introduced a framework called
Hidden Web Exposer (HiWE) to crawl and extract information from pages that are built
using dynamic technologies (what they called the Hidden Web).

Beside the Web, there are studies that have measured the Internet from a network-
ing perspective. Paxon discussed and introduced an Internet infrastructure called NIMI
(National Internet Measurement Infrastructure) that uses a collection of cooperative plat-
forms to measure network properties (paths and clouds) by exchanging test traffic among
themselves [111]. Shavitt at al. [127] proposed DIMES a distributed measurement infras-
tructure for the Internet that is based on the deployment of thousands of light weight
measurement agents around the globe. Other research projects that have studied the
Internet’s growing topology from a network perspective are [90, 63, 32].

In the next section, we present the research works that have conducted measurements
of Internet threats and that are related to this thesis.



4.2 Measurement of Internet Threats

One popular and well-studied Internet threat are drive-by-downloads. In a drive-by-
download scenario, the attacker configures a website to serve a malicious code (e.g. Javascript)
that exploits a vulnerability in the visitor’s browser to download malware or any other
sort of malicious software in the victim’s PC. In fact, due to the complexity of modern
browsers, a large amount of client-side vulnerabilities, ranging from insecure interfaces of
third party extensions to buffer overflows and memory corruptions, are constantly discov-
ered by attackers. One first example of drive-by-download attack occurred in 2004 when
different critical businesses sites (e.g. banks, providers and insurance companies) were
hosting a malicious code that was exploiting the vulnerable browser of their visitors to
install key loggers and trojan software in the visitors computers, with the intent of captur-
ing sensitive information such as social security numbers, credit card numbers, usernames,
passwords, and encrypted financial communications [12].

Provos et al. [112] conducted a large-scale study of drive-by-download infections over
the Internet with the intent of estimating the prevalence of web-based malware. Over a
10 month period, they analyzed about 66 million URLs by deploying a large number of
honeypot instances with unpatched versions of Internet Explorer. The authors identified
more than 3 million malicious URLs hosted on more than 180 thousand landing sites. By
comparing these URLs with their Google queries, they found out that on average, 1.3%
of the queries are serving a URL with drive-by-download content.

Another empirical study on drive-by-download attacks has been done by Wang et
al. [141]. The authors developed an automated system called Strider HoneyMonkey Exploit
Detection System, which consists of web browsers running on operating systems with
different patch levels. The idea is that, by observing the successful infections, it is possible
to learn the vulnerability that was exploited. Using their system, the authors discovered
and collected different zero-day exploits that targets unpatched browser vulnerabilities. A
zero-day can be detected if a fully patched system is infected.

The Internet can serve as container and provider for malicious software - e.g. spyware
or malware - that is downloaded into unaware users’ desktops. Moshchuk et al. [104]
performed a large-scale, longitudinal study of the Web, sampling both executables and
conventional Web pages for malicious objects. The authors, by crawling about 40 million
URLs, found executable files in approximately 19% of the crawled websites and spyware-
infected executables in about 4% of the sites. Their empirical study, by confirming that
1 out of 20 of the executable files they downloaded contain spyware, shows that using
Internet to download unverified software exposes their users to software infections.

More recently, Chinese researchers Zhuge et al. [150] measured that out of 145,000
commonly visited Chinese websites, about 2,000 of them (1.5%) contained some kind
of malicious content, e.g. malware or drive-by-download software. The researchers also
examined the relationship between the time when the vulnerabilities were advertised on
the underground black market and their usage on the Web.

The Web is not the only channel in which malicious software is delivered over Internet.
Kalafut et al. [85] have examined the prevalence of malware in peer-to-peer networks. The
authors instrumented two open source P2P clients - Limewire and OpenFT - to download
about 90,000 program files over a month and to scan them for the presence of known
malware. Their results show that 68% of the downloaded content in Limewire contains
malware.

Two other works have measured and studied the spreading of malware within a Intranet



environment (e.g. a university campus). Goebel et al. [61] collected information about
13,4 million exploits from an eight-weeks traffic dump of 16,000 internal IPs, while Saroiu
et al. [121] quantified the presence of four widespread spyware (Gator, Cydoor, SaveNow,
and eZula) among the 40,000 hosts of their university.

While a large number of researchers have measured the prevalence of malicious software
over the Internet, for example in vulnerable websites being exploited and converted into
malicious servers serving malware or spyware, some others have studied how many web
applications are affected by vulnerabilities like cross-site scripting or SQL injection.

One study [46] has been conduced by Christey et al. in 2007 on the vulnerabilities that
had been publicly disclosed and indexed by the MITRE’s CVE database [102]. The authors
adopted a manual classification of CVE entries using the CWE classification system. The
results show that the total number of publicly reported web application vulnerabilities
have overtaken traditional buffer overflows, with cross-site scripting scoring the first place
and SQL injection the second. Neuhaus and Zimmermann have applied topic models on
the CVEs’ description texts to find prevalent vulnerability types and new trends semi-
automatically [106]. Their analysis is based on 39,393 unique security bulletins published
in the CVE database up to 2009, inclusive.

More recently Scholte et al. [122] proposed an automated system to process CVE data
from the National Vulnerability Database (NVD) [108], which includes more comprehen-
sive information such as the name, the version, and the vendor of the affected application
together with the impact and severity of the vulnerability according to the Common Vul-
nerability Scoring System (CVSS) standard [98]. The authors, by analyzing and focusing
their study on top web vulnerabilities like cross-site scripting and SQL injection, try to
understand if these attacks become more sophisticated over time, if popular applications
are more vulnerable than others, and what is the average lifetime of an unpatched flaw.

The Web Application Security Statistics Project [62] has built a statistics of vulnera-
bilities on about 12,000 deployed web applications. The project has collected information
from companies running web application security assessment activities such as penetration
testing and security auditing. Unlike CVE or NVD statistics that provide valuable insight
into vulnerabilities discovered in open source and commercial applications, this project
focuses on custom web applications. Moreover, the vulnerabilities have been collected
regardless of the methodology used to identify them. Finally, Grossman et al. published
a white paper [64] that gives a statistical picture gleaned from five years of vulnerability
assessment results taken from about 3,000 websites across 400 organizations under the
web vulnerability management system of their company.

Vogt et al. [138] gave an indirect insight on the prevalence of cross-site scripting vul-
nerabilities by evaluating their tool against a million unique web pages. The authors
introduced a solution to stop cross-site scripting attacks on client-side by tracking the
flow of sensitive information inside the browser with a technique known as taint anal-
ysis. By crawling and visiting a million Internet sites with their implemented solution,
the authors have indirectly measured how many of them could have been exploited via a
persistent (stored) XSS flaw.

Yue et al. [147] crawled 6,805 unique websites from 15 categories (e.g. business, shop-
ping, computer) and analyzed their Javascript code for insecure development practices
that could lead to different kind of browser-based security attacks. Richards et al. [118]
analyzed more in details the usage of the eval() function in over 10,000 websites.

These papers conducted measurements of Internet threats, for example, by studying



the number of websites that host and offer malicious software, or that are affected by
well-known problems such as cross-site scripting and SQL injections. However, attackers
are constantly looking for novel vulnerabilities to bypass protection mechanisms, or to
deliver malicious content. Clickjacking and HTTP Parameter Pollutions are two of these
emerging vulnerabilities, and for both threats, it is unclear how significant and relevant
they are for the security of Internet users. Testing web applications on a large-scale is
not straightforward, and new techniques are needed - e.g. modern web applications often
rely on dynamic content (e.g. Javascript) to generate their pages. The next section
presents existing techniques for testing web applications for vulnerabilities and describes
any research related to Clickjacking and HPP.

4.3 Web Vulnerabilities

There are two main approaches [58] to test software applications for the presence of bugs
and vulnerabilities: white-box testing and black-box testing. In white-box testing, the
source code of an application is analyzed to find flaws. In contrast, in black-box testing,
input is fed into a running application and the generated output is analyzed for unexpected
behavior that may indicate errors. Black-box testing tools (e.g. [28, 40, 86, 140, 69])
are the most popular when analyzing online applications, where often the source code is
not made available. These tools mimic external attacks from hackers by providing the
application with malicious strings that can possibly trigger the vulnerability (e.g. XSS’s
<script>alert(document.cookie);</script> or SQLi’s 1’ or ’1’ = ’1).

Some of these tools (e.g. [72, 28, 69]) claim to be generic enough to identify a wide range
of vulnerabilities in web applications. However, two recent studies ([35, 52]) have shown
that scanning solutions that claim to be generic have serious limitations, and that they
are not as comprehensive in practice as they pretend to be. Doupé et al. [52] presented an
evaluation of different commercial and open-source black-box solutions that they tested
against a custom vulnerable web application.

SecuBat [87] by Kals et al. automatically detects SQL injection and cross-site scripting
vulnerabilities on web pages. SecuBat crawls the web, and launches attacks against any
HTML forms it encounters. By analyzing the server response, successful attacks can be
detected. A similar approach is followed by Huang et al. [70]. In their work, the authors
performed black-box testing of web applications to detect possible SQL injection and XSS
flaws. As the success of such security scanners relies on the test input that is provided to
the tested web applications, Wassermann et al. [143] proposed a system to automatically
generate such inputs.

Concerning white-box solutions, Jovanovic et al. [84] introduced Pixy to automatically
detect web vulnerabilities in PHP based applications through static analysis. Pixy is able
to identify flaws that lead to SQL injection, cross-site scripting, or command injection
vulnerabilities. Pixy uses taint-analysis to trace the flow of tainted data inside the ap-
plication. Tainted data denotes data that originates from potentially malicious users and
thus, can cause security problems at vulnerable points in the program (called sensitive
sinks).

Huang et al. [71] also performed static source code analysis to automatically add
runtime protection mechanisms to web applications. Similarly, Wassermann et al. [142]
introduced a static string analysis-based approach to automatically detect injection vul-
nerabilities in web applications. Detecting SQL injection vulnerabilities by statically ana-
lyzing a web application’s source code is performed by Xie et al. in [146]. Egele et al. [53]



infered the data types and possible value sets of input parameters to web applications by
applying static analysis. This information can be leveraged to fine-tune application level
firewalls and help protect web applications from injection attacks.

By combining dynamic data tainting with static analysis, Vogts et al. [139] created
a system that effectively detects websites that perform cross-site scripting attacks. In
contrast, Balzarotti et al. [31] leveraged static and dynamic analysis techniques to auto-
matically validate sanitization in web applications.

Software engineering researchers suggested new methodologies and tools for assess the
quality of web applications. Ricca and Tonella in [117] proposed an UML model that
help to understand the static structure of web applications and to exploit semi-automatic
white-box testing. Huang et al. [70] described and deployed in real-world applications
a number of software-testing techniques which address frequent coding faults that lay
to unwanted vulnerabilities. Their work has produced the vulnerability assessment tool
WAVES.

With respect to scanning, there also exist network-level tools such as NMap [75]. Tools
like NMap can determine the availability of hosts and accessible services. However, they
cannot detect higher-level application vulnerabilities. Note that there also exists a large
body of more general vulnerability detection and security assessment tools (e.g. Nikto [4],
and Nessus [135]). Such tools typically rely on a repository of known vulnerabilities
and test for the existence of these flaws. In comparison, our approach aims to discover
previously unknown vulnerabilities in online web applications.

Clickjacking The first report of a possible negative impact of transparent IFRAMEs is
a bug report for the Mozilla Firefox browser from 2002 [105]. In this blog post, Ruderman
suggested that the use of fully transparent IFRAMEs is a bad security practice that
should be avoided. IFRAMEs should be transparent only when the content, e.g. the text,
is set with a transparent background. However, the term clickjacking, referring to a web
attack in which a transparent IFRAME is used to trick a user into performing unintended
malicious actions (e.g. clicking on banner ads that are part of an advertising click fraud),
was coined by Hansen and Grossman much later in 2008 [65]. While Hansen and Grossman
elaborated on the involved techniques, we are the first to conduct an empirical study on
this topic.

Concerning the existing solutions for protecting Internet users from clickjacking at-
tacks, Maone’s NoScript [95] is probably the most known. NoScript is a Firefox add-on
that provides protection against common security vulnerabilities such as cross-site script-
ing. It also features a URL access-control mechanism that filters browser-side executable
contents such as Java, Adobe Flash, and Microsoft Silverlight. In October 2008, an anti-
clickjacking feature was integrated into NoScript. This feature protects users against
transparent IFRAME-based attacks. Starting from version 1.8.2, the protection has been
extended to cover also partially obstructed and disguised elements. The implemented
technique, denoted ClearClick, resembles one proposed by Zalewski [149], and is based
on the analysis of the click’s neighborhood region. An alert is triggered when a mouse
click is detected in a region where elements from different origins overlap. In our research,
we developed a new detection technique called ClickIDS that complements the ClearClick
defense provided by the NoScript plug-in. We combined them in an automated, web ap-
plication testing system, that we used to estimate the prevalence of clickjacking attacks
on the Internet by automatically testing more than a million web pages that are likely to



contain malicious content and to be visited by Internet users.
A number of techniques to mitigate the clickjacking problem have been discussed on

security-related blogs [149]. One approach proposes to extend the HTTP protocol with
an optional, proprietary X-FRAME-OPTIONS header. This header, if evaluated by the
browser, prevents the content to be rendered in a frame in cross-domain situations. A
second approach consists to enhance the CSS or HTML languages to allow a page to
display different content when loaded inside a FRAME. These strategies can be a valid
solution to protect users against the clickjacking attack, but are far away from being
adopted by developers: From our analysis of over more than 11,000 unique and popular
URLs, only one was using the X-FRAME-OPTIONS header.

HPP HTTP Parameter Pollution is a recent web vulnerability which has been originally
described in 2009 by Di Paola et al. [110]. The two researchers did an excellent work
in showing how HPP flaws can be exploited to compromise the logic of a vulnerable
application and to launch client-side or server-side attacks. However, they have neither
introduced a methodology to detect HPP issues, nor tried to estimate how many web
applications are eventually vulnerable to HPP attacks.

Web applications are commonly tested for vulnerabilities using black-box tools. To the
best of our knowledge, only one of these black-box scanners, Cenzic Hailstorm [41], claims
to support HPP detection. However, a study of its marketing material revealed that the
tool only looks for behavioral differences when HTTP parameters are duplicated (i.e., not
a sufficient test by itself to detect HPP). Unfortunately, we were not able to obtain more
information about the inner-workings of the tool as Cenzic did not respond to our request
for an evaluation version.

The injection technique we use is similar to other black-box approaches such as Secu-
Bat [86] that aim to discover SQL injection, or reflected cross site scripting vulnerabilities.
However, note that conceptually, detecting cross site scripting or SQL injection is different
from detecting HPP. In fact, our approach required the development of a set of tests and
heuristics to be able to deal with dynamic content that is often found on webpages today
(content that is not an issue when testing for XSS or SQL injection). Hence, compared to
existing work in literature, our approach for detecting HPP, and the prototype we present
in this dissertation are unique.

With respect to white-box testing of web applications, a large number of static source
code analysis tools that aim to identify vulnerabilities have been proposed. These ap-
proaches typically employ taint tracking to help discover if tainted user input reaches a
critical function without being validated. We believe that static code analysis would be
useful and would help developers identify HPP vulnerabilities. However, to be able to use
static code analysis, it is still necessary for the developers to understand the concept of
HPP.

4.4 Cloud Computing Threats

Both academic and industrial researchers have started to study the security problems
related to the use of cloud services.

There are several organizations that released general security guidance on the usage
of cloud computing (e.g. [16, 15, 23]). Amazon Web Services, in addition to the security
advices already mentioned, released a paper describing the security processes put in place,



focusing more specifically on the management of public images [18]. Varia [137] gave an
overview of the security processes in the cloud infrastructure of Amazon Web Services.

The problem statement of security on cloud computing infrastructures has been widely
explored. Garfinkel and Rosenblum [57] studied the problem statement of using virtual
images and especially the security problems of using third party virtual images. Glott and
al. [60] presented a good overview of the problem of sharing images as well. The above
papers expose a set of best practices and problem statements but did not perform any
practical assessment tests.

On the other hand, some authors [133] focused on solutions that would mitigate parts
of the security problems we identified. For example, solutions that tackle the prob-
lem of rootkits detection on multi-tenant clouds [47]. The authors described a secure-
introspection technique at the virtualization layer in order to identify the guest OS and im-
plement rootkit detection while running outside the guest OS. Ibrahim et al. [73] analyzed
the problem of cloud virtual infrastructures and drew the requirements for virtualization-
aware techniques. Another approach to address the problem consists in specifying con-
tracts between cloud providers and virtual machine users [97]. In this case, the authors
introduced extensions to the Open Virtual Machine Format (OVF) to specify the require-
ments of machine images in order to be safely executed by a cloud computing provider.
Wei et al [144] proposed a technique to share and use third party images in a secure way.
The authors described an image management system that controls the access to machines,
tracks their provenance and integrity, and finally assesses their security through scanning.
Thus, these papers focused on solutions and did not implement or perform a wide range
of tests on an existing cloud infrastructure.

More specific to Amazon EC2, a novel approach was proposed by Bleikerts et al. [37].
The paper analyses the security of an infrastructure (a set of connected virtual machines)
deployed on Amazon EC2 through graph theory techniques. The goal is to provide security
resilience metrics at an infrastructure level rather than a virtual image level. Thus, this
study aims at designing better cloud infrastructures by identifying problems of security
groups configuration (network firewall rules).

Other works focused on the placement algorithm of Amazon EC2 instances [119], and
showed how to exploit it to achieve co-residence with a targeted instance. This is the
first step towards the exploitation of side channel attacks but these attacks were only
outlined. Slaviero et al. [68] showed that cloud users are not careful when choosing AMIs.
By publishing a public malicious AMI, they showed that this AMI was instantiated several
times and statistics about the usage of the AMIs were collected. Moreover, they showed
that it was possible to circumvent the payment mechanism of paid AMIs by modifying
the AMI manifest file.

Finally, Bugiel et al. [39] have recently published a paper in which they describe the
different risks associated with renting machine images from the Amazon’s EC2 catalogue.
When compared with their work, our study is more comprehensive and conducted on a
larger scale. In fact, we selected and analyzed in an automated fashion over five thousands
public images provided by Amazon in its four distinct data centers, while Bugiel only
considered the 1,225 images that are located in the two data center of Europe and US-
East. We discovered and discussed a wider number of novel security issues by testing every
image for known malware samples or vulnerabilities. Finally, during our experiments, we
actively collaborated with the Amazon Security Team to have the problems acknowledged
and fixed. Though most of these papers highlighted trust and security problems associated
to the use of third party images, to the best of our knowledge we are the first to preset a



large-scale, comprehensive study of the security and privacy of existing images.

4.5 Summary

In this chapter, we presented the existing work in measuring Internet threats on a large
scale.

We started by introducing the main studies of the Internet evolution, with a main focus
on papers related to the web. We then reviewed papers that conducted measurements of
Internet threats. A good number of papers have studied the prevalence of websites that
host attacking code (i.e., a drive-by-download) or that provide malicious software such as
malware or spyware. Some authors have crawled and analyzed web applications, while
others have derived this number by analyzing network traffic or peer-to-peer systems such
as Limewire.

More relevant to this thesis are those studies that have tried to understand how many
online applications are affected by web vulnerabilities such as cross-site scripting or SQL
injection. However, to the best of our knowledge, none of these works have looked at
Clickjacking or HTTP Parameter Pollution, and no empirical studies have been previously
done to define the prevalence of these novel classes of problems.

We concluded the related work section with works that analyzed the security of Internet
Cloud services (e.g. Infrastructure-as-a-Service providers). Cloud Computing is a novel
research area and not many papers have been published in this direction. For example,
together with Bugiel [39], we are the first to describe the security risks associated with
renting machine images from a cloud provider’s catalogue. When compared to Bugiel’s
paper, our study is more comprehensive and conducted on a larger-scale (i.e., by analyzing
in an automated fashion over 5,000 public images provided by the Amazon’s EC2 service).



51

Chapitre 5

Clickjacking

This chapter proposes a novel solution for the automated and efficient detection of click-
jacking attacks. Clickjacking is a malicious technique of tricking users into clicking on
page elements that are only barely, or not at all, visible. By stealing the victim’s clicks,
clickjacking can force the user to perform unintended actions that are advantageous for
the attacker (e.g., a click fraud or spamming).

We describe ClickIDS, the system that we designed and implemented to conduct a mea-
surement study of clickjacking over a million unique web page. Our large-scale experiment
suggests that clickjacking has not yet been largely adopted by attackers on the Internet.

5.1 Introduction

The same origin policy, first introduced in Netscape Navigator 2.0 [107], is still the key-
stone around which the entire security of cross-domain applications is built. The main
idea is to implement a set of mechanisms in the browser that enforce a strict separation
between different sources. This separation is achieved by preventing the interaction be-
tween pages that are from different origins (where the origin of a page is usually defined
as a combination of the domain name, the application layer protocol, and the TCP port
number). The same origin policy, hence, can guarantee that cookies and JavaScript code
from different websites can safely co-exist in the user’s browser. Unfortunately, attackers
are constantly looking for exceptions, browser bugs, or corner cases to circumvent the
same origin checks with the aim of stealing or modifying sensitive user information. One
of these techniques, previously known as UI Redress [148], has recently gained increas-
ing attention under the new, appealing name of clickjacking. Since Robert Hansen and
Jeremiah Grossman announced a talk on the topic at OWASP AppSec 2008 [81], there
has been a flood of news, discussions, and demonstrations on clickjacking.

The idea behind a clickjacking attack is simple: A malicious page is constructed such
that it tricks users into clicking on an element of a different page that is only barely, or
not at all noticeable. Thus, the victim’s click causes unintentional actions in the context
of a legitimate website. Since it is the victim who actually, but unknowingly, clicks on the
element of the legitimate page, the action looks “safe” from the browser’s point of view;
that is, the same origin policy is not violated. Clickjacking attacks have been reported to
be usable in practice to trick users into initiating money transfers, clicking on banner ads
that are part of an advertising click fraud, posting blog or forum messages, or, in general,
to perform any action that can be triggered by a mouse click.



Fig. 5.1: Clickjacking attack against Twitter: The page rendering showing the two frames.

Beside several proof-of-concept clickjacking examples that have been posted on security-
related blogs, it is not clear to what extent clickjacking is used by attackers in practice. To
the best of our knowledge, there has only been a single, large-scale real-world clickjacking
attack, where the attack was used to spread a message on the Twitter network [94]. We
describe this attack in more detail in Section 5.2.

In this chapter, we present a novel approach to detect clickjacking attempts. By using
a real browser, we designed and developed an automated system that is able to analyze
web pages for clickjacking attacks. Our solution can be adopted by security experts to
automatically test a large number of websites for clickjacking. Moreover, the clickjacking
plug-in we developed can be integrated into a standard browser configuration in order to
protect normal users from clickjacking during their daily Internet use.

To the best of our knowledge, we are the first to conduct a large-scale study of the
clickjacking problem, and to propose a novel system for the automated testing, and de-
tection of the attack. Our work provides a first insight into the current prevalence of
clickjacking attempts on the Internet.

5.2 Clickjacking

Despite extensive discussions and reports, clickjacking still lacks a formal and precise
definition. Informally, it is a technique to lure the victim into clicking on a certain element
of a page, while her intention is to interact with the content of a different site. That is,
even though the victim is under the impression of clicking on a seemingly harmless page,
she is actually clicking on an element of the attacker’s choice. The typical scenario, as
described by Grossman and Hansen [66], involves two different websites: A target site T ,
and a malicious site M .

T is a website accessible to the victim and important for the attacker. Such sites



include, for example, online-banking portals, auction sites, and web mail services. The
goal of the attacker is to lure the victim into unsuspectingly clicking on elements of the
target page T .

M , on the other hand, is under control of the attacker. Commonly, this page is created
in a way so that a transparent IFRAME containing T overlays the content of M . Since the
victim is not aware of the invisible IFRAME, by correctly aligning T over M , an attacker
can lure the victim into clicking elements in T , while she is under the impression of clicking
on M . A successful clickjacking attack, for example, might result in the victim deleting all
messages from her web mail inbox, or generating artificial clicks on advertisement banners.

Figure 5.1 shows a real-world clickjacking attack that has been used to propagate a
message among Twitter users [94]. In this attack, the malicious page embeds Twitter.com
on a transparent IFRAME. The status-message field is initialized with the URL of the
malicious page itself. To provoke the click, which is necessary to publish the entry, the
malicious page displays a button labeled “Don’t Click.” This button is aligned with the
invisible “Update” button of Twitter. Once the user performs the click, the status message
(i.e., a link to the malicious page itself) is posted to her Twitter profile. The attacking
HTML code is the following:� �
<IFRAME style={

width: 550px; height: 228px;

top: -170px; left: -400px;

position: absolute; z-index: 2;

opacity: 0; filter: alpha(opacity =0);

}

scrolling ="no"

src="http :// twitter.com/home?status=

Don ’t Click: http :// tinyurl.com/amgzs6">

</IFRAME >

<BUTTON style={

width: 120px; top: 10px; left: 10px;

position: absolute; z-index: 1;

}>

Don ’t Click

</BUTTON >� �
While clickjacking attacks can be performed in plain HTML, the use of JavaScript can

be used to create more sophisticated attacks. For instance, JavaScript allows the attacker
to dynamically align the framed content with the user’s mouse cursor, thus making it
possible to perform attacks that require multiple clicks.

Note that manipulating the frame’s opacity level (e.g., making it transparent) is not
the only way to mount a clickjacking attack. A click can also be “stolen” by covering
the frame containing the victim page with opaque elements, and then leaving a small
hole aligned with the target element on the underlying page. Another possible approach
consists of resizing and/or moving the IFRAME in front of the mouse just before the user
performs a click.

Unlike other common web vulnerabilities such as cross-site scripting and SQL injection,
clickjacking is not a consequence of a bug in a web application (e.g., a failure to properly
sanitize the user input). In contrast, it is a consequence of a misuse of some HTML/CSS
features (e.g., the ability to create transparent IFRAMEs), combined with the way in
which the browser allows the user to interact with invisible, or barely visible, elements.

A number of techniques to mitigate the clickjacking problem have been discussed on

Twitter.com


security-related blogs [149]. One approach proposes to extend the HTTP protocol with
an optional, proprietary X-FRAME-OPTIONS header. This header, if evaluated by the
browser, prevents the content to be rendered in a frame in cross-domain situations. A
similar approach was proposed to enhance the CSS or HTML languages to allow a page
to display different content when loaded inside a frame.

Some of the mentioned defenses are already implemented by browser vendors. For
example, Microsoft’s Internet Explorer 8 honors the X-FRAME-OPTIONS HTTP header
and replaces a page whose header is set to deny with a warning message [100]. Ad-
ditionally, the NoScript plug-in for Firefox [95] also evaluates this header and behaves
accordingly [96].

In the meanwhile, web developers who do not wish their content to be displayed as
frames in other pages have been adopting so-called frame-busting techniques. An example
of frame-busting is the following JavaScript snippet:� �

<script type="text/javascript">

if ( top.location.hostname != self.location.hostname )

top.location.replace(self.location.href);

</script >� �
The code compares the origin of the content with the currently displayed resource in

the browser and, upon a mismatch, it redirects the browser, thus, “busting” the frame.
Interestingly, an attacker who specifies the IFRAME’s attribute security="restricted"

[101] can force the Internet Explorer to treat the frame’s content in the security context
of restricted sites, where, by default, active scripting is turned off. Therefore, if the em-
bedded page does not make use of JavaScript beyond frame-busting, this protection can
be thwarted by an attacker.

An alternative solution, not relying on JavaScript, requires the user to re-authenticate
(e.g., by re-typing the password or by solving a CAPTCHA) in order to perform any
sensitive actions. However, frequent re-authentications degrade the user experience, and
thus, cannot be used extensively.

Finally, a possible way to mitigate the problem consists of detecting and stopping
clickjacking attempts in the browser. The ClearClick extension, recently introduced into
the NoScript plug-in, offers some degree of protection. To this end, ClearClick attempts
to detect if a mouse click event reaches an invisible, or partially obstructed element. The
click event is put on hold, and the user is informed about the true origin of the clicked
element. Only if the user agrees, the event propagation continues as usual. Note that
NoScript’s ClearClick exhibited a large number of false positives in our experiments (i.e.,
see Section 5.4).

5.3 Detection Approach

In this section, we present our approach to simulate user clicks on all the elements of the
page under analysis, and to detect the consequences of these clicks in terms of clickjacking
attacks. Our technique relies on a real browser to load and render a web page. When
the page has been rendered, we extract the coordinates of all the clickable elements. In
addition, we programmatically control the mouse and the keyboard to properly scroll the
web page and click on each of those elements.

Figure 5.2 shows the architecture of our system, which consists of two main parts: A



Fig. 5.2: System architecture

testing unit is in charge of performing the clicks, and a detection unit is responsible for
identifying possible clickjacking attempts on the web page under analysis.

The detection unit combines two browser plug-ins that operate in parallel to analyze
the automated clicks. The first plug-in consists of code that we developed in order to
detect overlapping clickable elements. To complement this solution, we also adopted the
NoScript tool, that has recently introduced an anti-clickjacking feature. Our experimental
results (see Section 5.4) show that the combination of the two different detection techniques
greatly reduces the number of false positives.

The testing unit contains a plug-in that extracts the coordinates of the clickable ele-
ments rendered on the page, and a browser-independent component that moves the mouse
to the coordinates, and simulates the user’s clicks. In addition, the testing unit is respon-
sible for navigating the browser by typing into the address bar the address of the web page
to visit.

In the following, we explain the two units in more detail.

5.3.1 Detection unit

This unit is responsible for detecting and logging any clickjacking attacks that are con-
tained in the web page under analysis.

The detection is handled by two browser plug-ins. The first component is a solution
that we developed to detect when multiple clickable elements co-exist and overlay in the
region of the page where the user has clicked. We call our detection solution ClickIDS.
The second plug-in is the modified version of the NoScript open-source tool that saves
the generated alerts into a database instead of displaying pop-ups to the user. In the
following, we describe ClickIDS and NoScript in more detail.

ClickIDS ClickIDS is the browser plug-in that we implemented. It intercepts the mouse
click events, checks the interactions with the elements of a web page, and detects click-
jacking attacks.

The basic idea behind ClickIDS is simple. A suspicious behavior is reported when two



or more clickable elements of different pages overlap at the coordinates of the mouse click.
As clickable elements, we consider links (or, more precisely, the area enclosed between
HTML <A> tags), buttons, and form inputs fields such as checkboxes, radio buttons, menu,
and text fields. In addition, we also take into account Adobe Flash content, embedded in
HTML with <EMBED> tags and associated with the application-type x-shockwave-flash.

We motivate the consideration of Flash content in two ways. First, when clickjacking
was first reported in October 2008, it gained interest fast mainly because a clickjack-
ing exploitation technique against the Adobe Flash Player Setting Manager would have
permitted to modify the web-cam and microphone security settings [136]. Basically this
exploit allowed an attacker to remotely turn the user’s computer into an eavesdropping
device. Second, for some advanced attacks to be successful, an attacker would need to
steal multiple user-clicks, and therefore, would prefer to overlay the clickjacked site with
flash content (e.g., a game) that persuades the user to perform several clicks.

When our plug-in is loaded, it registers to the document event load. Each time a new
page is loaded, the page-handler routine is executed. This routine registers the loaded
page and attaches a second click-handler to it. At this point, every click of the user in the
context of the web page is intercepted, and handled by the click-handler routine.

If the clicked element is clickable (according to our previous definition), we register the
current mouse coordinates. Then, we scan the main page and the contained FRAMEs and
IFRAMEs to check if they contain clickable elements at the same position. If there exists
at least one element that overlays the clicked one, we generate an alert. ClickIDS is more
precise in identifying attacks based on overlapping elements. However, unlike NoScript,
it is not able to detect attacks based on partially obstructed pages. Nevertheless, the
combination of the two different techniques can effectively reduce the number of false
positives generated by the tools individually.

Note that we also developed a third component that we call Stopper, which drops mouse
events after all the registered listeners have been successfully executed. This prevents the
browser from actually opening a new page, submitting a form, or downloading a file in
response to the mouse clicks.

NoScript NoScript is a Firefox add-on that provides protection against common security
vulnerabilities such as cross-site scripting. It also features a URL access-control mechanism
that filters browser-side executable contents such as Java, Adobe Flash, and Microsoft
Silverlight.

In October 2008, an anti-clickjacking feature was integrated into NoScript. This fea-
ture protects users against transparent IFRAME-based attacks. Starting from version
1.8.2, the protection has been extended to cover also partially obstructed and disguised
elements. The implemented technique, denoted ClearClick, resembles one proposed by
Zalewski [149], and is based on the analysis of the click’s neighborhood region. An alert is
triggered when a mouse click is detected in a region where elements from different origins
overlap.

For our prototype, we modified NoScript version 1.9.0.5 and we replace the visual alerts
that are normally generated for the user with a logging capability toward an external SQL
database. Our customized version produces an entry for each clickjacking attempt, con-
taining a reference to the website that has generated the alert, the URL of the (I)FRAME
that has been clickjacked, and the element of the page that has been clicked (tag name,
type, href, and coordinates).



5.3.2 Testing unit

The testing unit simulates the behavior of a human user that interacts with the content
of a web page. It is responsible for instructing the browser to visit a certain URL, and
then to iteratively click on the clickable elements contained on the page.

We designed our testing unit to overcome the limitations of existing systems for web
application testing. Solutions such as Selenium [7] and Watir [8] simulate the mouse actions
from inside the browser, sending events to the element that should be clicked. Although
this approach is convenient for testing the functional requirements of web applications
(such as the correctness of links and form references), it is not suitable for our purposes.
The reason is that we do not know on which element the user intended to click on (this is,
in fact, the premise for a clickjacking attack). Hence, we did not wish to “simulate” a user
click inside the browser, but to control the mouse at the window level, and to actually
move it over the interesting element, and click the left button on it. By doing this, we
can also be sure that every JavaScript code in the page (such as the ones registered to
OnMouseOver or OnMouseUp events) are executed exactly in the same way as they would
if the user was controlling the mouse herself.

Our tool utilizes xdotool [10], a wrapper around the X11 testing library, to move the
mouse on the screen and to generate keyboard and mouse events. The testing unit can
place the mouse cursor at the screen coordinates where the web page’s clickable elements
are rendered. Since the clicks are generated from the graphical interface itself, from the
browser’s point of view, they are identical to those of a real user.

The main component of the testing unit is the Xclick script. It receives the list of
URLs to visit, and it feeds them, one by one, to the browser. Once the page is successfully
loaded, the script positions the mouse over each element, and clicks on them. If the element
coordinates are outside the browser window, Xclick properly scrolls down the page to show
the required content. In addition, Xclick properly manages special elements such as form
drop down boxes which can be rolled up pressing the escape button. For large elements
(e.g., images and flash contents), it is more difficult to predict the exact position where
the clickjacking may occur. Therefore, Xclick performs multiple clicks at fixed intervals
to cover the entire element area, in such a way to raise any possible clickjacking attacks.
Finally, to improve the reliability of the system, Xclick is able to detect and close any
windows, popups, or browser tabs that are opened by the web page as a consequence of
the mouse clicks. A pseudocode of the script is here detailed:� �
start browser

for url in input:

check the browser functionalities , else:

restart it

feed the browser with the url and instruct it

to load the page

wait for the page to be loaded

if a timeout occurs:

continue

check the elements extractor ’s logfile , else:

continue

parse the logfile for the list_of_elements and

the page statistics

record the page statistics in the database

for element in list_of_elements:

if element > 50x50px:

crop it (multi click)

if element.coordinates are in the next page:



scroll the browser page

check the element.coordinates validity else:

continue

move the mouse on the element.coordinates

click

if element.type == select:

press ’esc ’ to close the menu� �
The coordinates of the web page’s clickable elements are received from the element

extractor, a custom extension that we installed in the browser. This component is regis-
tered to the page-open event such that each time a page is loaded, a callback function is
called to parse the page’s DOM, and to extract all the information about the clickable ele-
ments. The plug-in also extracts information concerning all the FRAMEs and IFRAMEs
included in the visited page, including their URL and opacity values. The opacity is a
CSS3 property that specifies the transparency of an HTML element to a value varying
from 0.0 (fully transparent) to 1.0 (completely opaque).

5.3.3 Limitations

The main limitation of our current implementation to detect clickjacking attempts is that
the testing unit interacts only with the clickable elements of the page. In general, this
is not a requirement for mounting a clickjacking attack because, at least in theory, it is
possible for an attacker to build a page in which a transparent IFRAME containing the
target site is placed on top of an area containing normal text.

In order to cope with this additional set of attacks, we combine the alerts produced
by our plug-ins with the warnings generated by the Xclick tool for the web pages that
contain cross-domain transparent IFRAMEs. In particular, our approach generates a final
report containing both the alert messages for the pages where a clickjacking attempt is
detected, and the warning messages that are raised when no attacks are detected, but the
page contains transparent IFRAMEs that partially overlap the rest of the page content.
As explained in the Section 5.4, by analyzing the warning messages, it is possible to detect
the clickjacking attacks that do not make use of clickable elements.

5.4 Evaluation

To test the effectiveness of our prototype tool in detecting clickjacking attacks, we first
created five different test pages, based on the examples published on the Internet, that
contained clickjacking attacks,. In all cases, the system correctly raised an alert message
to report the attack.

Having initially validated our approach on these test pages, we set out to test the
effectiveness of our system in identifying real-world websites containing similar, previously-
unknown clickjacking attacks. We combined different sources to obtain an initial list of
URLs that is representative of what an average user may encounter in her everyday web
browsing experience. More precisely, we included the top 1000 most popular websites
published by Alexa [1], over 20,000 profiles of the MySpace [3] social network, and the
results of ad-hoc queries on popular search engines. In particular, we queried Google
and Yahoo with various combinations of terms such as “porn,” “free download,” “warez,”
“online game,” “ringtones,” and “torrents.” We ran each query in different languages
including English, German, French, Italian, and Turkish.



Value Rate
Visited Pages 1,065,482 100%
Unreachable or Empty 86,799 8.15%
Valid Pages 978,683 91.85%
With IFRAMEs 368,963 37.70%
With FRAMES 32,296 3.30%
Transparent (I)FRAMEs 1,557 0.16%
Clickable Elements 143,701,194 146.83 el./page
Speed Performance 71 days 15,006 pages/day

Tab. 5.1: Statistics on the visited pages

To increase the chances of finding attacks, we also included sources that were more
likely to contain malicious content. For this purpose, we included domains from malwaredomains.
com [2], lists of phishing URLs published by PhishTank [5], and domains that were queried
by malware samples analyzed by the Anubis [77] online malware analysis tool.

Combining all these sources, we generated an initial seed list of around 70,000 URLs.
Our crawler then visited these URLs, and continued to crawl through the links embedded
in the pages. Overall, we visited 1,065,482 pages on 830,000 unique domains.

For our crawling experiments, we installed our tool on ten virtual machines executed in
parallel on VMWare Server 3. Since a clickjacking attack is likely to exploit a transparent
IFRAME, to speedup the analysis, we decided to dedicate half of the machines to click
only on pages containing transparent IFRAMEs. Each machine was running Debian Linux
Squeeze and Mozilla Firefox 3, equipped with our detection and testing plug-ins. The
browser was customized for being suitable for running in the background, and enabling
automated access to its interface. We also disabled any user interfaces that required user
interaction, blocked pop-ups and video content, and disabled document caching.

5.5 Results

We ran our experiments for about two months, visiting a total of 1,065,482 unique web
pages. We analyzed those pages in ”online mode” and we performed an average of 15,000
pages per day. Around 7% of the pages did not contain any clickable element – usually a
sign that a page has been taken down, or it is still under construction. The remaining pages
contained a total of 143.7 million clickable elements (i.e., an average of 146.8 elements per
page).

37.3% of the visited pages contained at least one IFRAME, while only 3.3% of the
pages included a FRAME. However, only 930 pages contained completely transparent
IFRAMEs, and 627 pages contained IFRAMEs that were partially transparent. This
suggests that while IFRAMEs are commonly used in a large fraction of Internet sites, the
use of transparency is still quite rare, accounting for only 0.16% of the visited pages. Table
5.1 summarizes these statistics.

Table 5.2 shows the number of pages on which our tool generated an alert. The results
indicate that the two plug-ins raised a total of 672 (137 for ClickIDS and 535 for NoScript)
alerts. That is, on average, one alert was raised every 1,470 pages. This value drops down
to a mere 6 alerts (one every 163,000 pages) if we only consider the cases where both
plug-ins reported a clickjacking attack. Note that NoScript was responsible for most of

malwaredomains.com
malwaredomains.com


Total True Borderlines False
Positives Positives

ClickIDS 137 2 5 130
NoScript 535 2 31 502
Both 6 2 0 4

Tab. 5.2: Results

the alerts, and, interestingly, 97% of these alerts were raised on websites containing no
transparent elements at all.

To better understand which alerts corresponded to real attacks, and which ones were
false positives, we manually analyzed all alerts by visiting the corresponding web pages.
The results of our analysis are reported in the last three columns of Table 5.2.

Around 5% of the alerts raised during our experiments involved a frame pointing to
the same domain of the main page. Since it is very unlikely that websites would try to
trick the user into clicking on a hidden element of the site itself, we marked all these
messages as being false positives. However, we decided to manually visit some of these
pages to have an insight into what kind of conditions tend to cause a false positive in the
two plug-ins.

We then carefully analyzed the pages containing cross-domain frames. In this set,
we identified a number of interesting cases that, even though not corresponding to real
attacks, matched our definition of clickjacking. We decided to divide these cases in two
categories: The true positives contain real clickjacking attempts, while the borderline cases
contain pages that were difficult to classify as being clickjacking.

5.5.1 False positives

Most of the false alarms were generated by pop-ups that dynamically appear in response to
particular events, or by banners that are placed on top of a scrollable page. In both cases,
the content of the advertisement was visible to the user, but it confuses both NoScript
(because the area around the mouse click is not the one that NoScript is expecting), and
ClickIDS (because the banner can contain clickable elements that overlap other clickable
elements on the main page). For similar reasons, the use of dynamic drop down menus
can sometimes confuse both plug-ins.

NoScript also reported an alert when a page contained a transparent IFRAME posi-
tioned completely outside of the page margins. A manual examination of some of these
cases revealed that they corresponded, most of the time, to compromised websites where
an attacker included a hidden IFRAME pointing to a malicious page that attempts to
infect the user’s computer with malware. Even though these were obvious attacks, no
attempts were done to intercept, or steal the user’s clicks. Another common scenario that
induced NoScript to generate false alarms are sites that contain IFRAMEs overlapping the
page content in proximity, but not on top of, a clicked element. While ClickIDS did not
report these pages, it raised several false alarms due to harmless overlapping of clickable
elements even though the page and IFRAME contents were perfectly visible to the user.

Nevertheless, note that by combining together the two techniques (i.e., ClickIDS and
NoScript), only four false positive messages were generated.



5.5.2 True positive and borderline cases

In our experiments, we were able to identify two real-world clickjacking attacks. The first
one used the transparent IFRAME technique to trick the user into clicking on a concealed
advertisement banner in order to generate revenue for the attacker (i.e., click fraud). Both
plug-ins raised an alert for this attack. The second attack contained an instance of the
Twitter attack we already discussed in Section 5.2. We were able to detect this second
case by analyzing the warnings generated by our system for the web pages that contain
cross-domain transparent IFRAMEs. In fact, by the time we visited the page, Twitter
had already implemented an anti-clickjacking defense (i.e., A javascript frame-busting code
now substitutes the framed page with empty content).

Even though the pages containing these clickjacking attacks turned out to be exam-
ples posted on security-related websites, they were true positives and we detected them
automatically. Hence, our system was able to detect these pages by automated analysis
of real-world Internet pages.

Moreover, we also found a number of interesting cases that are difficult to accurately
classify as either being real attacks, or false positives.

A first example of these borderline cases occurred when an IFRAME was encapsulated
in a link tag. In this case, a cross-domain IFRAME was included in a page as link content
(i.e., between <A> tags). We found that on certain browsers, such as the Internet Explorer,
the user can interact with the framed page normally, but when she clicks somewhere on
the content that is not a clickable element, the click is caught by the encapsulating link.
The result is a kind of “reversed” clickjacking in the sense that the user believes that she
is clicking on the framed page, but is instead clicking on a link in the main page. Even
though it matches our attack definition, this setup cannot be used to deceive the user into
interacting with a different web page. It is unclear to us why the developers of the site
chose to use this technique, but we believe that it might have a usability purpose – no
matter where the user would click on the page, she would be directed to a single URL
chosen by the developer.

Another interesting case that we observed in our experiments occurs when the page to
be included into an IFRAME is not available anymore, or has been heavily modified since
the page was created. If the IFRAME is set with the CSS attributes allowtransparency:true
and background-color:
transparent, the content of the IFRAME is visible to the user, but the area that does
not contain anything (e.g., the page background) is not. The obvious intention of the page
authors was to display some content from another page (e.g., a small horizontal bar con-
taining some news messages), but since the destination page was not found, and therefore
returned a mostly empty page, the IFRAME was rendered as a transparent bar. If the area
overlaps with clickable elements, the user could end up clicking on the transparent empty
layer (containing a page from a different domain) instead of the main page elements.

5.5.3 False negatives

In order to estimate the false negative rate of our tool, we analyzed all pages for which
warning messages were raised (i.e., the pages containing cross-domain transparent IFRAMEs,
but in which no attack was reported by our plug-ins). Most of the 140 pages for which
our tool raised a warning were pages that included the Blogger [14] navigation bar on the
top of the page. This bar is implemented as a transparent IFRAME that is automati-
cally set to be opaque when the mouse is moved to the top of the page. In this case, the



transparency is used as a means to easily control the appearance and disappearance of the
navigation bar.

5.6 Pages implementing protection techniques

In our study, we conducted the following experiment to assess the prevalence of web sites
that implement the so-called frame-busting technique (see Section 5.2).

First, we prepared a web page that accepts a single parameter denoting a URL that
should be embedded in an IFRAME. Once the page and all contents (i.e., the IFRAME)
finished loading and rendering, we verified that the IFRAME was still present. Pages that
perform frame-busting would substitute the whole content in the browser window, thus
removing the IFRAME. To automate this experiment, we implemented a Firefox extension
that takes a list of URLs to be visited. Once a page is loaded, the extension waits for a
few seconds and then verifies the presence of the IFRAME. If the IFRAME is not part
of the document’s DOM-tree anymore, we conclude that the embedded page performed
frame-busting.

Simultaneously, we analyzed the HTTP headers of the visited websites. The optional
X-FRAME-OPTIONS header is intended to control whether a resource can be embedded
in a frame or not. While it is known that Internet Explorer 8 and the NoScript plug-in for
Firefox honor this header, we also wanted to find out how common the use of this header
is among the sites on the Internet.

We constructed a list of popular URLs to visit by downloading the top 200 entries of
each of the 17 Alexa categories [30]. Furthermore, we added the top 10,000 pages from the
Alexa rankings to the list. Due to many pages that are present in both lists, we visited
a total of 11,005 unique URLs. 1,967 pages did not finish rendering within a 30 seconds
timeout, and were, thus, not evaluated.

Our experiment revealed that out of the remaining 9,038 pages, 352 websites (3,8%)
already implement frame-busting techniques to prevent being loaded in a frame. Further-
more, only one of the visited pages1 was using the X-FRAME-OPTIONS header.

5.7 Summary

Clickjacking is a recent web attacks that have been widely discussed on the Web. However,
it is unclear to what extent clickjacking is being used by attackers in the wild, and how
significant the attack is for the security of Internet users.

In this Chapter, we presented our system that is able to automatically detect clickjack-
ing attempts on web pages. We validated our tool and we conducted empirical experiments
to estimate the prevalence of such attacks on the Internet by automatically testing more
than a million web pages that are likely to contain malicious content and to be visited by
Internet users. By distributing the analysis on multiple virtual machines we were able to
scan up to 15,000 web pages per day. Furthermore, we developed a new detection tech-
nique, called ClickIDS, that complements the ClearClick defense provided by the NoScript
plug-in [95]. We integrated all components into an automated, web application testing
system.

Of the web pages we visited, we could confirm two proof-of-concept instances of click-
jacking attacks used for click fraud and message spamming. Even though the pages

1http://flashgot.net/



containing these clickjacking attacks have been posted as examples on security-related
websites, we found them automatically. Furthermore, in our analysis, we also detected
several other interesting cases that we call “borderline attacks”. Such attacks are difficult
to accurately classify as either being real attacks, or false positives.

Our findings suggested that clickjacking is not the preferred attack vector adopted by
attackers on the Internet. In fact, after we had finished our study, Jeremiah Grossman
posted in his blog that he only expects clickjacking to become a real problem in 5 to 6
years from now [82].





65

Chapitre 6

HTTP Parameter Pollution

This chapter presents the first automated approach for the discovery of HTTP Parameter
Pollution vulnerabilities. HPP bugs are the result of a wrong sanitization of the user inputs
for parameter delimiters, and they can be potentially exploited to compromise the logic of
the application and to perform either client-side or server-side attacks.

Using our prototype implementation called PAPAS, we conducted a large-scale study
on more than 5,000 popular websites. Our empirical results show that about a third of
the websites we tested contain vulnerable parameters, and that 46.8% of the vulnerabilities
we discovered can be exploited. The fact we were able to find vulnerabilities in many
high-profile, well-known websites suggests that many developers are not aware of the HPP
problem.

6.1 Problem Statement

HTTP Parameter Pollution attacks (HPP) have only recently been presented and dis-
cussed [110], and have not received much attention so far. An HPP vulnerability allows
an attacker to inject a parameter inside the URLs generated by a web application. The
consequences of the attack depend on the application’s logic, and may vary from a simple
annoyance to a complete corruption of the application’s behavior. Because this class of
web vulnerability is not widely known and well-understood yet, in this section, we first
explain and discuss the problem.

Even though injecting a new parameter can sometimes be enough to exploit an ap-
plication, the attacker is usually more interested in overriding the value of an already
existing parameter. This can be achieved by “masking” the old parameter by introduc-
ing a new one with the same name. For this to be possible, it is necessary for the web
application to “misbehave” in the presence of duplicated parameters, a problem that is
often erroneously confused with the HPP vulnerability itself. However, since parameter
pollution attacks often rely on duplicated parameters in practice, we decided to study the
parameter duplication behavior of applications, and measure it in our experiments.

6.1.1 Parameter Precedence in Web Applications

During the interaction with a web application, the client often needs to provide input to
the program that generates the requested web page (e.g., a PHP or a Perl script). The
HTTP protocol [55] allows the user’s browser to transfer information inside the URI itself
(i.e., GET parameters), in the HTTP headers (e.g., in the Cookie field), or inside the



Technology/Server Tested Method Parameter Precedence
ASP/IIS Request.QueryString("par") All (comma-delimited string)
PHP/Apache $ GET["par"] Last
JSP/Tomcat Request.getParameter("par") First
Perl(CGI)/Apache Param("par") First
Python/Apache getvalue("par") All (List)

Tab. 6.1: Parameter precedence in the presence of multiple parameters with the same
name

request body (i.e., POST parameters). The adopted technique depends on the application
and on the type and amount of data that has to be transferred.

For the sake of simplicity, in the following, we focus on GET parameters. However,
note that HPP attacks can be launched against any other input vector that may contain
parameters controlled by the user.

RFC 3986 [36] specifies that the query component (or query string) of a URI is the
part between the “?” character and the end of the URI (or the character “#”). The query
string is passed unmodified to the application, and consists of one or more field=value
pairs, separated by either an ampersand or a semicolon character.

For example, the URI http://host/path/somepage.pl?name=john&age=32 invokes
the verify.pl script, passing the values john for the name parameter and the value 32 for
the age parameter. To avoid conflicts, any special characters (such as the question mark)
inside a parameter value must be encoded in its %FF hexadecimal form.

This standard technique for passing parameters is straightforward and is generally well-
understood by web developers. However, the way in which the query string is processed to
extract the single values depends on the application, the technology, and the development
language that is used.

For example, consider a web page that contains a check-box that allows the user to
select one or more options in a form. In a typical implementation, all the check-box
items share the same name, and, therefore, the browser will send a separate homonym
parameter for each item selected by the user. To support this functionality, most of the
programming languages used to develop web applications provide methods for retrieving
the complete list of values associated with a certain parameter. For example, the JSP
getParameterValues method groups all the values together, and returns them as a list
of strings. For the languages that do not support this functionality, the developer has to
manually parse the query string to extract each single value.

However, the problem arises when the developer expects to receive a single item and,
therefore, invokes methods (such as getParameter in JSP) that only return a single value.
In this case, if more than one parameter with the same name is present in the query string,
the one that is returned can either be the first, the last, or a combination of all the values.
Since there is no standard behavior in this situation, the exact result depends on the
combination of the programming language that is used, and the web server that is being
deployed. Table 6.1 shows examples of the parameter precedence adopted by different web
technologies.

Note that the fact that only one value is returned is not a vulnerability per se. However,
if the developer is not aware of the problem, the presence of duplicated parameters can
produce an anomalous behavior in the application that can be potentially exploited by an



attacker in combination with other attacks. In fact, as we explain in the next section, this
is often used in conjunction with HPP vulnerabilities to override hard-coded parameter
values in the application’s links.

6.1.2 Parameter Pollution

An HTTP Parameter Pollution (HPP) attack occurs when a malicious parameter Pinj ,
preceded by an encoded query string delimiter, is injected into an existing parameter Phost.
If Phost is not properly sanitized by the application and its value is later decoded and used
to generate a URL A, the attacker is able to add one or more new parameters to A.

The typical client-side scenario consists of persuading a victim to visit a malicious URL
that exploits the HPP vulnerability. For example, consider a web application that allows
users to cast their vote on a number of different elections. The application, written in
JSP, receives a single parameter, called poll id, that uniquely identifies the election the
user is participating in. Based on the value of the parameter, the application generates a
page that includes one link for each candidate. For example, the following snippet shows
an election page with two candidates where the user could cast her vote by clicking on the
desired link:� �
Url: http :// host/election.jsp?poll_id =4568

Link1: <a href="vote.jsp?poll_id =4568& candidate=white">

Vote for Mr. White </a>

Link2: <a href="vote.jsp?poll_id =4568& candidate=green">

Vote for Mrs. Green </a>� �
Suppose that Mallory, a Mrs. Green supporter, is interested in subverting the result of

the online election. By analyzing the webpage, he realizes that the application does not
properly sanitize the poll id parameter. Hence, Mallory can use the HPP vulnerability
to inject another parameter of his choice. He then creates and sends to Alice the following
malicious Url:� �
http :// host/election.jsp?poll_id =4568%26 candidate %3 Dgreen� �

Note how Mallory “polluted” the poll id parameter by injecting into it the candidate=green
pair. By clicking on the link, Alice is redirected to the original election website where she
can cast her vote for the election. However, since the poll id parameter is URL-decoded
and used by the application to construct the links, when Alice visits the page, the malicious
candidate value is injected into the URLs1:� �
http :// host/election.jsp?poll_id =4568%26candidate%3Dgreen

Link 1: <a href=vote.jsp?poll_id =4568&candidate=green

&candidate=white >Vote for Mr. White </a>

Link 2: <a href=vote.jsp?poll_id =4568&candidate=green

&candidate=green >Vote for Mrs. Green </a>� �
No matter which link Alice clicks on, the application (in this case the vote.jsp script)

will receive two candidate parameters. Furthermore, the first parameter will always be
1URLs in the page snippets have the injected string emphasized by using a red, underlining font.



set to green.
In the scenario we discussed, it is likely that the developer of the voting application

expected to receive only one candidate name, and, therefore, relied on the provided basic
Java functionality to retrieve a single parameter. As a consequence, as shown in Table 6.1,
only the first value (i.e., green) is returned to the program, and the second value (i.e., the
one carrying the Alice’s actual vote) is discarded.

In summary, in the example we presented, since the voting application is vulnerable
to HPP, it is possible for an attacker to forge a malicious link that, once visited, tampers
with the content of the page, and returns only links that force a vote for Mrs. Green.

Cross-Channel Pollution HPP attacks can also be used to override parameters be-
tween different input channels. A good security practice when developing a web application
is to accept parameters only from the input channel (e.g., GET, POST, or Cookies) where
they are supposed to be supplied. That is, an application that receives data from a POST
request should not accept the same parameters if they are provided inside the URL. In
fact, if this safety rule is ignored, an attacker could exploit an HPP flaw to inject arbi-
trary parameter-value pairs into a channel A to override the legitimate parameters that
are normally provided in another channel B. Obviously, for this to be possible, a necessary
condition is that the web technology gives precedence to A with respect to B.

For example, in the next snippet, the attacker, by injecting the parameter id=6 in the
vulnerable parameter, force the client to build a GET request that can (possibly) override
the value of the POSTed id=1.� �
Url: foo?vulnerable -parameter=foo%26id%3D6

Form:

<form action=buy?vulnerable -parameter=foo&id=6>

<input type="text" name="id" />

<input type=" submit" value=" Submit" />

</form >

Request:

POST /buy?vulnerable_parameter=foo&id=6

Host: site.com

id=1� �
HPP to bypass CSRF tokens One interesting use of HPP attacks is to bypass the
protection mechanism used to prevent cross-site request forgery. A cross-site request
forgery (CRSF) is a confused deputy type of attack [67] that works by including a malicious
link in a page (usually in an image tag) that points to a website in which the victim is
supposed to be authenticated. The attacker places parameters into the link that are
required to initiate an unauthorized action. When the victim visits the attack page,
the target application receives the malicious request. Since the request comes from a
legitimate user and includes the cookie associated with a valid session, the request is likely
to be processed.

A common technique to protect web applications against CSRF attacks consists of
using a secret request token (e.g., see [78, 88]). A unique token is generated by the
application and inserted in all the sensitive links URLs. When the application receives a
request, it verifies that it contains the valid token before authorizing the action. Hence,



since the attacker cannot predict the value of the token, she cannot forge the malicious
URL to initiate the action.

A parameter pollution vulnerability can be used to inject parameters inside the existing
links generated by the application (that, therefore, include a valid secret token). With
these injected parameters, it may be possible for the attacker to initiate a malicious action
and bypass CSRF protection.

A CSRF bypassing attack using HPP was demonstrated in 2009 against Yahoo Mail [51].
The parameter injection permitted to bypass the token protections adopted by Yahoo to
protect sensitive operations, allowing the attacker to delete all the mails of a user.

The following example demonstrates a simplified version of the Yahoo attack:� �
Url:

showFolder?fid=Inbox&order=down&tt=24& pSize =25& startMid =0

%2526cmd=fmgt.emptytrash%26DEL=1%26DelFID=Inbox%26

cmd=fmgt.delete

Link:

showMessage?sort=date&order=down&startMid =0

%26cmd%3Dfmgt.emptytrash&DEL=1&DelFID=Inbox&

cmd=fmgt.delete&.rand =1076957714� �
In the example, the link to display the mail message is protected by a secret token

that is stored in the .rand parameter. This token prevents an attacker from including
the link inside another page to launch a CSRF attack. However, by exploiting an HPP
vulnerability, the attacker can still inject the malicious parameters (i.e., deleting all the
mails of a user and emptying the trash can) into the legitimate page. The injection string
is a concatenation of the two commands, where the second command needs to be URL-
encoded twice in order to force the application to clean the trash can only after the deletion
of the mails.

Bypass WAFs input validation checks An attacker can exploit HPP flaws to launch
traditional web attacks (e.g. XSS, SQL Injection) and by-pass web application firewalls
(WAFs). Different technologies, such as ASP, concatenate the multiple values of a param-
eter, when it is twice repeated.

For example, the two query strings var=foo&var=bar and var=foo,bar are equivalent,
but the second one is the result of a server-side concatenation of the parameters. Listing
6.1.2 shows how an attacker can setup a SQL Injection by splitting his query into multiple
parameters with the same name. Lavakumar recently presented ([89]) an advance version
of this example where the “commas” introduced by the concatenation are stripped out
with inline comments (only on Microsoft SQL Server).� �
Standard: show_user.aspx?id=5; select +1,2,3+from+users+where+id=1--

Over HPP: show_user.aspx?id=5; select +1&id=2&id=3+ from+users+where+id=1--

Standard: show_user.aspx?id=5+ union+select +*+ from+users --

Over HPP: show_user.aspx?id=5/*&id=*/ union /*&id=*/ select +*/*&id=*/ from+users --� �



DB

Stat GeneratorStat Generator

 Crawler Crawler

 V-Scan V-Scan

 P-Scan P-Scan

Browser
Extension

Instrumented
Browser

Reports

Fig. 6.1: Architecture of PAPAS

6.2 Automated HPP Detection

Our PArameter Pollution Analysis System (PAPAS) to automatically detect HPP vul-
nerabilities in websites consists of four main components: A browser, a crawler, and two
scanners.

The first component is an instrumented browser that is responsible for fetching the
webpages, rendering the content, and extracting all the links and form URLs contained in
the page.

The second component is a crawler that communicates with the browser through a
bidirectional channel. This channel is used by the crawler to inform the browser on the
URLs that need to be visited, and on the forms that need to be submitted. Furthermore,
the channel is also used to retrieve the collected information from the browser.

Every time the crawler visits a page, it passes the extracted information to the two
scanners so that it can be analyzed. The parameter Precedence Scanner (P-Scan) is
responsible for determining how the page behaves when it receives two parameters with
the same name. The Vulnerability Scanner (V-Scan), in contrast, is responsible for testing
the page to determine if it is vulnerable to HPP attacks. V-Scan does this by attempting
to inject a new parameter inside one of the existing ones and analyzing the output. The
two scanners also communicate with the instrumented browser in order to execute the
tests.

All the collected information is stored in a database that is later analyzed by a statistics
component that groups together information about the analyzed pages, and generates a
report for the vulnerable URLs.

The general architecture of the system is summarized in Figure 6.1. In the following,
we describe the approach that is used to detect HPP vulnerabilities and each component
in more detail.

6.2.1 Browser and Crawler Components

Whenever the crawler issues a command such as the visiting of a new webpage, the instru-
mented browser in PAPAS first waits until the target page is loaded. After the browser
is finished parsing the DOM, executing the client-side scripts, and loading additional re-
sources, a browser extension (i.e., plugin) extracts the content, the list of links, and the
forms in the page.



In order to increase the depth that a website can be scanned with, the instrumented
browser in PAPAS uses a number of simple heuristics to automatically fill forms (similarly
to previously proposed scanning solutions such as [86]). For example, random alphanu-
meric values of 8 characters are inserted into password fields and a default e-mail address
is inserted into fields with the name email, e-mail, or mail.

For sites where the authentication or the provided inputs fail (e.g., because of the use of
CAPTCHAs), the crawler can be assisted by manually logging into the application using
the browser, and then specifying a regular expression to be used to prevent the crawler from
visiting the log-out page (e.g., by excluding links that include the cmd=logout parameter).

6.2.2 P-Scan: Analysis of the Parameter Precedence

The P-Scan component analyzes a page to determine the precedence of parameters if
multiple occurrences of the same parameter are injected into an application. For URLs
that contain several parameters, each one is analyzed until the page’s precedence has been
determined or all available parameters have been tested.

The algorithm we use to test the precedence of parameters starts by taking the first
parameter of the URL (in the form par1=val1), and generates a new parameter value val2
that is similar to the existing one. The idea is to generate a value that would be accepted
as being valid by the application. For example, a parameter that represents a page number
cannot be replaced with a string. Hence, a number is cloned into a consecutive number,
and a string is cloned into a same-length string with the first two characters modified.

In a second step, the scanner asks the browser to generate two new requests. The first
request contains only the newly generated value val2. In contrast, the second request
contains two copies of the parameter, one with the original value val1, and one with the
value val2.

Suppose, for example, that a page accepts two parameters par1 and par2. In the first
iteration, the first parameter is tested for the precedence behavior. That is, a new value
new val is generated and two requests are issued. In sum, the parameter precedence test
is run on that pages that are the results of the three following requests:� �
Page0 - Original Url: application.php?

par1=val1&par2=val2

Page1 - Request 1: application.php?

par1=new val&par2=val2

Page2 - Request 2: application.php?

par1=val1&par1=new val&par2=val2� �
A naive approach to determine the parameter precedence would be to simply compare

the three pages returned by the previous requests: If Page1 == Page2, then the second
(last) parameter would have precedence over the first. If, however, Page2 == Page0, the
application is giving precedence to the first parameter over the second.

Unfortunately, this straightforward approach does not work well in practice. Modern
web applications are very complex, and often include dynamic content that may still vary
even when the page is accessed with exactly the same parameters. Publicity banners, RSS
feeds, real-time statistics, gadgets, and suggestion boxes are only a few examples of the
dynamic content that can be present in a page and that may change each time the page
is accessed.

The P-Scan component resolves the dynamic content problem in two stages. First, it



pre-processes the page and tries to eliminate all dynamic content that does not depend
on the values of the application parameters. That is, P-Scan removes HTML comments,
images, embedded contents, interactive objects (e.g., Java applets), CSS stylesheets, cross-
domain iFrames, and client-side scripts. It also uses regular expressions to identify and
remove “timers” that are often used to report how long it takes to generate the page that
is being accessed. In a similar way, all the date and time strings on the page are removed.

The last part of the sanitization step consists of removing all the URLs that reference
the page itself. The problem is that as it is very common for form actions to submit data
to the same page, when the parameters of a page are modified, the self-referencing URLs
also change accordingly. Hence, to cope with this problem, we also eliminate these URLs.

After the pages have been stripped off their dynamic components, P-Scan compares
them to determine the precedence of the parameters. Let P0’, P1’, and P2’ be the
sanitized versions of Page0, Page1, and Page2. The comparison procedure consists of five
different tests that are applied until one of the tests succeeds:

I. Identity Test - The identity test checks whether the parameter under analysis has
any impact on the content of the page. In fact, it is very common for query strings
to contain many parameters that only affect the internal state, or some “invisible”
logic of the application. Hence, if P0’ == P1’ == P2’, the parameter is considered
to be ineffective.

II. Base Test - The base test is based on the assumption that the dynamic component
stripping process is able to perfectly remove all dynamic components from the page
that is under analysis. If this is the case, the second (last) parameter has precedence
over the first if P1’==P2’. The situation is the opposite if P2’ == P0’. Note that
despite our efforts to improve the dynamic content stripping process as much as
possible, in practice, it is rarely the case that the compared pages match perfectly.

III. Join Test - The join test checks the pages for indications that show that the two
values of the homonym parameters are somehow combined together by the appli-
cation. For example, it searches P2’ for two values that are separated by commas,
spaces, or that are contained in the same HTML tag. If there is a positive match, the
algorithm concludes that the application is merging the values of the parameters.

IV. Fuzzy Test - The fuzzy test is designed to cope with pages whose dynamic compo-
nents have not been perfectly sanitized. The test aims to handle identical pages that
may show minor differences because of embedded dynamic parts. The test is based
on confidence intervals. We compute two values, S21 and S20, that represent how
similar P2’ is to the pages P1’ and P0’ respectively. The similarity algorithm we
use is based on the Ratcliff/Obershelp pattern recognition algorithm, (also known
as gestalt pattern matching [115]), and returns a number between 0 (i.e, completely
different) to 1 (i.e., perfect match). The parameter precedence detection algorithm
that we use in the fuzzy test works as follows:� �
if ABS(S21 -S20) > DISCRIMINATION_THRESHOLD:

if (S21 > S20) and (S21 > SIMILARITY_THRESHOLD ):

Precedence = last

else (S20 > S21) and (S20 > SIMILARITY_THRESHOLD ):

Precedence = first

else:

Unknown precedence



else:

Unknown precedence� �
To draw a conclusion, the algorithm first checks if the two similarity values are
different enough (i.e., the values show a difference that is greater than a certain
discrimination threshold). If this is the case, the closer match (if the similarity is
over a minimum similarity threshold) determines the parameter precedence. In other
words, if the page with the duplicated parameters is very similar to the original page,
there is a strong probability that the web application is only using the first parameter,
and ignoring the second. However, if the similarity is closer to the page with the
artificially injected parameter, there is a strong probability that the application is
only accepting the second parameter.

The two threshold values have been determined by running the algorithm on one
hundred random webpages that failed to pass the base test, and for which we manu-
ally determined the precedence of parameters. The two experimental thresholds (set
respectively to 0.05 and 0.75) were chosen to maximize the accuracy of the detection,
while minimizing the error rate.

V. Error Test - The error test checks if the application crashes, or returns an ”internal”
error when an identical parameter is injected multiple times. Such an error usually
happens when the application does not expect to receive multiple parameters with
the same name. Hence, it receives an array (or a list) of parameters instead of a single
value. An error occurs if the value is later used in a function that expects a well-
defined type (such as a number or a string). In this test, we search the page under
analysis for strings that are associated with common error messages or exceptions.
In particular, we adopted all the regular expressions that the SqlMap project [56]
uses to identify database errors in MySQL, PostgreSQL, MS SQL Server, Microsoft
Access, Oracle, DB2, and SQLite.

If none of these five tests succeed, the parameter is discarded from the analysis. This
could be, for example, because of content that is generated randomly on the server-side.
The parameter precedence detection algorithm is then run again on the next available
parameter.

6.2.3 V-Scan: Testing for HPP vulnerabilities

In this section, we describe how the V-Scan component tests for the presence of HTTP
Parameter Pollution vulnerabilities in web applications.

For every page that V-Scan receives from the crawler, it tries to inject a URL-encoded
version of an innocuous parameter into each existing parameter of the query string. Then,
for each injection, the scanner verifies the presence of the parameter in links, action fields
and hidden fields of forms in the answer page.

For example, in a typical scenario, V-Scan injects the pair “%26foo%3Dbar” into the
parameter “par1=val1” and then checks if the “&foo=bar” string is included inside the
URLs of links or forms in the answer page.

Note that we do not check for the presence of the vulnerable parameter itself (e.g., by
looking for the string “par1=val1&foo=bar”). This is because web applications sometimes
use a different name for the same parameter in the URL and in the page content. Therefore,
the parameter “par1” may appear under a different name inside the page.



In more detail, V-Scan starts by extracting the list PURL = [PU1, PU2, . . . PUn] of the
parameters that are present in the page URL, and the list PBody = [PB1, PB2, . . . PBm] of
the parameters that are present in links or forms contained in the page body.
It then computes the following three sets:

� PA = PURL∩PBody is the set of parameters that appear unmodified in the URL and
in the links or forms of the page.

� PB = p | p ∈ PURL ∧ p /∈ PBody contains the URL parameters that do not appear in
the page. Some of these parameters may appear in the page under a different name.

� PC = p | p /∈ PURL ∧ p ∈ PBody is the set of parameters that appear somewhere in
the page, but that are not present in the URL.

First, V-Scan starts by injecting the new parameter in the PA set. We observed that
in practice, in the majority of the cases, the application copies the parameter to the page
body and maintains the same name. Hence, there is a high probability that a vulnerability
will be identified at this stage. However, if this test does not discover any vulnerability,
then the scanner moves on to the second set (PB). In the second test, the scanner tests
for the (less likely) case in which the vulnerable parameter is renamed by the application.
Finally, in the final test, V-Scan takes the parameters in the PC group, attempts to add
these to the URL, and use them as a vector to inject the malicious pair. This is because
webpages usually accept a very large number of parameters, not all of which are normally
specified in the URL. For example, imagine a case in which we observe that one of the links
in the page contains a parameter “language=en”. Suppose, however, that this parameter
is not present in the page URL. In the final test, V-Scan would attempt to build a query
string like “par1=var1&language=en%26foo%3Dbar”.

Note that the last test V-Scan applies can be executed on pages with an empty query
string (but with parameterized links/forms), while the first two require pages that already
contain a query string.

In our prototype implementation, the V-Scan component encodes the attacker pair
using the standard URL encoding schema2. Our experiments show that this is sufficient
for discovering HPP flaws in many applications. However, there is room for improvement
as in some cases, the attacker might need to use different types of encodings to be able to
trigger a bug. For example, this was the case of the HPP attack against Yahoo (previously
described in Section 6.1) where the attacker had to double URL-encode the “cleaning of
the trash can” action.

Handling special cases In our experiments, we identified two special cases in which,
even though our vulnerability scanner reported an alert, the page was not actually vul-
nerable to parameter pollution.

In the first case, one of the URL parameters (or part of it) is used as the entire target
of a link. For example:� �
Url: index.php?v1=p1&uri=apps %2 Femail.jsp %3 Fvar1 %3 Dpar1

%26foo%3Dbar

Link: apps/email.jsp?var1=par1&foo=bar� �
2URL Encoding Reference, http://www.w3schools.com/TAGS/ref_urlencode.asp

http://www.w3schools.com/TAGS/ref_urlencode.asp


A parameter is used to store the URL of the target page. Hence, performing an
injection in that parameter is equivalent to modifying its value to point to a different
URL. Even though this technique is syntactically very similar to an HPP vulnerability,
it is not a proper injection case. Therefore, we decided to consider this case as a false
positive of the tool.

The second case that generates false alarms is the opposite of the first case. In some
pages, the entire URL of the page becomes a parameter in one of the links. This can
frequently be observed in pages that support printing or sharing functionalities. For
example, imagine an application that contains a link to report a problem to the website’s
administrator. The link contains a parameter page that references the URL of the page
responsible for the problem:� �
Url: search.html? session_id =jKAmSZx5%26foo%3Dbar&q=shoes

Link: service_request.html?page=search %2 ehtml %3f

session_id %3 djKAmSZx5&foo=bar&q=shoes� �
Note that by changing the URL of the page, we also change the page parameter

contained in the link. Clearly, this is not an HPP vulnerability.
Since the two previous implementation techniques are quite common in web appli-

cations, PAPAS would erroneously report these sites as being vulnerable to HPP. To
eliminate such alarms and to make PAPAS suitable for large-scale analysis, we integrated
heuristics into the V-Scan component to cross-check and verify that the vulnerabilities
that are identified do not correspond to these two common techniques that are used in
practice.

In our prototype implementation, in order to eliminate these false alarms, V-Scan
checks that the parameter in which the injection is performed does not start with a scheme
specifier string (e.g., http://). Then, it verifies that the parameter as a whole is not used
as the target for a link. Furthermore, it also checks that the entire URL is not copied as a
parameter inside a link. Finally, our vulnerability analysis component double-checks each
vulnerability by injecting the new parameter without url-encoding the separator (i.e., by
injecting &foo=bar instead of %26foo%3Dbar). If the result is the same, we know that the
query string is simply copied inside another URL. While such input handling is possibly
a dangerous design decision on the side of the developer, there is a high probability that
it is intentional so we ignore it and do not report it by default. However, such checks can
be deactivated anytime if the analyst would like to perform a more in-depth analysis of
the website.

6.3 Implementation

The browser component of PAPAS is implemented as a Firefox extension, while the rest
of the system is written in Python. The components communicate over TCP/IP sockets.

Similar to other scanners, it would have been possible to directly retrieve web pages
without rendering them in a real browser. However, such techniques have the drawback
that they cannot efficiently deal with dynamic content that is often found on Web pages
(e.g., Javascript). By using a real browser to render the pages we visit, we are able to
analyze the page as it is supposed to appear to the user after the dynamic content has



been generated. Also, note that unlike detecting cross site scripting or SQL injections,
the ability to deal with dynamic content is a necessary prerequisite to be able to test for
HPP vulnerabilities using a black-box approach.

The browser extension has been developed using the standard technology offered by the
Mozilla development environment: a mix of Javascript and XML User Interface Language
(XUL). We use XPConnect to access Firefox’s XPCOM components. These components
are used for invoking GET and POST requests and for communicating with the scanning
component.

PAPAS supports three different operational modes: fast mode, extensive mode and
assisted mode. The fast mode aims to rapidly test a site until potential vulnerabilities are
discovered. Whenever an alert is generated, the analysis continues, but the V-Scan com-
ponent is not invoked to improve the scanning speed. In the extensive mode, the entire
website is tested exhaustively and all potential problems and injections are logged. The
assisted mode allows the scanner to be used in an interactive way. That is, the crawler
pauses and specific pages can be tested for parameter precedence and HPP vulnerabili-
ties. The assisted mode can be used by security professionals to conduct a semi-automated
assessment of a web application, or to test websites that require a particular user authen-
tication.

PAPAS is also customizable and settings such as scanning depths, numbers of injections
that are performed, waiting times between requests, and page loading timeouts are all
configurable by the analyst.

Online Service We created an online version of PAPAS, shown in Fig. 6.2, that al-
lows developers and maintainers of web applications to scan their own site. A user can
submit the URL of her site for being tested. Our automated system will analyze the
web application, and generate a nice HTML-formatted report when the scan is completed
(Fig. 6.4). We implemented a challenge-response mechanism based on tokens to proof the
site ownership of our users. The URL of this service is http://papas.iseclab.org.

6.3.1 Limitations

Our current implementation of PAPAS has several limitations. First, PAPAS does not
support the crawling of links embedded in active content such as Flash, and therefore, is
not able to visit websites that rely on active content technologies to navigate among the
pages.

Second, currently, PAPAS focuses only on HPP vulnerabilities that can be exploited
via client-side attacks (e.g., analogous to reflected XSS attacks) where the user needs to
click on a link prepared by the attacker. Some HPP vulnerabilities can also be used to
exploit server-side components (when the malicious parameter value is not included in a
link but it is decoded and passed to a back-end component). However, testing for server-
side attacks is more difficult than testing for client-side attacks as comparing requests and
answers is not sufficient (i.e., similar to the difficulty of detecting stored SQL-injection
vulnerabilities via black-box scanning). We leave the detection of server-side attacks to
future work.

Listing 6.3.1 shows an example of a server-side attack and illustrates the difficulty of
detecting such vulnerabilities by a scanner. In the example, an application prints the
list of employees working in a given department. In this specific case, the “engineering”
department is passed as a parameter with which a database select statement is constructed.



Fig. 6.2: PAPAS Online Service, Homepage

Fig. 6.3: PAPAS Online Service, Token Verification

Fig. 6.4: PAPAS Online Service, Report



Categories # of Tested Categories # of Tested
Applications Applications

Internet 698 Government 132
News 599 Social Networking 117

Shopping 460 Video 114
Games 300 Financial 110
Sports 256 Organization 106
Health 235 University 91
Science 222 Others 1401
Travel 175

Tab. 6.2: TOP15 categories of the analyzed sites

In the attack, the attacker injects a new parameter what=passwd and is able to construct
a new select filter in the database (note that this is possible because ASP concatenates
two values with a comma).� �

Normal requests:

URL : printEmploys?department=engineering

Back -end: dbconnect.asp?what=users&department=engineering

Database: select users from table where department=engineering

HPP injected requests:

URL : printEmploys?department=engineering%26what%3Dpasswd

Back -end: dbconnect.asp?what=users&department=engineering&what=passwd

Database: select users,passwd from table where department=engineering� �
6.4 Evaluation

We evaluated our detection technique by running two experiments. In the first experiment,
we used PAPAS to automatically scan a list of popular websites with the aim of measuring
the prevalence of HPP vulnerabilities in the wild. We then selected a limited number of
vulnerable sites and, in a second experiment, performed a more in-depth analysis of the
detected vulnerabilities to gain a better understanding of the possible consequences of the
vulnerabilities our tool automatically identified.

In the first experiment, we collected 5,000 unique URLs from the public database of
Alexa. In particular, we extracted the top ranked sites from each of the Alexa’s cate-
gories [29]. Each website was considered only once – even if it was present in multiple
distinct categories, or with different top-level domain names such as google.com and
google.fr.

The aim of our experiments was to quickly scan as many websites as possible. Our basic
premise was that it would be likely that the application would contain parameter injection
vulnerabilities on many pages and on a large number of parameters if the developers of
the site were not aware of the HPP threat and had failed to properly sanitize the user
input.

To maximize the speed of the tests, we configured the crawler to start from the home-
page and visit the sub-pages up to a distance of three (i.e., three clicks away from the



Parameter Precedence WebSites
Last 2,237 (44.60%)
First 946 (18.86%)

Union 381 (7.60%)
Inconsistent 1,251 (24.94%)

Unknown 201 (4.00%)
Total 5,016 (100.00%)

Database Errors 238 (4.74%)

Last
First
Union
Inconsistent
Unknown

Fig. 6.5: Precedence when the same parameter occurs multiple time

website’s entry point). For the tests, we only considered links that contained at least one
parameter. In addition, we limited the analysis to 5 instances per page (i.e., a page with
the same URL, but a different query string was considered a new instance). The global
timeout was set to 15 minutes per site and the browser was customized to quickly load
and render the pages, and run without any user interaction. Furthermore, we disabled
pop-ups, image loading, and any plug-ins for active content technologies such as Flash, or
Silverlight. An external watchdog was also configured to monitor and restart the browser
in case it became unresponsive.

In 13 days of experiments, we successfully scanned 5,016 websites, corresponding to
a total of 149,806 unique pages. For each page, our tool generated a variable amount
of queries, depending on the number of detected parameters. The websites we tested
were distributed over 97 countries and hundreds of different Alexa categories. Table 6.2
summarizes the 15 categories containing the higher number of tested applications.

Parameter Precedence For each website, the P-Scan component tested every page to
evaluate the order in which the GET parameters were considered by the application when
two occurrences of the same parameter were specified. The results were then grouped
together in a per-site summary, as shown in Figure 6.5. The first column reports the
type of parameter precedence. Last and First indicate that all the analyzed pages of
the application uniformly considered the last or the first specified value. Union indicates
that the two parameters were combined together to form a single value, usually by simply
concatenating the two strings with a space or a comma. In contrast, the parameter
precedence is set to inconsistent when different pages of the website present mismatching
precedences (i.e., some pages favor the first parameter’s value, others favor the last).
The inconsistent state, accounting for a total of 25% of the analyzed applications, is
usually a consequence of the fact that the website has been developed using a combination
of heterogeneous technologies. For example, the main implementation language of the
website may be PHP, but a few Perl scripts may still be responsible for serving certain
pages.

Even though the lack of a uniform behavior can be suspicious, it is neither a sign, nor
a consequence of a vulnerable application. In fact, each parameter precedence behavior
(even the inconsistent case) is perfectly safe if the application’s developers are aware of the
HPP threat and know how to handle a parameter’s value in the proper way. Unfortunately,
as shown in the rest of the section, the results of our experiments suggest that many
developers are not aware of HPP.



Figure 6.5 shows that for 4% of the websites we analyzed, our scanner was not been able
to automatically detect the parameter precedence. This is usually due to two main reasons.
The first reason is that the parameters do not affect (or only minimally affect) the rendered
page. Therefore, the result of the page comparison does not reach the discrimination
threshold. The second reason is the opposite of the first. That is, the page shows too
many differences even after the removal of the dynamic content, and the result of the
comparison falls below the similarity threshold (see Section 6.2.2 for the full algorithm
and an explanation of the threshold values).

The scanner found 238 applications that raised an SQL error when they were tested
with duplicated parameters. Quite surprisingly, almost 5% of the most popular websites
on the Internet failed to properly handle the user input, and returned an ”internal” er-
ror page when a perfectly-legal parameter was repeated twice. Note that providing two
parameters with the same name is a common practice in many applications, and most
of the programming languages provide special functionalities to access multiple values.
Therefore, this test was not intended to be an attack against the applications, but only a
check to verify which parameter’s value was given the precedence. Nevertheless, we were
surprised to note error messages from the websites of many major companies, banks and
government institutions, educational sites, and other popular websites.

HPP Vulnerabilities PAPAS discovered that 1499 websites (29.88% of the total we
analyzed) contained at least one page vulnerable to HTTP Parameter Injection. That is,
the tool was able to automatically inject an encoded parameter inside one of the existing
parameters, and was then able to verify that its URL-decoded version was included in one
of the URLs (links or forms) of the resulting page.

However, the fact that it is possible to inject a parameter does not reveal information
about the significance and the consequences of the injection. Therefore, we attempted
to verify the number of exploitable applications (i.e., the subset of vulnerable websites
in which the injected parameter could potentially be used to modify the behavior of the
application).

We started by splitting the vulnerable set into two separate groups. In 872 websites
(17.39%), the injection was on a link or a form’s action field. In the remaining 627 cases
(12.5%), the injection was on a form’s hidden field.

For the first group, our tool verified if the parameter injection vulnerability could be
used to override the value of one of the existing parameters in the application. This is
possible only if the parameter precedence of the page is consistent with the position of
the injected value. For example, if the malicious parameter is always added to the end
of the URL and the first value has parameter precedence, it is impossible to override any
existing parameter.

When the parameter precedence is not favorable, a vulnerable application can still be
exploitable by injecting a new parameter (that differs from all the ones already present in
the URL) that is accepted by the target page.

For example, consider a page target.pl that accepts an action parameter. Suppose
that, on the same page, we find a page poor.pl vulnerable to HPP:� �
Url: poor.pl?par1=val1%26action%3Dreset

Link: target.pl?x=y&w=z&par1=val1&action=reset� �
Since in Perl the parameter precedence is on the first value, it is impossible to over-



ride the x and w parameters. However, as shown in the example, the attacker can still
exploit the application by injecting the action parameter that she knows is accepted by
the target.pl script. Note that while the parameter overriding test was completely au-
tomated, this type of injection required a manual supervision to verify the effects of the
injected parameter on the web application.

The final result was that at least 702 out of the 872 applications of the first group
were exploitable. For the remaining 170 pages, we were not able, through a parameter
injection, to affect the behavior of the application.

For the applications in the second group, the impact of the vulnerability is more difficult
to estimate in an automated fashion. In fact, since modern browsers automatically encode
all the form fields, the injected parameter will still be sent in a url-encoded form, thus
making an attack ineffective.

In such a case, it may still be possible to exploit the application using a two-step
attack where the malicious value is injected into the vulnerable field, it is propagated in
the form submission, and it is (possibly) decoded and used in a later stage. In addition,
the vulnerability could also be exploited to perform a server-side attack, as explained in
Section 6.3.1. However, using a black-box approach, it is very difficult to automatically
test the exploitability of multi-step or server-side vulnerabilities. Furthermore, server-side
testing might have had ethical implications (see Section 6.4.2 for discussion). Therefore,
we did not perform any further analysis in this direction.
To conclude, we were able to confirm that in (at least) 702 out of the 1499 vulnerable
websites (i.e., 46.8%) that PAPAS identified, it would have been possible to exploit the
HPP vulnerability to override one of the hard-coded parameters, or to inject another
malicious parameter that would affect the behavior of the application.

Figure 6.6 shows the fraction of vulnerable and exploitable applications grouped by
the different Alexa categories. The results are equally divided, suggesting that important
financial and health institutions do not seem to be more security-aware and immune to
HPP than leisure sites for sporting and gaming.

False Positives In our vulnerability detection experiments, the false positives rate was
1.12% (10 applications). All the false alarms were due to parameters that were used by
the application as an entire target for one of the links. The heuristic we implemented to
detect these cases (explained in Section 6.2.3) failed because the applications applied a
transformation to the parameter before using it as a link’s URL.

Note that, to maximize efficiency, our results were obtained by crawling each website
at a maximum depth of three pages. In our experiments, we observed that 11% of the
vulnerable pages were directly linked from the homepage, while the remaining 89% were
equally distributed between the distance of 2 and 3. This trend suggests that it is very
probable that many more vulnerabilities could have been found by exploring the sites in
more depth.

6.4.1 Examples of Discovered Vulnerabilities

Our final experiments consisted of the further analysis of some of the vulnerable websites
that we identified. Our aim was to gain an insight into the real consequences of the HPP
vulnerabilities we discovered.

The analysis we performed was assisted by the V-Scan component. When invoked in



Financial
Games

Government
Health

Internet
News

Organization
Science

Shopping
Social Networking

Sports
Travel

University
Video

Others

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

40,00%

45,00%

Vulnerable
Exploitable

Fig. 6.6: Vulnerability rate for category

extensive mode, V-Scan was able to explore in detail the web application, enumerating all
the vulnerable parameters. For some of the websites, we also registered an account and
configured the scanner to test the authenticated part of the website.

HPP vulnerabilities can be abused to run a wide range of different attacks. In the rest
of this section, we discuss the different classes of problems we identified in our analysis
with the help of real-world examples.

The problems we identified affected many important and well-known websites. Since,
at the time of writing, we have not yet received confirmation that all of the vulnerabilities
have been fixed, we have anonymized the description of the following real-word cases.

Sharing Components Facebook, Twitter, Digg and other social networking sites offer
a share component to easily share the content of a webpage over a user profile. Many news
portals nowadays integrate these components with the intent of facilitating the distribution
of their news.

By reviewing the vulnerability logs of the tested applications, we noticed that different
sites allowed a parameter injection on the links referencing the share component of a note
social network. In all those cases, a vulnerable parameter would allow an attacker to alter
the request sent to the social network and to trick the victim into sharing a page chosen by
the attacker. For example, it was possible for an attacker to exploit these vulnerabilities
to corrupt a shared link by overwriting the reference with the URL of a drive-by-download
website.

In technical terms, the problem was due to the fact that it was possible to inject an
extra url-to-share parameter that could overwrite the value of the parameter used by the
application. For example:� �
Url:

<site >/ shareurl.htm?PG=<default url >&zItl=<description >

%26url-to-share%3Dhttp://www.malicious.com

Link:

http ://www.social -network.com/sharer.php?

url -to -share=<default url >&t=<description >&

url -to -share=http://www.malicious.com� �
Even though the problem lies with the websites that use the share component, the

social network facilitated the exploitation by accepting multiple instances of the same
parameter, and always considering the latest value (i.e., the one on the right).



We notified the security team of the affected provider and proposed a simple solution
based on the filtering of all incoming sharing requests that include duplicate parameters.
The team promptly acknowledged the issue and informed us that they were willing to put
in place our countermeasure.

CSRF via HPP Injection Many applications use hidden parameters to store a URL
that is later used to redirect the users to an appropriate page. For example, social networks
commonly use this feature to redirect new users to a page where they can look up a friend’s
profile.

In some of these sites, we observed that it was possible for an attacker to inject a new
redirect parameter inside the registration or the login page so that it could override the
hard-coded parameter’s value. On one social-network website, we were able to inject a
custom URL that had the effect of automatically sending friend requests after the login.
In another site, by injecting the malicious pair into the registration form, an attacker could
perform different actions on the authenticated area.

This problem is a CSRF attack that is carried out via an HPP injection. The ad-
vantages compared to a normal CSRF is that the attack URL is injected into the real
login/registration page. Moreover, the user does not have to be already logged into the
target website because the action is automatically executed when the user logs into the
application. However, just like in normal CSRF, this attack can be prevented by using
security tokens.

Shopping Carts We discovered different HPP vulnerabilities in online shopping web-
sites that allow the attacker to tamper with the user interaction with the shopping cart
component.

For example, in several shopping websites, we were able to force the application to
select a particular product to be added into the user’s cart. That is, when the victim
checks out and would like to pay for the merchandise, she is actually paying for a product
that is different from the ones she actually selected. On an Italian shopping portal, for
example, it was even possible to override the ID of the product in such a way that the
browser was still showing the image and the description of the original product, even when
the victim was actually buying a different one.

Financial Institutions We ran PAPAS against the authenticated and non-authenticated
areas of some financial websites and the tool automatically detected several HPP vulner-
abilities that were potentially exploitable. Since the links involved sensitive operations
(such as increasing account limits and manipulating credit card operations), we imme-
diately stopped our experiments and promptly informed the security departments of the
involved companies. The problems were acknowledged and are currently being fixed.

Tampering with Query Results In most cases, the HPP vulnerabilities that we dis-
covered in our experiments allow the attacker to tamper with the data provided by the
vulnerable website, and to present to the victim some information chosen by the attacker.

On several popular news portals, we managed to modify the news search results to
hide certain news, to show the news of a certain day with another date, or to filter the
news of a specific source/author. An attacker can exploit these vulnerabilities to promote
some particular news, or conceal news that can hurt his person/image, or even subvert
the information by replacing an article with an older one.



Also some multimedia websites were vulnerable to HPP attacks. In several popular
sites, an attacker could override the video links and make them point to a link of his
choice (e.g., a drive-by download site), or alter the results of a query to inject malicious
multimedia materials. In one case, we were able to automatically register a user to a
specific streaming event.

Similar problems also affected several popular search engines. We noticed that it would
have been possible to tamper with the results of the search functionality by adding special
keywords, or by manipulating the order in which the results are shown. We also noticed
that on some search engines, it was possible to replace the content of the commercial
suggestion boxes with links to sites owned by the attacker.

6.4.2 Ethical Considerations

Crawling and automatically testing a large number of applications may be considered an
ethically sensitive issue. Clearly, one question that arises is if it is ethically acceptable and
justifiable to test for vulnerabilities in popular websites.

Analogous to the real-world experiments conducted by Jakobsson et al. in [79, 80],
we believe that realistic experiments are the only way to reliably estimate success rates of
attacks in the real-world. Unfortunately, criminals do not have any second thoughts about
discovering vulnerabilities in the wild. As researchers, we believe that our experiments
helped many websites to improve their security. Furthermore, we were able to raise some
awareness about HPP problems in the community.

Also, note that:

� PAPAS only performed client-side checks. Similar client-side vulnerability exper-
iments have been peformed before in other studies (e.g., for detecting cross site
scripting, SQL injections, and CSRF in the wild [86, 116]). Furthermore, we did
not perform any server-side vulnerability analysis because such experiments had the
potential to cause harm.

� We only provided the applications with innocuous parameters that we knew that the
applications were already accepting, and did not use any malicious code as input.

� PAPAS was not powerful enough to influence the performance of any website we
investigated, and the scan activities was limited to 15 minutes to further reduce the
generated traffic.

� We informed the concerned sites of any critical vulnerabilities that we discovered.

� None of the security groups of the websites that we interacted with complained to
us when we informed them that we were researchers, and that we had discovered
vulnerabilities on their site with a tool that we were testing. On the contrary, many
people were thankful to us that we were informing them about vulnerabilities in
their code, and helping them make their site more secure.

6.5 Summary

Web applications are not what they used to be ten years ago. Popular web applications
have now become more dynamic, interactive, complex, and often contain a large number



of multimedia components. Unfortunately, as the popularity of a technology increases, it
also becomes a target for criminals. As a result, most attacks today are launched against
web applications. Vulnerabilities such as cross site scripting, SQL injection, and cross site
request forgery are well-known and have been intensively studied by the research commu-
nity. Many solutions have been proposed, and tools have been released. However, a new
class of injection vulnerabilities called HTTP Parameter Pollution (HPP) that was first
presented at the OWASP conference [110] in 2009 has not received as much attention. If a
web application does not properly sanitize the user input for parameter delimiters, using
an HPP vulnerability, an attacker can compromise the logic of the application to perform
client-side or server-side attacks.

In this chapter, we presented the first automated approach for the discovery of HPP
vulnerabilities in web applications. Our prototype implementation called PArameter Pol-
lution Analysis System (PAPAS) is able to crawl websites and discover HPP vulnerabilities
by parameter injection. In order to determine the feasibility of our approach and to assess
the prevalence of HPP vulnerabilities on the Internet today, we analyzed more than 5,000
popular websites on a large scale. Our results show that about 30% of the sites we analyzed
contain vulnerable parameters and that at least 14% of them can be exploited using HPP.
A large number of well-known, high-profile websites such as search engines, ecommerce
and online banking applications were affected by HPP vulnerabilities. We informed the
sites for which we could obtain contact information, and some of these sites wrote back to
us and confirmed our findings. We hope that this research will help raise awareness and
draw attention to the HPP problem.





87

Chapitre 7

Elastic Compute Cloud Risks

This chapter explores the general security risks associated with using virtual server images
from the public catalogs of cloud service providers such as Amazon EC2.

We describe the design and implementation of an automated system called SatanCloud
that we used to conduct a large-scale study over more than five thousands images provided
by Amazon in four of its data centers (U.S. East/West, Europe and Asia).

Our measurements demonstrate that both the users and the providers of server images
may be vulnerable to security risks such as unauthorized access, malware infections, and
loss of sensitive information.

7.1 Introduction

Cloud computing has changed the view on IT as a pre-paid asset to a pay-as-you-go service.
Several companies such as Amazon Elastic Compute Cloud [19], Rackspace [21], IBM
SmartCloud [24], Joyent Smart Data Center [26] or Terremark vCloud [22] are offering
access to virtualized servers in their data centers on an hourly basis. Servers can be
quickly launched and shut down via application programming interfaces, offering the user
a greater flexibility compared to traditional server rooms. This paradigm shift is changing
the existing IT infrastructures of organizations, allowing smaller companies that cannot
afford a large infrastructure to create and maintain online services with ease.

A popular approach in cloud-based services is to allow users to create and share virtual
images with other users. For example, a user who has created a legacy Linux Debian Sarge
image may decide to make this image public so that other users can easily reuse it. In
addition to user-shared images, the cloud service provider may also provide customized
public images based on common needs of their customers (e.g., an Ubuntu web server
image that has been pre-configured with MySQL, PHP and an Apache). This allows the
customers to simply instantiate and start new servers, without the hassle of installing new
software themselves.

Unfortunately, while the trust model between the cloud user and the cloud provider is
well-defined (i.e., the user can assume that cloud providers such as Amazon and Microsoft
are not malicious), the trust relationship between the provider of the virtual image and
the cloud user is not as clear.

In this chapter, we investigate the security risks related with the use of public images
from the Amazon EC2 service. Over several months, we designed and ran security tests on
public AMIs that aimed to identify security vulnerabilities, problems, and risks for cloud



users as well as the cloud providers. We instantiated and analyzed over five thousands
public images provided by Amazon in its data centers located in Virginia (US-East),
Northern California (US-West), Ireland (EU-West) and Singapore (AP-Southwest). We
analyzed both Linux and Windows-based images, checking for a wide-range of security
problems such as the prevalence of malware, the quantity of sensitive data left on such
images, and the privacy risks of sharing an image on the cloud.

We identified three main threats related, respectively, to: 1) secure the image against
external attacks, 2) secure the image against a malicious image provider, and 3) sanitize
the image to prevent users from extracting and abusing private information left on the
disk by the image provider. For example, in our experiments we identified many images
in which a user can use standard tools to undelete files from the filesystem and recover
important documents including credentials and private keys. Public cloud server images
are highly useful for organizations but, if users are not properly trained, the risk associated
in using these images can be quite high. The fact that these machines come pre-installed
and pre-configured may communicate the wrong message, i.e., that they can provide an
easy-to-use “shortcut” for user that do not have the skills to configure and setup a complex
server. Reality is quite different, and this work shows how many different aspects must be
considered to make sure that a virtual image can be operated securely.

For this reason, during our study we had continuous contact with the Amazon Web
Services Security Team. Even though Amazon is not responsible of what users put into
their images, the team has been prompt in addressing the security risks identified and
described in this chapter. Meanwhile, it has published public bulletins and tutorials to
train users on how to use Amazon Machine Images (AMIs) in a secure way [124, 123]. A
more detailed description of the Amazon feedback is provided in Section 7.6.

7.2 Overview of Amazon EC2

The Amazon Elastic Compute Cloud (EC2) is an Infrastructure-as-a-Service cloud provider
where users can rent virtualized servers (called instances) on an hourly base. In partic-
ular, each user is allowed to run any pre-installed virtual machine image (called Amazon
Machine Image, or AMI ) on this service. To simplify the setup of a server, Amazon offers
an online catalog where users can choose between a large number of AMIs that come
pre-installed with common services such as web servers, web applications, and databases.
An AMI can be created from a live system, a virtual machine image, or another AMI by
copying the filesystem contents to the Amazon Simple Storage Service (S3) in a process
called bundling. Public images may be available for free, or may be associated with a prod-
uct code that allows companies to bill an additional usage cost via the Amazon DevPay
payment service. Thus, some of these public machines are provided by companies, some
are freely shared by single individuals, and some are created by the Amazon team itself.

In order to start an image, the user has to select a resource configuration (differing in
processing, memory, and IO performance), a set of credentials that will be used for login, a
firewall configuration for inbound connections (called a security group), and the region of
the data center in which the machine will be started. Amazon data centers are currently
located in the US (Northern Virginia and Northern California), Europe (Ireland), and
Asia (Singapore). An additional data center (Tokyo) was added after we had completed
our experiments. Hence, this data center will not be discussed.

Currently, there are three different pricing models available: The first one is a fixed
pricing scheme where the customer pays per instance-hour, the second one is a subscription



DB

Robot

Instantiated AMI

Test Suite

Remote Scanner

Analysis

Results

Local Scanner

AMIs

Upload / Execute

Scan

Data

Instanciate AMI

Check Login

Credentials

Vulnerability
Configuration

Fig. 7.1: System Architecture

model with an initial fee and lower instance-hour costs, and the third one (called spot
instances) is a model where prices vary according to the current load of the data centers.
This model lets the customer specify a maximum price he is willing to pay for an instance
in addition to the other instance parameters. If the current spot price drops below this
threshold, the instance is started, and if the spot price rises above the threshold, it is
terminated, thus making this model suitable for interruptible tasks.

When an AMI is instantiated, its public DNS address is announced via the Amazon
API, and the machine is made accessible via SSH on port 22 (Linux) or Remote Desktop
on port 3389 (Windows). An important aspect of this cloud computing service is that
the instance’s maintenance is completely under the responsibility of the user. That is,
she is the one who can be held responsible for any content provided by the machine,
and she is the one who has to assure its security. This includes, for example, the usual
administration tasks of maintaining the configuration in a secure state (i.e., applying
patches for vulnerable software, choosing the right passwords, and firewall configuration),
and only allowing secure, encrypted communication protocols.

7.3 AMI Testing Methodology

To conduct our security evaluation, we developed an automated system to instantiate
and test the Amazon’s AMIs. The architecture of our system is highlighted in Fig. 7.1,
and consists of three main components. The Robot is the part of the system that is
responsible for instantiating the AMIs, and fetching the corresponding login credentials.
Since Amazon does not control which credentials are configured in the public images, our
tool was configured to try a list of the most common user names (e.g., root, ec2-user,
ubuntu, and bitnami for Linux). Despite these attempts, there are cases in which the



robot may fail to retrieve the correct login information. This is the case, for example,
for AMIs whose credentials are distributed only to the image provider’s customers by
companies that make business by renting AMIs. Hence, these type of images are outside
the scope of our evaluation.

After an AMI has been successfully instantiated by the robot, it is tested by two
different scanners. The Remote Scanner collects the list of open ports1 using the NMap
tool [93], and downloads the index page of the installed web applications. In Section 7.5,
we explain how an attacker can use this information as a fingerprint to identify running
images. The Local Scanner component is responsible for uploading and running a set
of tests. The test suite to be executed is packaged together in a self-extracting archive,
uploaded to the AMI, and run on the machine with administrative privileges. In addition,
the Local Scanner also analyzes the system for known vulnerabilities using the Nessus
tool [125]. For AMIs running Microsoft Windows, the scripting of automated tasks is
complicated by the limited remote administration functionalities offered by the Windows
environment. In this case, we mounted the remote disk and transfered the data using the
SMB/Netbios subsystem. We then used the psexec tool [120] to execute remote commands
and invoke the tests.

The test suite uploaded by the Local Scanner includes 24 tests grouped in 4 categories:
general, network, privacy, and security. The complete list is summarized in Table 7.1.

The general category contains tests that collect general information about the system
(e.g. the Linux distribution name, or the Windows version), the list of running processes,
the file-system status (e.g., the mounted partitions), the list of installed packages, and the
list of loaded kernel modules. In addition to these basic tests, the general category also
contains scripts that save a copy of interesting data, such as emails (e.g., /var/mail), log
files (e.g., /var/log and %USER\Local Settings), and installed web applications (e.g.,
/var/www and HKEY LOCAL MACHINE\SOFTWARE).

The privacy test cases focus on finding any sensitive information that may have been
forgotten by the user that published the AMI. This includes, for example, unprotected
private keys, application history files, shell history logs, and the content of the directory
saved by the general test cases. Another important task of this test suite is to scan the
filesystem to retrieve the contents of undeleted files.

The network test suite focuses on network-related information, such as shared direc-
tories and the list of open sockets. These lists, together with the processes bound to the
sockets, can be used to verify if the image is establishing suspicious connections.

Finally, the security test suite consists of a number of well-known audit tools for Win-
dows and Linux. Some of these tools look for the evidence of known rootkits, Trojans and
backdoors (e.g. Chkrootkit, RootkitHunter and RootkitRevealer), while others specifi-
cally check for processes and sockets that have been hidden from the user (PsTools/PsList
and unhide). In this phase, we also run the ClamAV antivirus software (see Section 7.4.2)
to scan for the presence of known malware samples.

These security tests also contain checks for credentials that have been left or forgotten
on the system (e.g., database passwords, login passwords, and SSH public keys). As
already mentioned in an Amazon report published in June 2011 [27], these credentials could
potentially be used as backdoors to allows attackers to log into running AMIs. In fact,
as we show in Section 7.5, it is relatively easy to scan the address space used by Amazon
EC2 and map running instances to the corresponding AMI IDs. As a consequence, if an

1 Since Amazon does not allow external portscans of EC2 machines, we first established a virtual private
network connection to the AMI through SSH, and then scanned the machine through this tunnel.



Tests Type Details OS

System Information General - Windows + Linux
Logs/eMails/WWW Archive General - Linux

Processes and File-System General - Windows + Linux
Loaded Modules General lsmod Linux

Installed Packages General - Linux
General Network Information Network Interfaces, routes Windows + Linux

Listening and Established Sockets Network - Windows + Linux
Network Shares Network Enabled Shares Windows + Linux

History Files Privacy Common Shells + Browsers Windows + Linux
AWS/SSH Private Keys Privacy Loss of sensitive info Linux

Undeleted Data Privacy (Only on X AMIs) Linux
Last logins Privacy - Linux

SQL Credentials Privacy/Security MySQL and PostgresSQL Linux
Password Credentials Privacy/Security Enabled Logins Windows + Linux

SSH Public Keys Security Backdoor access Linux
Chkrootkit Security Rootkit Linux

RootkitHunter Security Rootkit Linux
RootkitRevealer Security Rootkit Windows

Lynis Auditing Tool Security General Security Issues Linux
Clam AV Security Antivirus Windows + Linux

Unhide Security Processes/Sockets Hiding Linux
PsList Security Processes Hiding Windows

Sudoers Configuration Security - Linux

Tab. 7.1: Details of the tests included in the automated AMI test suite

attacker discovers that a certain instance is running an image with forgotten credentials,
she may try to authenticate and remotely log in into the machine. For this reason, as a
part of the security tests, we also analyzed the Linux sudo configuration to verify if the
leftover credentials would allow the execution of code with administrative privileges.

7.4 Results of the Large Scale Analysis

Over a period of five months, between November 2010 to May 2011, we used our automated
system to instantiate and analyze all Amazon images available in the Europe, Asia, US
East, and US West data centers. In total, the catalog of these data centers contained 8,448
Linux AMIs and 1,202 Windows AMIs. Note that we were successfully able to analyze
in depth a total of 5,303 AMIs. In the remaining cases, a number of technical problems
prevented our tool to successfully complete the analysis. For example, sometimes an AMI
did not start because the corresponding manifest file was missing, or corrupted. In some
cases, the running image was not responding to SSH, or Remote Desktop connections. In
other cases, the Amazon API failed to launch the machine, or our robot was not able to
retrieve valid login credentials. These problems were particularly common for Windows
machines where, in 45% of the images, the Amazon service was not able to provide us
with a valid username and password to login into the machine. Nevertheless, we believe
that a successful analysis of over 5,000 different images represents a sample large enough
to be representative of the security and privacy status of publicly available AMIs.

Table 7.2 shows a number of general statistics we collected from the AMIs we analyzed.
Our audit process took on average 77 minutes for Windows machines, and 21 minutes
for the Linux images. This large difference is due to two main reasons: first, Windows



Average #/AMI Windows Linux
Audit duration 77 min 21 min
Installed packages – 416
Running Processes 32 54
Shares 3.9 0
Established sockets 2.75 2.52
Listening sockets 22 6
Users 3.8 24.8
Used disk space 1.07 GB 2.67 GB

Tab. 7.2: General Statistics

machines in the Amazon cloud take a much longer time to start, and, second, our antivirus
test was configured to analyze the entire Windows file-system, while only focused the
analysis on directories containing executables for the Linux machines.

In the rest of this section, we present and discuss the results of the individual test
suites.

7.4.1 Software Vulnerabilities

The goal of this first phase of testing is to confirm the fact that the software running on
each AMIs is often out of date and, therefore, must be immediately updated by the user
after the image is instantiated.

For this purpose, we decided to run the Nessus [125], an automated vulnerability
scanner, on each AMI under test. In order to improve the accuracy of the results, our
testing system provided Nessus with the image login credentials, so that the tool was able
to perform a more precise local scan. In addition, to further reduce the false positives, the
vulnerability scanner was automatically configured to run only the tests corresponding to
the actual software installed on the machine.

Nessus classifies each vulnerability with a severity level ranging from 0 to 3. Since we
were not interested in analyzing each single vulnerability, but just in assessing the general
security level of the software that was installed, we only considered vulnerabilities with
the highest severity (e.g., critical vulnerabilities such as remote code execution).

As reported in Table 7.3, 98% of Windows AMIs and 58% of Linux AMIs contain
software with critical vulnerabilities. This observation was not typically restricted to a
single application but often involved multiple services: an average of 46 for Windows
and 11 for Linux images (the overall distribution is reported in Figure 7.2). On a broader
scale, we observed that a large number of images come with software that is more than two
years old. Our findings empirically demonstrate that renting and using an AMI without
any adequate security assessment poses a real security risk for users. To further prove
this point, in Section 7.4.2, we describe how one of the machines we were testing was
probably compromised by an Internet malware in the short time that we were running our
experiments.

Table 7.3 also reports the most common vulnerabilities that affect Windows and Linux
AMIs. For example, the vulnerabilities MS10-098 and MS10-051 affect around 92% and
80% of the tested Windows AMIs, and allows remote code execution if the user views
a particular website using the Internet Explorer. Microsoft Office and the Windows’



Windows Linux
Tested AMIs 253 3,432
Vulnerable AMIs 249 2,005
With vulns <=2 Years 145 1,197
With vulns <=3 Years 38 364
With vulns <=4 Years 2 106
Avg. # Vuln/AMI 46 11
TOP 10 Vuln. MS10-037, MS10-049, CVE-2009-2730, CVE-2010-0296,

MS10-051, MS10-073, CVE-2010-0428, CVE-2010-0830,
MS10-076, MS10-083, CVE-2010-0997, CVE-2010-1205,
MS10-090, MS10-091, CVE-2010-2527, CVE-2010-2808,

MS10-098, MS11-05 CVE-2010-3847, CVE-2011-0997

Tab. 7.3: Nessus Results

standard text editor Wordpad contained in 81% of the Windows AMIs allow an attacker
to take control of the vulnerable machine by opening a single malicious document (i.e.,
vulnerability MS10-83). A similar vulnerability (i.e., CVE-2010-1205) affects Linux AMIs
as well: A PNG image sent to a vulnerable host might allow a malicious user to run
code remotely on the AMI. We also observed that 87 public Debian AMIs come with the
now notorious SSH/OpenSSL vulnerability discovered in May 2008 (i.e., CVE-2008-0166)
in which, since the seed of the random number generator used to generate SSH keys is
predictable, any SSH key generated on the vulnerable systems needs to be considered as
being compromised [13].

7.4.2 Security Risks

Malware

As part of our tests, we used ClamAV [20], an open source antivirus engine, to analyze
the filesystem on the target AMI. ClamAV contains about 850,000 signatures to identify
different types of known malware instances such as viruses, worms, spyware, and trojans.
Since most of the existing malware targets the Windows operating systems, we analyzed
the complete file-system tree of Windows AMIs, while we limited the coverage for Linux
AMIs to common binary directories (e.g. /usr/bin, /bin, and /sbin). As a consequence,
the scan time took an average of 40 minutes for a Windows installation, and less then a
minute for a Linux one.

In our malware analysis, we discovered two infected AMIs, both Windows-based. The
first machine was infected with a Trojan-Spy malware (variant 50112). This trojan has
a wide range of capabilities, including performing key logging, monitoring processes on
the computer, and stealing data from files saved on the machine. By manually analyzing
this machine, we found that it was hosting different types of suspicious content such as
Trojan.Firepass, a tool to decrypt and recover the passwords stored by Firefox. The
second infected machine contained variant 173287 of the Trojan.Agent malware. This
malware allows a malicious user to spy on the browsing habits of users, modify Internet
Explorer settings, and download other malicious content.

While we were able to manually confirm the first case, we were unable to further ana-



0
2

5
9

11
13

15
17

20
22

26
28

30
33

35
37

39
41

43
45

47
51

53
55

57
59

61
65

67
69

76
79

83
90

93
99

103
108

125

0

5

10

15

20

25

30

# of Vulnerabilites

#
 o

f A
M

Is

0
2

5
9

11
13

15
17

20
22

26
28

30
33

35
37

39
41

43
45

47
51

53
55

57
59

61
65

67
69

76
79

83
90

93
99

103
108

125

0

5

10

15

20

25

30

# of Vulnerabilites

#
 o

f A
M

Is

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103
4 10 16 22 28 34 40 46 52 58 64 70 76 82 88 94 100

0

50

100

150

200

250

300

350

# of Vulnerabilites

#
 o

f A
M

Is

Fig. 7.2: Distribution AMIs / Vulnerabilites (Windows and Linux)

lyze the second infected machine. In fact, after we rented it again for a manual analysis a
few hours after the automated test, the infected files did not existed anymore. Hence, we
believe that the AMI was most probably compromised by an automatically propagating
malware during the time that we were executing our tests. In fact, the software vulnera-
bility analysis showed that different services running on the machine suffered from known,
remotely exploitable, vulnerabilities.

Unsolicited connections

Unsolicited outgoing connections from an invoked instance to an external address may
be an indication for a significant security problem. For example, such connections could
be the evidence of some kind of backdoor, or the sign for a malware infection. Outgoing
connections that are more stealthy may also be used to gather information about the
AMI’s usage, and collect IP target addresses that can then be used to attack the instance



through another built-in backdoor.
In our experiments, we observed several images that opened connections to various

web applications within and outside of Amazon EC2. These connections were apparently
checking for the availability of new versions of the installed software. Unfortunately, it is
almost impossible to distinguish between a legitimate connection (e.g., a software update)
and a connection that is used for malicious purposes.

Nevertheless, we noticed a number of suspicious connections on several Linux images:
The Linux operating system comes with a service called syslog for recording various events
generated by the system (e.g., the login and logout of users, the connection of hardware
devices, or incoming requests toward the web server [11]). Standard installations record
these kinds of events in files usually stored under the /var/log directory and only users
with administrative privileges are allowed to access the logs generated by the syslog service.
In our tests, we discovered two AMIs in which the syslog daemon was configured to send the
log messages to a remote host, out of the control of the user instantiating the image. It is
clear that this setup constitutes a privacy breach, since confidential information, normally
stored locally under a protected directory, were sent out to a third party machine.

Backdoors and Leftover Credentials

The primary mechanism to connect to a Linux machine remotely is through the ssh
service. When a user rents an AMI, she is required to provide the public part of the her
ssh key that it is then stored by Amazon in the authorized keys in the home directory.
The first problem with this process is that a user who is malicious and does not remove her
public key from the image before making it public could login into any running instance of
the AMI. The existence of these kinds of potential backdoors is known by Amazon since
the beginning of April 2011 [113].

A second problem is related to the fact that the ssh server may also permit password-
based authentication, thus providing a similar backdoor functionality if the AMI provider
does not remove her passwords from the machine. In addition, while leftover ssh keys
only allow people with the corresponding private key (normally the AMI image creator),
to obtain access to the instance, passwords provide a larger attack vector: Anybody can
extract the password hashes from an AMI, and try to crack them using a password-cracking
tool (e.g., John the Ripper [25]).

In other words, ssh keys were probably left on the images by mistake, and without a
malicious intent. The same applies to password, with the difference that passwords can
also be exploited by third parties, transforming a mistake in a serious security problem.

During our tests, we gathered these leftover credentials, and performed an analysis
to verify if a remote login would be possible by checking the account information in
/etc/passwd and /etc/shadow, as well as the remote access configuration of OpenSSH.

The results, summarized in Table 7.4, show that the problem of leftover credentials
is significant: 21.8% of the scanned AMIs contain leftover credentials that would allow
a third-party to remotely login into the machine. The table also reports the type of
credentials, and lists how many of these would grant superuser privileges (either via root,
sudo or su with a password).

7.4.3 Privacy Risks

The sharing of AMIs not only bears risks for the customers who rent them, but also for
the user who creates and distributes the image. In fact, if the image contains sensitive



US East US West Europe Asia Total
AMIs with leftover credentials 34.75% 8.35% 9.80% 6.32% 21.80%
With password 67 10 22 2 101
With SSH keys 794 53 86 32 965
With both 71 6 9 4 90
Superuser privileges 783 57 105 26 971
User privileges 149 12 12 12 185

Tab. 7.4: Left credentials per AMI

information, this would be available to anybody who is renting the AMI. For example,
an attacker can gather SSH private keys to break into other machines, or use forgotten
Amazon Web Services (AWS) keys to start instances at the image provider’s cost. In
addition, other data sources such as the browser and shell histories, or the database of
last login attempts can be used to identify and de-anonymize the AMI’s creator.

Private keys

We developed a number of tests to search the AMIs’ file-system for typical filenames
used to store keys (e.g., id dsa and id rsa for SSH keys, and pk-[0-9A-Z]*.pem and
cert-[0-9A-Z]*.pem for AWS API keys). Our system was able to identify 67 Amazon
API keys, and 56 private SSH keys that were forgotten. The API keys are not password
protected and, therefore, can immediately be used to start images on the cloud at the
expense of the key’s owner. Even though it is good security practice to protect SSH keys
with a passphrase, 54 out of 56 keys were not protected. Thus, these keys are easily
reusable by anybody who has access to them. Although some of the keys may have
been generated specifically to install and configure the AMI, it would not be a surprising
discovery if some users reused their own personal key, or use the key on the AMI to access
other hosts, or Amazon images.

By consulting the last login attempts (i.e., by lastlog or last commands), an attacker
can easily retrieve IP addresses that likely belong to other machines owned by the same
person. Our analysis showed that 22% of the analyzed AMIs contain information in at least
one of the last login databases. The lastb database contains the failed login attempts,
and therefore, can also be very helpful in retrieving user account passwords since passwords
that are mistyped or typed too early often appear as user names in this database. There
were 187 AMIs that contained a total of 66,601 entries in their lastb databases. Note
that host names gathered from the shell history, the SSH user configuration, and the SSH
server connection logs can also provide useful clues to an attacker.

Browser History

Nine AMIs contained a Firefox history file (two concerning root and seven concerning a
normal user). Note that because of ethical concerns, we did not manually inspect the
contents of the browser history. Rather, we used scripts to check which domains had been
contacted. From the automated analysis of the history file, we discovered that one machine
was used by a person to log into the portal of a Fortune 500 company. The same user then
logged into his/her personal Google email account. Combining this kind of information,



Finding # Credentials # For Image # For Remote Machines
Amazon RDS 4 0 4
Dynamic DNS 1 0 1
Database Monitoring 7 6 1
Mysql 58 45 13
Web Applications 3 2 1
VNC 1 1 0
Total 74 54 20

Tab. 7.5: Credentials in history files

history files can easily be used to de-anonymize, and reveal information about the image’s
creator.

Shell History

When we tested the AMI using our test suite, we inspected common shell history files (e.g.
∼/.history, ∼/.bash history, ∼/.sh history) that were left on the image when it
was created. We discovered that 612 AMIs (i.e., 11.54% of the total) contained at least one
single history file. We found a total of 869 files that stored interesting information (471
for root and 398 for generic users), and that contained 158,354 lines of command history.
In these logs, we identified 74 different authentication credentials that were specified in
the command line, and consequently recorded on file (ref. Table 7.5).

For example, the standard MySQL client allows to specify the password from the
command line using the -p flag. A similar scenario occurs when sensitive information,
such as a password or a credit card number, is transferred to a web application using an
HTTP GET request. GET requests, contrary to POST submissions, are stored on the web
server’s logs. The credentials we discovered belong to two categories: local and remote.

The credentials in the image group grant an attacker access to a service/resource that
is hosted on the AMI. In contrast, remote credentials enable the access to a remote target.
For example, we identified remote credentials that can be used to modify (and access) the
domain name information of a dynamic DNS account. A malicious user that obtains a DNS
management password can easily change the DNS configuration, and redirect the traffic of
the original host to his own machines. In addition, we discovered four credentials for the
Amazon Relational Database Service (RDS) [134] – a web service to set up, operate, and
scale a relational database in the Amazon cloud. We also found credentials for local and
remote web applications for different uses (e.g. Evergreen, GlassFish, and Vertica) and
for a database performance monitoring service. One machine was configured with VNC,
and its password was specified from the command line. Finally, we were able to collect 13
credentials for MySQL that were used in the authentication of remote databases.

Recovery of deleted files

In the previous sections, we discussed the types of sensitive information that may be
forgotten by the image provider. Unfortunately, the simple solution of deleting this in-
formation before making the image publicly available is not satisfactory from a security
point of view.



In many file systems, when a user deletes a file, the space occupied by the file is marked
as free, but the content of the file physically remains on the media (e.g. the hard-disk). The
contents of the deleted file are definitely lost only when this marked space is overwritten by
another file. Utilities such as shred, wipe, sfill, scrub and zerofree make data recovery
difficult either by overwriting the file’s contents before the file is actually unlinked, or by
overwriting all the corresponding empty blocks in the filesystem (i.e., secure deletion or
wiping). When these security mechanisms are not used, it is possible to use tools (e.g.,
extundelete and Winundelete) to attempt to recover previously deleted files.

In the context of Amazon EC2, in order to publish a custom image on the Amazon
Cloud, a user has to prepare her image using a predefined procedure called bundling. This
procedure involves three main steps: Create an image from a loopback device or a mounted
filesystem, compress and encrypt the image, and finally, split it into manageable parts so
that it can be uploaded to the S3 storage.

The first step of this procedure changes across different bundling methods adopted by
the user (ref. Table 7.6). For example, the ec2-bundle-image method is used to bundle
an image that was prepared in a loopback file. In this case, the tool transfers the data
to the image using a block level operation (e.g. similar to the dd utility). In contrast, if
the user wishes to bundle a running system, she can choose the ec2-bundle-vol tool that
creates the image by recursively copying files from the live filesystem (e.g., using rsync).
In this case, the bundle system works at the file level.

Any filesystem image created with a block-level tool will also contain blocks marked
as free, and thus may contain parts of deleted files. As a result, out of the four bundling
methods provided by Amazon, three are prone to a file undeletion attack.

To show that our concerns have practical security implications, we randomly selected
1,100 Linux AMIs in four different regions (US East/West, Europe and Asia). We then
used the extundelete data recovery utility [17] to analyze the filesystem, and recover the
contents of all deleted files. In our experiment, we were able to recover files for 98% of the
AMIs (from a minimum of 6 to a maximum of more than 40,000 files per AMI). In total,
we were able to retrieve 28.3GB of data (i.e., an average of 24MB per AMI), as shown in
Table 7.8.

We collected statistics on the type (Table 7.7) of the undeleted files by remotely running
the file command. Note that in order to protect the privacy of Amazon users, we did
not access the contents of the recovered data, and we also did not transfer this data out
of the vulnerable AMI. The table shows a breakdown of the types of sensitive data we
were able to retrieve (e.g., PDFs, Office documents, private keys). Again, note that the
Amazon AWS keys are not password-protected. That is, an attacker that gains access to
these keys is then able to instantiate Amazon resources (e.g. S3 and AWS services) at the
victim’s expense (i.e., the costs are charged to the victim’s credit card).

In our analysis, we verified if the same problem exists for Windows AMIs. We analyzed
some images using the WinUndelete tool [128], and were able to recover deleted files in all
cases. Interestingly, we were also able to undelete 8,996 files from an official image that
was published by Amazon AWS itself.

7.5 Matching AMIs to Running Instances

In the previous sections, we presented a number of experiments we conducted to assess the
security and privacy issues involved in the release and use of public AMIs. The results of
our experiments showed that a large number of factors must be considered when making



Method Level Vulnerable
ec2-bundle-vol File-System No
ec2-bundle-image Block Yes
From AMI snapshot Block Yes
From VMWare Block Yes

Tab. 7.6: Tested Bundle Methods

Type #
Home files (/home, /root) 33,011
Images (min. 800x600) 1,085
Microsoft Office documents 336
Amazon AWS certificates and access keys 293
SSH private keys 232
PGP/GPG private keys 151
PDF documents 141
Password file (/etc/shadow) 106

Tab. 7.7: Recovered data from deleted files

sure that a virtual machine image can be operated securely (e.g., services must be patched
and information must be sanitized).

A number of the issues we described in the previous sections could potentially be
exploited by an attacker (or a malicious image provider) to obtain unauthorized remote
access to any running machine that adopted a certain vulnerable AMI. However, finding
the right target is not necessarily an easy task.

For example, suppose that a malicious provider distributes an image containing his
own ssh key, so that he can later login into the virtual machines as root. Unfortunately,
unless he also adds some kind of mechanism to “call back home” and notify him of the IP
address of every new instance, he would have to brute force all the Amazon IP space to try
to find a running machine on which he can use his credentials. To avoid this problem, in
this section we explore the feasibility of automatically matching a running instance back
to the corresponding AMI.

“Static” testing of an images as we have done can only indicate the existence of a
potential problem. However, it does not prove that the problem indeed exists in the
running instances. Clearly, it is also possible that (although very unlikely) that all users
were already aware of the risks we presented in our study and, therefore, took all the
required steps to update and secure the machines they rented from Amazon.

We started our experiment by querying different public IP registries (ARIN, RIPE,
and LAPNIC) to obtained a list of all IPs belonging to the Amazon EC2 service for the
regions US-East, US-West, Europe and Singapore. The result was a set of sub-networks
that comprises 653,401 distinct IPs that are potentially associated with running images.

For each IP, we queried the status of thirty commonly used ports (i.e., using the NMap
tool), and compared the results with the information extracted from the AMI analysis.
We only queried a limited number of ports because our aim was to be as non-intrusive as
possible (i.e., see Section 7.6 for a detailed discussion of ethical considerations, precautions,
and collaboration with Amazon). For the same reason, we configured NMap to only send
a few packets per second to prevent any flooding, or denial of service effect.



Minimum Average Maximum Total
Files (#) 6 480 40,038 564,513
Directories (#) 8 66 2,166 78,412
Size 124KB 24MB 2.4GB 28.3GB

Tab. 7.8: Statistics of the recovered data

Technique Instances Perfect Match Set of 10 Candidates Set of 50 Candidates
SSH 130,580 2,149 (1.65%) 8,869 (6.79%) 11,762 (9.01%)
Services 203,563 7,017 (3.45%) 30,345 (14.91%) 63,512 (31.20%)
Web 125,554 5,548 (4.42%) 31,651 (25.21%) 54,918 (43.74%)

Tab. 7.9: Discovered Instances

Our scan detected 233,228 running instances. This number may not reflect the exact
number of instances that were indeed running. That is, there may have been virtual
machines that might have been blocking all ports.

We adopted three different approaches to match and map a running instance to a set of
possible AMIs. The three methods are based on the comparison of the SSH keys, versions
of services, and web-application signatures.

Table 7.9 depicts the results obtained by applying the three techniques. The first
column shows the number of running instances to which a certain technique could be
applied (e.g., the number of instances where we were able to grab the SSH banner). The
last two columns report the number of running machines for which a certain matching
approach was able to reduce the set of candidate AMIs to either 10 or 50 per matched
instance. Since 50 possibilities is a number that is small enough to be easily brute-forced
manually, we can conclude that it is possible to identify the AMI used in more than half
of the running machines.

SSH matching Every SSH server has a host key that is used to identify itself. The
public part of this key is used to verify the authenticity of the server. Therefore, this key is
disclosed to the clients. In the EC2, the host key of an image needs to be regenerated upon
instantiation of an AMI for two reasons: First, a host key that is shared among several
machines makes these servers vulnerable to man-in-the-middle attacks (i.e., especially
when the private host key is freely accessible). Second, an unaltered host key can serve as
an identifier for the AMI, and may thus convey sensitive information about the software
that is used in the instance.

This key regeneration operation is normally performed by the cloud-init script pro-
vided by Amazon. The script should normally be invoked at startup when the image is
first booted. However, if the image provider either forgets or intentionally decides not to
add the script to his AMI, this important initialization procedure is not performed. In
such cases, it is very easy for an attacker to match the SSH keys extracted from the AMIs
with the ones obtained from a simple NMap scan. As reported in Table 7.9, we were able
to precisely identify over 2,100 AMI instances by using this method.

Service matching In the cases where the ssh-based identification failed, we attempted
to compare the banners captured by NMap with the information extracted from the services



installed on the AMIs. In particular, we compared the service name, the service version,
and (optionally) the additional information fields returned by the thirty common ports we
scanned in our experiment.

The service-matching approach is not as precise as the ssh-based identification. Hence,
it may produce false positives if the user has modified the running services. However, since
most services installed on the AMIs were old and out of date, it is very unlikely that new
services (or updated ones) will match the same banners as the one extracted from the
AMIs. Therefore, a service update will likely decrease the matching rate, but unlikely
generate false positives. The fact that over 7,000 machines were identified using this
method seems to support the hypothesis that a large number of users often forget to
update the installed software after they rent an AMI.

Web matching For our last AMI matching approach, we first collected web information
from all the instances that had ports 80 and 443 (i.e., web ports) open. We then compared
this information with the data we collected during the scan of the Amazon AMIs.

In the first phase, we used the WhatWeb tool [9] to extract the name and version of
the installed web server, the configuration details (e.g., the OpenSSL version), and the
installed interpreters (e.g., PHP, and JSP). In addition, we also attempted to detect the
name and version of the web applications installed in the root document of the web server
by using WhatWeb’s plugins for the detection of over 900 popular web software.

In the second phase, we compared this information to the scanned AMIs, and checked
for those machines that had the same web server, the same configuration, and the same
versions of the language interpreters. We considered only those AMIs that matched these
three criteria. Since different installations of the same operating system distribution likely
share this information, we then further reduced the size of the candidate set by checking
two additional items: The title of the web application (provided by the <title> tag),
and the source files (e.g., the index.html document) installed in the root directory. We
attempted to match the application’s source code with the application name detected by
the WhatWeb tool.

The last row of Table 7.9 shows that we were able to identify more than 5,000 machines
by using this technique.

From our experiments, it seems that the web-based matching is, out of the three,
the most efficient technique to match online instances with AMIs. Indeed, we perfectly
matched 4.42% of instances and we restricted the choice to 50 AMIs for more than 40%
of the instances. However, the same considerations about false positives we mentioned for
the service matching also applies for this test.

7.6 Ethical Considerations and Amazon’s Feedback

Real-world experiments involving cloud services may be considered an ethically sensitive
area. Clearly, one question that arises is if it is ethically acceptable and justifiable to
conduct experiments on a real cloud service. During all the experiments, we took into
account the privacy of the users, the sensitivity of the data that was analyzed, and the
availability of Amazon’s services. Note that the first part of our experiments was conducted
by automated tools running inside virtual machines we rented explicitly for our study. We
did not use any sensitive data extracted from the AMI, or interact with any other server
during this test. In addition, we promptly notified Amazon of any problem we found



during our experiments.
Amazon has a dedicated group dealing with the security issues of their cloud computing

infrastructure: the AWS (Amazon Web Services) Security Team. We first contacted them
on May 19th 2011, and provided information about the credentials that were inadvertently
left on public AMIs. Amazon immediately verified and acknowledged the problem, and
contacted all the affected customers as summarized by a public bulletin released on June
4th [124]. In cases where the affected customer could not be reached immediately, the
security team acted on behalf of the user, and changed the status of the vulnerable AMI
to private to prevent further exposure of the customer’s personal credentials.

We also communicated to the AWS Security team our concerns regarding the privacy
issues related to publishing of public AMIs (e.g., history files, remote logging, and leftover
private keys described in Section 7.4.3). The security team reacted quickly, and realeased
a tutorial [123] within five days to help customers share public images in a secure manner.
Finally, we contacted again Amazon on June 24th about the possibility of recovering
deleted data from public Amazon AMIs. To fix the problem, we provided them some
of the countermeasures we discussed in Section 7.4.3. Their team immediately reported
the issue internally and was grateful of the issue we reported to attention. By the time
of writing, Amazon has already verified all the public AMIs where we have been able to
recover data, and has moved on to check the status of all other public AMIs. The AWS
security team is also working on providing a solution to prevent the recovery of private
documents by undeletion.

The second part of our experiments included the use of a port scanner to scan running
images. Even though port scanning has not been considered to be illegal per se (e.g., such
as in the legal ruling in [6]), this activity may be considered an ethically sensitive issue.
However, given the limited number of ports scanned (i.e, 30) and the very low volume of
packets per second that we generated, we believe that our activity could not have caused
any damage to the integrity and availability of Amazon’s network, or the images running
on it.

7.7 Summary

In this chapter, we explored the general security risks associated with virtual server images
from the public catalogs of cloud service providers. We investigated in detail the security
problems of public images that are available on the Amazon EC2 service by conducting
measuremnts on a large-scale. Our findings demonstrate that both users and providers
of public AMIs may be vulnerable to security risks such as unauthorized access, malware
infections, and the loss of sensitive information. The Amazon Web Services Security Team
has acknowledged our findings, and has already taken steps to address the security risks
we have identified. We hope that the results of this study will be useful for other cloud
service providers who offer similar services.



103

Chapitre 8

Conclusion and Future Work

8.1 Conclusion

In this thesis, we advanced the state of the art in large-scale testing and measurement of
Internet threats. We started by identifying three classes of problems that affect Internet
systems which have lately experienced a fast surge in popularity (e.g., web applications
and cloud computing services). We researched into the security of web applications and we
selected two novel classes of problems called Clickjacking and HTTP Parameter Pollution.
We then explored the risks associated with the use of cloud computing services such as
Amazon’s EC2. All our studies have been conducted on a large-scale - i.e. over thousands
to a million of possible vulnerable targets - and they provide a first estimation of the
prevalence and relevance of these novel Internet threats. We proposed new methodologies
and solutions for analyzing online applications and services on a large scale in an efficient
manner.

We introduced ClickIDS, a system to analyze web pages for the presence of clickjacking
attempts. Although Clickjacking has been widely discussed on web forums and blogs, it
is unclear to what extent it is being used by attackers in the wild, and how significant
the attack is for the security of Internet users. ClickIDS relies on a real browser to load
and render a web page, and on a window-centric component to simulate the behavior of
a human user that interacts with the content of the page. Using ClickIDS, we conducted
an empirical study aimed at estimating the prevalence of Clickjacking attacks over the
Internet by automatically testing a million web pages that are likely to contain malicious
content and to be visited by Internet users. In our experiment we have identified only two
instances of clickjacking attacks - i.e. one used for click fraud and the other for message
spamming - and this suggests that clickjacking is not the preferred attack vector adopted
by attackers. We published this research in the proceedings of the 5th ACM Symposium
on Information, Computer and Communications Security (AsiaCCS 2010).

We then focused on a second recent threat for the Web called HTTP Parameter Pollu-
tion (HPP). Since its first announcement in 2009, HPP had not received much attention.
We proposed the first automated approach for the discovery of HPP vulnerabilities that
we implemented in a tool called PAPAS (PArameter Pollution Analysis System) and made
available online as a service. We conducted a measurement study to assess the the preva-
lence of HPP vulnerabilities on the Internet today by analyzing more than 5,000 popular
websites with PAPAS. We showed that a third of these websites contained vulnerable pa-
rameters and that 46.8% of the vulnerabilities we discovered can be exploited. The fact we
were able to find vulnerabilities in many high-profile, well-known websites suggests that



many developers are not aware of the HPP problem. This research has been published,
and received the Best Paper Award in the 18th Annual Network and Distributed System
Security Symposium (NDSS 2011).

Finally, we looked at cloud computing as one of the Internet paradigms that has
significantly increased in importance and popularity. We explored the general security risks
associated with the use of virtual server images provided by cloud computing providers
(e.g. Amazon). We designed and implemented a system called SatanCloud for evaluating
the privacy and security of Linux and Windows machine images in an automated fashion.
We used SatanCloud to conduct the first large-scale study over five thousands images
provided by Amazon in four of its data centers (U.S. East/West, Europe and Asia). Our
measurements demonstrated that both the users and the providers of server images might
be vulnerable to security risks such as unauthorized access, malware infections, and loss
of sensitive information. We published this research in the proceedings of the 11th edition
of the Computer Security track at the 27th ACM Symposium on Applied Computing
(SEC@SAC 2012).

The measurement studies that we conducted have helped in identifying, characterizing
and describing three novel security threats, their relevance and prevalence on the Inter-
net. In our research, when we succeed in obtaining valid contact information, we always
informed the providers of the affected applications and services of the problems we iden-
tified. In most of the cases, they reacted in a positive manner, and acknowledge or fixed
the problems.

8.2 Future Work

In the future, we hope to identify and study other recent threats such as attacks that
target smart-phones, or critical infrastructures (e.g. vulnerabilities and attacks to power
plants or satellite networks).

Concerning the limitations of our work, the detection of Clickjacking attempts is lim-
ited to attacks that employ clickable page elements. In general, this is not a requirement
for mounting a clickjacking attack because, at least in theory, it is possible for an attacker
to build a page in which a transparent IFRAME containing the target site is placed on top
of an area containing normal text. In the future, we plan to extend our ClickIDS detection
plugin to support these use cases, for example by comparing and analyzing the rendering
properties of two page elements located at the same position and with a different stack
order (i.e. a different z-index).

Our solution for the detection of HTTP Parameter Pollution vulnerabilities has limi-
tations as well. First, PAPAS does not support the crawling of links embedded in active
content such as Flash, and therefore, is not able to visit websites that rely on active con-
tent technologies to navigate among the pages. A future work is to extend the crawling
capabilities of black-box web scanners, such as PAPAS, to support these websites. Second,
currently, PAPAS focuses only on HPP vulnerabilities that can be exploited via client-side
attacks (e.g., analogous to reflected XSS attacks) where the user needs to click on a link
prepared by the attacker. Some HPP vulnerabilities can also be used to exploit server
side components (when the malicious parameter value is not included in a link but it is
decoded and passed to a backend component). However, testing for server side attacks is
more difficult than testing for client-side attacks as comparing requests and answers is not
sufficient (i.e., similar to the difficulty of detecting stored SQL-injection vulnerabilities via
black-box scanning). We leave the detection of server-side attacks to future work.



Finally, after we concluded our threat measurement work, we were asked several times
to repeat the experiments - for example on a yearly basis - to assess the evolution of the
problems over time. We leave such studies to future work.





107

Bibliographie

[1] Alexa top sites. http://www.alexa.com/topsites.

[2] Malware domain blocklist. http://www.malwaredomains.com/.

[3] Myspace. http://www.myspace.com.

[4] Nikto. http://www.cirt.net/nikto2.

[5] Phishtank: Join the fight against phishing. http://www.phishtank.com/.

[6] Security focus: Port scans legal, judge says. http://www.securityfocus.com/
news/126.

[7] Selenium web application testing system. http://seleniumhq.org/.

[8] Watir automated webbrowsers. http://wtr.rubyforge.org/.

[9] Whatweb webapp scanner. http://www.morningstarsecurity.com/research/
whatweb.

[10] xdotool. http://www.semicomplete.com/projects/xdotool/.

[11] Syslog-ng, 2000-2011. http://www.balabit.com/network-security/syslog-ng/.

[12] Pc users warned of infected web sites, 2004. http://www.washingtonpost.com/
wp-dyn/articles/A5524-2004Jun25.html.

[13] New openssl packages fix predictable random number generator, 2008. http://
lists.debian.org/debian-security-announce/2008/msg00152.html.

[14] http://www.blogger.com, 2009.

[15] Cloud computing risk assessment, November 2009. http://www.enisa.europa.
eu/act/rm/files/deliverables/cloud-computing-risk-assessment/at_
download/fullReport.

[16] Security guidance for critical areas of focus in cloud computing v2.1, December 2009.
https://cloudsecurityalliance.org/csaguide.pdf.

[17] Extundelete linux data recovery tool, 2010. http://extundelete.sourceforge.
net/.

[18] Amazon elastic compute cloud, May 2011. http://aws.amazon.com/security.

http://www.alexa.com/topsites
http://www.malwaredomains.com/
http://www.myspace.com
http://www.cirt.net/nikto2
http://www.phishtank.com/
http://www.securityfocus.com/news/126
http://www.securityfocus.com/news/126
http://seleniumhq.org/
http://wtr.rubyforge.org/
http://www.morningstarsecurity.com/research/whatweb
http://www.morningstarsecurity.com/research/whatweb
http://www.semicomplete.com/projects/xdotool/
http://www.balabit.com/network-security/syslog-ng/
http://www.washingtonpost.com/wp-dyn/articles/A5524-2004Jun25.html
http://www.washingtonpost.com/wp-dyn/articles/A5524-2004Jun25.html
http://lists.debian.org/debian-security-announce/2008/msg00152.html
http://lists.debian.org/debian-security-announce/2008/msg00152.html
http://www.blogger.com
http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment/at_download/fullReport
http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment/at_download/fullReport
http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment/at_download/fullReport
https://cloudsecurityalliance.org/csaguide.pdf
http://extundelete.sourceforge.net/
http://extundelete.sourceforge.net/
http://aws.amazon.com/security


[19] Amazon elastic compute cloud (amazon ec2), May 2011. http://aws.amazon.com/
ec2/.

[20] Clamav, July 2011. http://www.clamav.net/.

[21] Cloud computing, cloud hosting and online storage by rackspace hosting, May 2011.
http://www.rackspace.com/cloud/.

[22] Enterprise cloud computing from terremark, May 2011. http://www.terremark.
com/services/cloudcomputing.aspx.

[23] Guidelines on security and privacy in public cloud computing, draft special
publication 800-144, January 2011. csrc.nist.gov/publications/drafts/.../
Draft-SP-800-144_cloud-computing.pdf.

[24] Ibm smartcloud, May 2011. http://www.ibm.com/cloud-computing/us/en/#!
iaas.

[25] John the ripper unix password cracker, April 2011. http://www.openwall.com/
john/.

[26] Joyent smartdatacenter, May 2011. http://www.joyent.com/services/
smartdatacenter-services/.

[27] Reminder about safely sharing and using public amis, Jun
2011. http://aws.amazon.com/security/security-bulletins/
reminder-about-safely-sharing-and-using-public-amis/.

[28] Acunetix. Acunetix Web Vulnerability Scanner. http://www.acunetix.com/, 2008.

[29] Inc. Alexa Internet. Alexa - Top Sites by Category: Top. http://www.alexa.com/
topsites/category.

[30] Alexa Internet, Inc. Alexa - top sites by category. http://www.alexa.com/
topsites/category/Top/, 2009.

[31] Davide Balzarotti, Marco Cova, Viktoria Felmetsger, Nenad Jovanovic, Engin Kirda,
Christopher Kruegel, and Giovanni Vigna. Saner: Composing static and dynamic
analysis to validate sanitization in web applications. In IEEE Symposium on Security
and Privacy, pages 387–401, 2008.

[32] P. Barford, A. Bestavros, J. Byers, and M. Crovella. On the marginal utility of net-
work topology measurements. In Proceedings of the 1st ACM SIGCOMM Workshop
on Internet Measurement, pages 5–17. ACM, 2001.

[33] Jeff Barr. Amazon usage statistics. http://www.storagenewsletter.com/news/
cloud/amazon-s3-449-billion-objects.

[34] S. Batsakis, E.G.M. Petrakis, and E. Milios. Improving the performance of focused
web crawlers. Data & Knowledge Engineering, 68(10):1001–1013, 2009.

[35] Jason Bau, Elie Burzstein, Divij Gupta, and John. C. Mitchell. State of the Art:
Automated Black-Box Web Application Vulnerability Testing. In Proceedings of
IEEE Security and Privacy, May 2010.

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://www.clamav.net/
http://www.rackspace.com/cloud/
http://www.terremark.com/services/cloudcomputing.aspx
http://www.terremark.com/services/cloudcomputing.aspx
csrc.nist.gov/publications/drafts/.../Draft-SP-800-144_cloud-computing.pdf
csrc.nist.gov/publications/drafts/.../Draft-SP-800-144_cloud-computing.pdf
http://www.ibm.com/cloud-computing/us/en/#!iaas
http://www.ibm.com/cloud-computing/us/en/#!iaas
http://www.openwall.com/john/
http://www.openwall.com/john/
http://www.joyent.com/services/smartdatacenter-services/
http://www.joyent.com/services/smartdatacenter-services/
http://aws.amazon.com/security/security-bulletins/reminder-about-safely-sharing-and-using-public-amis/
http://aws.amazon.com/security/security-bulletins/reminder-about-safely-sharing-and-using-public-amis/
http://www.acunetix.com/
http://www.alexa.com/topsites/category
http://www.alexa.com/topsites/category
http://www.alexa.com/topsites/category/Top/
http://www.alexa.com/topsites/category/Top/
http://www.storagenewsletter.com/news/cloud/amazon-s3-449-billion-objects
http://www.storagenewsletter.com/news/cloud/amazon-s3-449-billion-objects


[36] T. Berners-Lee, R. Fielding, and L. Masinter. Rfc 3986, uniform resource identifier
(uri): Generic syntax, 2005. http://rfc.net/rfc3986.html.

[37] S. Bleikertz, M. Schunter, C.W. Probst, D. Pendarakis, and K. Eriksson. Security
audits of multi-tier virtual infrastructures in public infrastructure clouds. In Pro-
ceedings of the 2010 ACM workshop on Cloud computing security workshop, pages
93–102. ACM, 2010.

[38] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine.
Computer networks and ISDN systems, 30(1-7):107–117, 1998.

[39] S. Bugiel, S. Nürnberger, T. Pöppelmann, A.R. Sadeghi, and T. Schneider. Amazo-
nia: When elasticity snaps back. 2011.

[40] Burp Spider. Web Application Security. http://portswigger.net/spider/, 2008.

[41] Cenzic. Cenzic Hailstormr. http://www.cenzic.com/, 2010.

[42] CERN. W3 software release into public domain. http://tenyears-www.web.cern.
ch/tenyears-www/Welcome.html.

[43] Y. Chen. A novel hybrid focused crawling algorithm to build domain-specific collec-
tions. PhD thesis, Citeseer, 2007.

[44] J. Cho. Crawling the Web: Discovery and maintenance of large-scale Web data.
PhD thesis, Citeseer, 2001.

[45] J. Cho and H. Garcia-Molina. The evolution of the web and implications for an
incremental crawler. In Proceedings of the 26th international conference on very
large data bases, pages 200–209. Citeseer, 2000.

[46] Steve Christey and Robert A. Martin. Vulnerability Type Distributions in CVE,
May 2007. http://cwe.mitre.org/documents/vuln-trends/index.html.

[47] M. Christodorescu, R. Sailer, D.L. Schales, D. Sgandurra, and D. Zamboni. Cloud
security is not (just) virtualization security: a short paper. In Proceedings of the
2009 ACM workshop on Cloud computing security, pages 97–102. ACM, 2009.

[48] Internet System Consortium. Internet host count history. http://www.isc.org/
solutions/survey/history.

[49] Maurice de Kunder. World wide web size. http://www.worldwidewebsize.com.

[50] Valgrind Developers. Valgrind. http://valgrind.org/.

[51] Stefano di Paola and Luca Carettoni. Client side Http Parameter Pollution - Yahoo!
Classic Mail Video Poc, May 2009. http://blog.mindedsecurity.com/2009/05/
client-side-http-parameter-pollution.html.

[52] A. Doupé, M. Cova, and G. Vigna. Why Johnny Can’t Pentest: An Analysis of
Black-Box Web Vulnerability Scanners. Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 111–131, 2010.

http://rfc.net/rfc3986.html
http://portswigger.net/spider/
http://www.cenzic.com/
http://tenyears-www.web.cern.ch/tenyears-www/Welcome.html
http://tenyears-www.web.cern.ch/tenyears-www/Welcome.html
http://cwe.mitre.org/documents/vuln-trends/index.html
http://www.isc.org/solutions/survey/history
http://www.isc.org/solutions/survey/history
http://www.worldwidewebsize.com
http://valgrind.org/
http://blog.mindedsecurity.com/2009/05/client-side-http-parameter-pollution.html
http://blog.mindedsecurity.com/2009/05/client-side-http-parameter-pollution.html


[53] Manuel Egele, Martin Szydlowski, Engin Kirda, and Christopher Kruegel. Using
static program analysis to aid intrusion detection. In Detection of Intrusions and
Malware & Vulnerability Assessment, Third International Conference, DIMVA 2006,
Berlin, Germany, July 13-14, 2006, Proceedings, pages 17–36, 2006.

[54] D. Fetterly, M. Manasse, M. Najork, and J.L. Wiener. A large-scale study of the
evolution of web pages. Software: Practice and Experience, 34(2):213–237, 2004.

[55] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Rfc 2616, hypertext transfer protocol – http/1.1, 1999. http://www.rfc.net/
rfc2616.html.

[56] Bernardo Damele A. G. and Miroslav Stampar. sqlmap. http://sqlmap.
sourceforge.net.

[57] T. Garfinkel and M. Rosenblum. When virtual is harder than real: Security chal-
lenges in virtual machine based computing environments. In Proceedings of the 10th
conference on Hot Topics in Operating Systems-Volume 10, pages 20–20. USENIX
Association, 2005.

[58] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software Engineering.
Prentice-Hall International, 1994.

[59] Nova Scotia’s Electric Gleaner. Cost of hard drive storage space. http://ns1758.
ca/winch/winchest.html.

[60] R. Glott, E. Husmann, A.R. Sadeghi, and M. Schunter. Trustworthy clouds under-
pinning the future internet. The Future Internet, pages 209–221, 2011.

[61] Jan Goebel, Thorsten Holz, and Carsten Willems. Measurement and analysis of
autonomous spreading malware in a university environment. In Proceedings of the 4th
international conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, DIMVA ’07, pages 109–128, Berlin, Heidelberg, 2007. Springer-Verlag.

[62] S. Gordeychik, J. Grossman, M. Khera, M. Lantinga, C. Wysopal, C. Eng, S. Shah,
L. Lee, C. Murray, and D. Evteev. Web application security statistics project. The
Web Application Security Consortium.

[63] R. Govindan and H. Tangmunarunkit. Heuristics for internet map discovery. In
INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, volume 3, pages 1371–1380. IEEE,
2000.

[64] J. Grossman. Whitehat website security statistics report. WhiteHat Security, 2011.

[65] Robert Hansen. Clickjacking details. http://ha.ckers.org/blog/20081007/
clickjacking-details/, 2008.

[66] Robert Hansen and Jeremiah Grossman. Clickjacking. http://www.sectheory.
com/clickjacking.htm, 09 2008.

[67] Norman Hardy. The Confused Deputy: (or why capabilities might have been in-
vented). ACM SIGOPS Operating Systems Review, 22(4), October 1988.

http://www.rfc.net/rfc2616.html
http://www.rfc.net/rfc2616.html
http://sqlmap.sourceforge.net
http://sqlmap.sourceforge.net
http://ns1758.ca/winch/winchest.html
http://ns1758.ca/winch/winchest.html
http://ha.ckers.org/blog/20081007/clickjacking-details/
http://ha.ckers.org/blog/20081007/clickjacking-details/
http://www.sectheory.com/clickjacking.htm
http://www.sectheory.com/clickjacking.htm


[68] Marco Slaviero Haroon Meer, Nick Arvanitis. Clobbering the cloud, part 4 of 5,
2009. http://www.sensepost.com/labs/conferences/clobbering_the_cloud/
amazon.

[69] HP Fortify. HP WebInspect. https://www.fortify.com/products/web_inspect.
html.

[70] Yao-Wen Huang, Shih-Kun Huang, Tsung-Po Lin, and Chung-Hung Tsai. Web
application security assessment by fault injection and behavior monitoring. In WWW
’03: Proceedings of the 12th international conference on World Wide Web, pages
148–159, New York, NY, USA, 2003. ACM.

[71] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai Lee, and Sy-
Yen Kuo. Securing web application code by static analysis and runtime protection.
In WWW ’04: Proceedings of the 13th international conference on World Wide Web,
pages 40–52, New York, NY, USA, 2004. ACM.

[72] IBM Software. IBM Rational AppScan. www.ibm.com/software/awdtools/
appscan/.

[73] A.S. Ibrahim, J. Hamlyn-Harris, and J. Grundy. Emerging security challenges of
cloud virtual infrastructure. In Proceedings of the APSEC 2010 Cloud Workshop,
November 2010.

[74] DropBox Inc. Where are my files stored? https://www.dropbox.com/help/7.

[75] Insecure.org. NMap Network Scanner. http://www.insecure.org/nmap/, 2010.

[76] SANS Institute. Top Cyber Security Risks, September 2009. http://www.sans.
org/top-cyber-security-risks/summary.php.

[77] International Secure Systems Lab. http://anubis.iseclab.org, 2009.

[78] Adam Barth Collin Jackson and John C. Mitchell. Robust Defenses for Cross-
Site Request Forgery. In 15th ACM Conference on Computer and Communications
Security, 2007.

[79] M. Jakobsson, P. Finn, and N. Johnson. Why and How to Perform Fraud Experi-
ments. Security & Privacy, IEEE, 6(2):66–68, March-April 2008.

[80] Markus Jakobsson and Jacob Ratkiewicz. Designing ethical phishing experiments: a
study of (ROT13) rOnl query features. In 15th International Conference on World
Wide Web (WWW), 2006.

[81] Jeremiah Grossman. (Cancelled) Clickjacking - OWASP AppSec Talk. http://
jeremiahgrossman.blogspot.com/2009/06/clickjacking-2017.html, Septem-
ber 2008.

[82] Jeremiah Grossman. Clickjacking 2017. http://jeremiahgrossman.blogspot.
com/2009/06/clickjacking-2017.html, June 2009.

[83] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A Static Analysis Tool for Detecting
Web Application Vulnerabilities (Short Paper). In IEEE Symposium on Security
and Privacy, 2006.

http://www.sensepost.com/labs/conferences/clobbering_the_cloud/amazon
http://www.sensepost.com/labs/conferences/clobbering_the_cloud/amazon
https://www.fortify.com/products/web_inspect.html
https://www.fortify.com/products/web_inspect.html
www.ibm.com/software/awdtools/appscan/
www.ibm.com/software/awdtools/appscan/
https://www.dropbox.com/help/7
http://www.insecure.org/nmap/
http://www.sans.org/top-cyber-security-risks/summary.php
http://www.sans.org/top-cyber-security-risks/summary.php
http://anubis.iseclab.org
http://jeremiahgrossman.blogspot.com/2009/06/clickjacking-2017.html
http://jeremiahgrossman.blogspot.com/2009/06/clickjacking-2017.html
http://jeremiahgrossman.blogspot.com/2009/06/clickjacking-2017.html
http://jeremiahgrossman.blogspot.com/2009/06/clickjacking-2017.html


[84] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Pixy: A static analysis
tool for detecting web application vulnerabilities (short paper). In IEEE Symposium
on Security and Privacy, pages 258–263, 2006.

[85] Andrew Kalafut, Abhinav Acharya, and Minaxi Gupta. A study of malware in peer-
to-peer networks. In Proceedings of the 6th ACM SIGCOMM conference on Internet
measurement, IMC ’06, pages 327–332, New York, NY, USA, 2006. ACM.

[86] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic. SecuBat: A Web Vulnerability
Scanner. In World Wide Web Conference, 2006.

[87] Stefan Kals, Engin Kirda, Christopher Kruegel, and Nenad Jovanovic. Secubat:
a web vulnerability scanner. In WWW ’06: Proceedings of the 15th international
conference on World Wide Web, pages 247–256, New York, NY, USA, 2006. ACM.

[88] Nenad Jovanovic Engin Kirda and Christopher Kruegel. Preventing Cross Site Re-
quest Forgery Attacks. In IEEE International Conference on Security and Privacy
in Communication Networks (SecureComm), Baltimore, MD, 2006.

[89] Lavakumar Kuppan. Split and Join, Bypassing Web Application Firewalls with
HTTP Parameter Pollution, June 2009. http://andlabs.org/whitepapers/
Split_and_Join.pdf.

[90] A. Lakhina, J.W. Byers, M. Crovella, and P. Xie. Sampling biases in ip topology
measurements. In INFOCOM 2003. Twenty-Second Annual Joint Conference of the
IEEE Computer and Communications. IEEE Societies, volume 1, pages 332–341.
IEEE, 2003.

[91] S. Lawrence and C.L. Giles. Searching the world wide web. Science, 280(5360):98,
1998.

[92] H. Liu, J. Janssen, and E. Milios. Using hmm to learn user browsing patterns for
focused web crawling. Data & Knowledge Engineering, 59(2):270–291, 2006.

[93] Insecure.Com LLC. Network Mapper (NMap), 1996-2011. http://nmap.org/.

[94] Michael Mahemoff. Explaining the “Don’t Click” Clickjacking Tweetbomb. http:
//softwareas.com/explaining-the-dont-click-clickjacking-tweetbomb, 2
2009.

[95] Giorgio Maone. Hello ClearClick, Goodbye Clickjacking! http://hackademix.net/
2008/10/08/hello-clearclick-goodbye-clickjacking/, 10 2008.

[96] Giorgio Maone. X-frame-options in firefox. http://hackademix.net/2009/01/29/
x-frame-options-in-firefox/, 2009.

[97] J. Matthews, T. Garfinkel, C. Hoff, and J. Wheeler. Virtual machine contracts for
datacenter and cloud computing environments. In Proceedings of the 1st workshop
on Automated control for datacenters and clouds, pages 25–30. ACM, 2009.

[98] P. Mell, K. Scarfone, and S. Romanosky. A complete guide to the common vulnera-
bility scoring system version 2.0. In Published by FIRST-Forum of Incident Response
and Security Teams, 2007.

http://andlabs.org/whitepapers/Split_and_Join.pdf
http://andlabs.org/whitepapers/Split_and_Join.pdf
http://nmap.org/
http://softwareas.com/explaining-the-dont-click-clickjacking-tweetbomb
http://softwareas.com/explaining-the-dont-click-clickjacking-tweetbomb
http://hackademix.net/2008/10/08/hello-clearclick-goodbye-clickjacking/
http://hackademix.net/2008/10/08/hello-clearclick-goodbye-clickjacking/
http://hackademix.net/2009/01/29/x-frame-options-in-firefox/
http://hackademix.net/2009/01/29/x-frame-options-in-firefox/


[99] F. Menczer, G. Pant, and P. Srinivasan. Topical web crawlers: Evaluating adaptive
algorithms. ACM Transactions on Internet Technology (TOIT), 4(4):378–419, 2004.

[100] Microsoft. IE8 Clickjacking Defense. http://blogs.msdn.com/ie/archive/2009/
01/27/ie8-security-part-vii-clickjacking-defenses.aspx, 01 2009.

[101] Microsoft Corporation. Security attribute (frame, iframe, htmldocument construc-
tor). http://msdn.microsoft.com/en-us/library/ms534622(VS.85).aspx.

[102] MITRE. Common vulnerabilities and exposures (cve). http://cve.mitre.org/.

[103] Dave Morgan. Storage-n-harddrives. where are we and where
are we going? http://semiaccurate.com/2010/07/24/
storage-n-harddrives-where-are-we-and-where-are-we-going/.

[104] A. Moshchuk, T. Bragin, S.D. Gribble, and H.M. Levy. A crawler-based study of
spyware on the web. In Proceedings of the 2006 Network and Distributed System
Security Symposium, pages 17–33. Citeseer, 2006.

[105] Mozilla Foundation. https://bugzilla.mozilla.org/show_bug.cgi?id=154957,
2002.

[106] S. Neuhaus and T. Zimmermann. Security trend analysis with cve topic models. In
Software Reliability Engineering (ISSRE), 2010 IEEE 21st International Symposium
on, pages 111–120. IEEE, 2010.

[107] J. Nielsen. The same origin policy. http://www.mozilla.org/projects/security/
components/same-origin.html, 2001.

[108] Computer Security Division of National Institute of Standards and Technology. Na-
tional vulnerability database version 2.2. http://nvd.nist.gov/.

[109] OWASP. Owasp top10 project. https://www.owasp.org/index.php/Top_10_2010.

[110] OWASP AppSec Europe 2009. HTTP Parameter Pollution, May 2009. http://
www.owasp.org/images/b/ba/AppsecEU09_CarettoniDiPaola_v0.8.pdf.

[111] V. Paxson, J. Mahdavi, A. Adams, and M. Mathis. An architecture for large scale
internet measurement. Communications Magazine, IEEE, 36(8):48–54, 1998.

[112] N. Provos, P. Mavrommatis, M.A. Rajab, and F. Monrose. All your iframes point
to us. In Proceedings of the 17th conference on Security symposium, pages 1–15.
USENIX Association, 2008.

[113] Alen Puzic. Cloud security: Amazon’s ec2 serves up ’certified pre-owned’
server images, April 2011. http://dvlabs.tippingpoint.com/blog/2011/04/11/
cloud-security-amazons-ec2-serves-up-certified-pre-owned-server-images.

[114] S. Raghavan and H. Garcia-Molina. Crawling the hidden web. In Proceedings of the
International Conference on Very Large Data Bases, pages 129–138. Citeseer, 2001.

[115] J.W. Ratcliff and D. Metzener. Pattern matching: The gestalt approach. Dr. Dobb’s
Journal, 7:46, 1988.

http://blogs.msdn.com/ie/archive/2009/01/27/ie8-security-part-vii-clickjacking-defenses.aspx
http://blogs.msdn.com/ie/archive/2009/01/27/ie8-security-part-vii-clickjacking-defenses.aspx
http://msdn.microsoft.com/en-us/library/ms534622(VS.85).aspx
http://cve.mitre.org/
http://semiaccurate.com/2010/07/24/storage-n-harddrives-where-are-we-and-where-are-we-going/
http://semiaccurate.com/2010/07/24/storage-n-harddrives-where-are-we-and-where-are-we-going/
https://bugzilla.mozilla.org/show_bug.cgi?id=154957
http://www.mozilla.org/projects/security/components/same-origin.html
http://www.mozilla.org/projects/security/components/same-origin.html
http://nvd.nist.gov/
https://www.owasp.org/index.php/Top_10_2010
http://www.owasp.org/images/b/ba/AppsecEU09_CarettoniDiPaola_v0.8.pdf
http://www.owasp.org/images/b/ba/AppsecEU09_CarettoniDiPaola_v0.8.pdf
http://dvlabs.tippingpoint.com/blog/2011/04/11/cloud-security-amazons-ec2-serves-up-certified-pre-owned-server-images
http://dvlabs.tippingpoint.com/blog/2011/04/11/cloud-security-amazons-ec2-serves-up-certified-pre-owned-server-images


[116] Dark Reading. CSRF Flaws Found on Major Websites: Princeton University re-
searchers reveal four sites with cross-site request forgery flaws and unveil tools
to protect against these attacks, 2008. http://www.darkreading.com/security/
app-security/showArticle.jhtml?articleID=211201247.

[117] Filippo Ricca and Paolo Tonella. Analysis and testing of web applications. In
ICSE ’01: Proceedings of the 23rd International Conference on Software Engineer-
ing, pages 25–34, Washington, DC, USA, 2001. IEEE Computer Society.

[118] G. Richards, C. Hammer, B. Burg, and J. Vitek. The eval that men do: A large-
scale study of the use of eval in javascript applications. In Proceedings of the 25th
European conference on Object-oriented programming, pages 52–78. Springer-Verlag,
2011.

[119] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, you,
get off of my cloud: exploring information leakage in third-party compute clouds. In
Proceedings of the 16th ACM conference on Computer and communications security,
CCS ’09, pages 199–212, New York, NY, USA, 2009. ACM.

[120] Mark Russinovich. Psexec, 2009. http://technet.microsoft.com/en-us/
sysinternals/bb897553.

[121] Stefan Saroiu, Steven D. Gribble, and Henry M. Levy. Measurement and analysis
of spywave in a university environment. In Proceedings of the 1st conference on
Symposium on Networked Systems Design and Implementation - Volume 1, pages
11–11, Berkeley, CA, USA, 2004. USENIX Association.

[122] T. Scholte, D. Balzarotti, and E. Kirda. Quo vadis? a study of the evolution of
input validation vulnerabilities in web applications.

[123] Amazon AWS Security. How to share and use public amis in a secure manner, June
2011. http://aws.amazon.com/articles/0155828273219400.

[124] Amazon AWS Security. Reminder about safely sharing and using pub-
lic amis, June 2011. http://aws.amazon.com/security/security-bulletins/
reminder-about-safely-sharing-and-using-public-amis/.

[125] Tenable Network Security. Nessus vulnerability scanner, 2002-2011. http://www.
tenable.com/products/nessus.

[126] IBM Managed Security Services. Trend and risk report, March 2011.

[127] Y. Shavitt and E. Shir. Dimes: Let the internet measure itself. ACM SIGCOMM
Computer Communication Review, 35(5):71–74, 2005.

[128] WinRecovery Software. Winundelete windows data recovery tool, 2001-2011. http:
//www.winundelete.com/.

[129] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung
Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam, and Prateek Saxena.
Temu. http://bitblaze.cs.berkeley.edu/temu.html.

http://www.darkreading.com/security/app-security/showArticle.jhtml?articleID=211201247
http://www.darkreading.com/security/app-security/showArticle.jhtml?articleID=211201247
http://technet.microsoft.com/en-us/sysinternals/bb897553
http://technet.microsoft.com/en-us/sysinternals/bb897553
http://aws.amazon.com/articles/0155828273219400
http://aws.amazon.com/security/security-bulletins/reminder-about-safely-sharing-and-using-public-amis/
http://aws.amazon.com/security/security-bulletins/reminder-about-safely-sharing-and-using-public-amis/
http://www.tenable.com/products/nessus
http://www.tenable.com/products/nessus
http://www.winundelete.com/
http://www.winundelete.com/
http://bitblaze.cs.berkeley.edu/temu.html


[130] Internet World Stats. Internet usage statistics. http://www.internetworldstats.
com/stats.htm.

[131] Z. Su and G. Wassermann. The Essence of Command Injection Attacks in Web
Applications. In Symposium on Principles of Programming Languages, 2006.

[132] Symantec. Symantec intelligence report, July 2011.

[133] H. Takabi, J.B.D. Joshi, and G. Ahn. Security and privacy challenges in cloud
computing environments. Security & Privacy, IEEE, 8(6):24–31, 2010.

[134] Amazon AWS Team. Amazon rds, 2011. http://aws.amazon.com/rds/.

[135] Tenable Network Security. Nessus Open Source Vulnerability Scanner Project. http:
//www.nessus.org/, 2010.

[136] US-CERT. CVE-2008-4503: Adobe Flash Player Clickjacking Vulnerability. http:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4503, 10 2008.

[137] J. Varia. Architecting for the cloud: Best practices. Amazon, Inc., Tech. Rep., Jan,
2010.

[138] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna. Cross site
scripting prevention with dynamic data tainting and static analysis. In Proceeding
of the Network and Distributed System Security Symposium (NDSS), volume 42.
Citeseer, 2007.

[139] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher
Kruegel, and Giovanni Vigna. Cross site scripting prevention with dynamic data
tainting and static analysis. In Proceedings of the Network and Distributed System
Security Symposium, NDSS 2007, San Diego, California, USA, 28th February - 2nd
March 2007, 2007.

[140] Web Application Attack and Audit Framework. http://w3af.sourceforge.net/.

[141] Y.M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen, and S. King. Au-
tomated web patrol with strider honeymonkeys. In Proceedings of the 2006 Network
and Distributed System Security Symposium, pages 35–49. Citeseer, 2006.

[142] Gary Wassermann and Zhendong Su. Sound and precise analysis of web applications
for injection vulnerabilities. SIGPLAN Not., 42(6):32–41, 2007.

[143] Gary Wassermann, Dachuan Yu, Ajay Chander, Dinakar Dhurjati, Hiroshi Inamura,
and Zhendong Su. Dynamic test input generation for web applications. In ISSTA ’08:
Proceedings of the 2008 international symposium on Software testing and analysis,
pages 249–260, New York, NY, USA, 2008. ACM.

[144] J. Wei, X. Zhang, G. Ammons, V. Bala, and P. Ning. Managing security of virtual
machine images in a cloud environment. In Proceedings of the 2009 ACM workshop
on Cloud computing security, pages 91–96. ACM, 2009.

[145] Y. Xie and A. Aiken. Static Detection of Security Vulnerabilities in Scripting Lan-
guages. In 15th USENIX Security Symposium, 2006.

http://www.internetworldstats.com/stats.htm
http://www.internetworldstats.com/stats.htm
http://aws.amazon.com/rds/
http://www.nessus.org/
http://www.nessus.org/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4503
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4503
http://w3af.sourceforge.net/


[146] Yichen Xie and Alex Aiken. Static detection of security vulnerabilities in script-
ing languages. In USENIX-SS’06: Proceedings of the 15th conference on USENIX
Security Symposium, Berkeley, CA, USA, 2006. USENIX Association.

[147] C. Yue and H. Wang. Characterizing insecure javascript practices on the web. In
Proceedings of the 18th international conference on World wide web, pages 961–970.
ACM, 2009.

[148] Michal Zalewski. Browser security handbook, part 2. http://code.google.com/
p/browsersec/wiki/Part2#Arbitrary_page_mashups_(UI_redressing), 2008.

[149] Michal Zalewski. Dealing with UI redress vulnerabilities inherent to
the current web. http://lists.whatwg.org/htdig.cgi/whatwg-whatwg.org/
2008-September/016284.html, 09 2008.

[150] J. Zhuge, T. Holz, C. Song, J. Guo, X. Han, and W. Zou. Studying malicious
websites and the underground economy on the chinese web. Managing Information
Risk and the Economics of Security, pages 225–244, 2009.

http://code.google.com/p/browsersec/wiki/Part2#Arbitrary_page_mashups_(UI_redressing)
http://code.google.com/p/browsersec/wiki/Part2#Arbitrary_page_mashups_(UI_redressing)
http://lists.whatwg.org/htdig.cgi/whatwg-whatwg.org/2008-September/016284.html
http://lists.whatwg.org/htdig.cgi/whatwg-whatwg.org/2008-September/016284.html

	I Résumé
	Introduction
	Contributions
	Récapitulatif
	Organisation de la thèse

	Principales Contributions
	Détournement de Clic (Clickjacking)
	Pollution de Paramètres HTTP (HPP)
	Risques liés au Elastic Compute Cloud


	II These
	Introduction
	Contributions
	Summary
	Organization

	Related Work
	Large-Scale Internet Measurement
	Measurement of Internet Threats
	Web Vulnerabilities
	Cloud Computing Threats
	Summary

	Clickjacking
	Introduction
	Clickjacking
	Detection Approach
	Detection unit
	Testing unit
	Limitations

	Evaluation
	Results
	False positives
	True positive and borderline cases
	False negatives

	Pages implementing protection techniques
	Summary

	HTTP Parameter Pollution
	Problem Statement
	Parameter Precedence in Web Applications
	Parameter Pollution

	Automated HPP Detection
	Browser and Crawler Components
	P-Scan: Analysis of the Parameter Precedence
	V-Scan: Testing for HPP vulnerabilities

	Implementation
	Limitations

	Evaluation
	Examples of Discovered Vulnerabilities
	Ethical Considerations

	Summary

	Elastic Compute Cloud Risks
	Introduction
	Overview of Amazon EC2
	AMI Testing Methodology
	Results of the Large Scale Analysis
	Software Vulnerabilities
	Security Risks
	Privacy Risks

	Matching AMIs to Running Instances
	Ethical Considerations and Amazon's Feedback
	Summary

	Conclusion and Future Work
	Conclusion
	Future Work



